RU2202628C2 - Способ раскисления и легирования стали - Google Patents
Способ раскисления и легирования стали Download PDFInfo
- Publication number
- RU2202628C2 RU2202628C2 RU2001117600A RU2001117600A RU2202628C2 RU 2202628 C2 RU2202628 C2 RU 2202628C2 RU 2001117600 A RU2001117600 A RU 2001117600A RU 2001117600 A RU2001117600 A RU 2001117600A RU 2202628 C2 RU2202628 C2 RU 2202628C2
- Authority
- RU
- Russia
- Prior art keywords
- steel
- silicon
- aluminum
- converter
- ferroalloys
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 86
- 239000010959 steel Substances 0.000 title claims abstract description 86
- 238000005275 alloying Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229910001021 Ferroalloy Inorganic materials 0.000 claims abstract description 48
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 42
- 239000010703 silicon Substances 0.000 claims abstract description 42
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 37
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000011572 manganese Substances 0.000 claims abstract description 25
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 24
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910000616 Ferromanganese Inorganic materials 0.000 claims abstract description 4
- 229910000720 Silicomanganese Inorganic materials 0.000 claims abstract description 4
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims description 6
- 238000003723 Smelting Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000654 additive Substances 0.000 abstract description 2
- 238000009851 ferrous metallurgy Methods 0.000 abstract description 2
- 238000010079 rubber tapping Methods 0.000 abstract 7
- 239000007788 liquid Substances 0.000 description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Изобретение относится к черной металлургии, конкретнее к раскислению и легированию стали в процессе выпуска из конвертера в сталеразливочный ковш. Технический результат заключается в регламентации и упорядочении режимов присадки в ковш ферросплавов и легирующих материалов, в повышении степени усвоения углерода, марганца, алюминия из ферросплавов и легирующих материалов, а также в повышении эффективности удаления продуктов раскисления из жидкой стали. Способ раскисления и легирования стали включает выплавку стали в конвертере, выпуск ее из конвертера в сталеразливочный ковш, подачу в ковш в процессе выпуска раскислителей и легирующих материалов в виде ферросплавов и алюминия тремя порциями. Первую порцию из кремнийсодержащих ферросплавов и науглероживателя с весовым соотношением 1:(0,1-10,0) вводят с начала выпуска под струю стали до наполнения ковша в пределах 0,2-0,3 высоты его рабочей полости. Весовой расход М1 в кг/т выплавляемой стали кремнийсодержащих ферросплавов в первой порции устанавливают по соотношению М1=К1•(С2-С1)•t/С1, где С1 - содержание углерода в стали перед выпуском из конвертера, мас.%; С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас. %; t - температура стали в конвертере перед выпуском, oС; К1 - коэффициент, равный (8,2-17,0)•10-5, кг/т•oС. Вторую порцию из марганецсодержащих и/или из кремнийсодержащих материалов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали вводят при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости. Третью порцию из алюминия вводят при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости. Весовой расход алюминия М2 в кг/т выплавляемой стали устанавливают по соотношению М2=К2•Al•Т/а, где Al - необходимое содержание алюминия в стали после ее выпуска из конвертера, мас.%; Т - масса выплавляемой стали, т; а - величина усвоения сталью алюминия, равная 15-30%; К2 - коэффициент, равный 2,5-10,0, безразмерный. В качестве кремнийсодержащего ферросплава могут использовать ферросилиций, силикокальций, в качестве марганецсодержащего ферросплава - ферромарганец, силикомарганец. Отношение подаваемых во второй порции весовых количеств кремнийсодержащих и марганецсодержащих ферросплавов устанавливают в пределах 1:(1-10). 6 з.п. ф-лы, 1 табл.
Description
Изобретение относится к черной металлургии, конкретнее к процессам выплавки стали в конвертере, ее раскисления и легирования в процессе выпуска из конвертера в сталеразливочный ковш.
Наиболее близким по технической сущности является способ paскисления и легирования стали, включающий выплавку стали в конвертере, выпуск стали из конвертера в сталеразливочный ковш с отсечкой шлака, подачу в ковш в процессе выпуска раскислителей и легирующих материалов в виде ферросплавов и алюминия.
(См. Справочник конвертерщика. Якушев А.М. - Челябинск: Металлургия, Челябинское отделение, 1990, стр. 276-285).
Недостатком известного способа является отсутствие необходимой регламентации режимов подачи в ковш ферросплавов и легирующих материалов во время выпуска расплава из конвертера. В результате не обеспечивается необходимая степень усвоения сталью углерода, марганца, алюминия из ферросплавов и легирующих материалов. При этом не обеспечивается необходимое удаление продуктов раскисления из жидкой стали.
Технический эффект при использовании изобретения заключается в регламентации и упорядочении режимов присадки в ковш ферросплавов и легирующих материалов, в повышении степени усвоения углерода, марганца, алюминия из ферросплавов и легирующих материалов, а также в повышении эффективности удаления продуктов раскисления из жидкой стали.
Указанный технический эффект достигают тем, что способ раскисления и легирования стали включает выплавку стали в конвертере, выпуск стали из конвертера в сталеразливочный ковш, подачу в ковш в процессе выпуска раскислителей и легирующих материалов в виде ферросплавов и алюминия.
Раскислители и легирующие материалы подают тремя порциями. Первая порция состоит из кремнийсодержащих ферросплавов и науглероживателя с весовым соотношением 1:(0,1-10,0), которая вводится с начала выпуска под струю стали до наполнения ковша в пределах 0,2-0,3 высоты его рабочей полости. Весовой расход кремнийсодержащих ферросплавов в первой порции устанавливают по соотношению:
М1=К1•(С2 - С1)•t/С1,
где M1 - весовой расход кремнийсодержащих ферросплавов, кг/т выплавляемой стали;
С1 - содержание углерода в стали перед выпуском из конвертера, мас.%;
С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%;
t - температура стали в конвертере перед выпуском, oС;
K1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования стали, равный (8,2-17,0)•10-5, кг/т•oС.
М1=К1•(С2 - С1)•t/С1,
где M1 - весовой расход кремнийсодержащих ферросплавов, кг/т выплавляемой стали;
С1 - содержание углерода в стали перед выпуском из конвертера, мас.%;
С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%;
t - температура стали в конвертере перед выпуском, oС;
K1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования стали, равный (8,2-17,0)•10-5, кг/т•oС.
Вторая порция состоит из марганецсодержащих и/или из кремнийсодержащих ферросплавов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали, которая вводится при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости.
Третья порция состоит из алюминия, которая вводится при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости. Весовой расход алюминия устанавливают по соотношению:
М2=К2•Al•Т/а,
где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали;
Al - необходимое содержание алюминия в стали после ее выпуска из конвертера, мас.%;
Т - масса выплавляемой стали, т;
а - величина усвоения сталью алюминия, разная 15-30%;
К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.
М2=К2•Al•Т/а,
где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали;
Al - необходимое содержание алюминия в стали после ее выпуска из конвертера, мас.%;
Т - масса выплавляемой стали, т;
а - величина усвоения сталью алюминия, разная 15-30%;
К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.
В качестве кремнийсодержащего ферросплава используют ферросилиций с содержанием кремния в пределах 30-80 мас. %, остальное железо. В качестве кремнийсодержащего ферросплава используют силикокальций с содержанием кремния 40-70 мас. % и кальция 10-40 мас.%, остальное железо. В качестве кремнийсодержащих материалов используют силикокальций и ферросилиций с весовым соотношением в пределах 1: (1-10). В качестве марганецсодержащего ферросплава используют ферромарганец с содержанием марганца в пределах 50-95 мас. %, остальное железо. В качестве марганецсодержащих ферросплавов используют силикомарганец с содержанием кремния в пределах 10-25 мас.% и марганца в пределах 50-75 мас.%, остальное железо. Отношение подаваемых во второй порции весовых количеств кремнийсодержащих и марганецсодержащих ферросплавов устанавливают в пределах 1:(1-10).
Заявляемая технология раскисления и легирования стали позволяет наиболее эффективно связывать растворенный кислород и удалять продукты раскисления из жидкой стали.
Предложенный способ наиболее эффективно применим для сталей следующего химического состава, мас. %: С= 0,05-0,30; Si=0,05-1,5; Мn=0,10-2,0; Al= 0,01-0,1.
Диапазон значений весового соотношения кремнийсодержащих материалов и науглероживателя в пределах 1: (0,5-10,0) объясняется физико-химическими закономерностями процесса раскисления, легирования и науглероживания стали. При меньших значениях не будет происходить необходимое науглероживание стали. При больших значениях не будет обеспечиваться необходимый химический состав стали по содержанию углерода.
Диапазон значений расхода марганец- и/или кремнийсодержащих материалов в пределах 1,0-30,0 кг/т выплавляемой стали объясняется физико-химическими закономерностями раскисления и легирования стали. При меньших значениях не будет обеспечиваться необходимый химический состав стали. При больших значениях будет происходить перерасход ферросплавов.
Диапазон значений коэффициента К1 в пределах (8,2-17,0)•10-5 объясняется физико-химическими закономерностями легирования стали. При меньших значениях расход ферросплавов будет недостаточным. При больших значениях будет происходить перерасход ферросплавов.
Диапазон значений коэффициента К2 в пределах 2,5-10,0 объясняется физико-химическими закономерностями раскисления стали алюминием. При меньших значениях сталь будет недостаточно раскислена. При больших значениях будет происходить перерасход алюминия.
Диапазон значений высоты наполнения рабочей полости ковша при подаче 1, 2 и 3 порций соответственно в пределах 0,2-0,3; 0,25-0,6 и 0,4-0,8 объясняется физико-химическими закономерностями усвоения ферросплавов и легирующих материалов жидкой сталью по мере наполнения ковша расплавом. При меньших значениях будет происходить снижение усвоения сталью подаваемых ферросплавов и легирующих материалов. При больших значениях ферросплавы и легирующие материалы не будут успевать растворяться за время выпуска стали из конвертера.
Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".
Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.
Способ раскисления и легирования стали осуществляют следующим образом.
Пример. В конвертере выплавляют углеродистую сталь с содержанием мас.%: углерода 0,05-0,3; алюминия 0,01-0,1; кремния 0,05-1,5; марганца 0,1-2,0. После выплавки стали ее выпускают из конвертера в сталеразливочный ковш соответствующей емкости с отсечкой шлака. В процессе выпуска стали в ковш подают раскислители и легирующие материалы в виде ферросплавов и алюминия.
Раскислители и легирующие материалы подают тремя порциями. Первая порция состоит из кремнийсодержащих материалов и науглероживателя в виде коксика с весовым соотношением 1: (0,1-10,0), которая вводится с начала выпуска под струю стали до наполнения ковша в пределах 0,2-0,3 высоты его рабочей полости. Весовой расход кремнийсодержащих материалов в первой порции устанавливают по соотношению:
М1=К1•(С2 - С1)•t/C1,
где М1 - весовой расход кремнийсодержащих материалов, кг/т выплавляемой стали;
С1 - содержание углерода в стали перед выпуском из конвертера, мас.%;
С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%;
t - температура стали в конвертере перед выпуском, oС;
K1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования стали, равный (8,2-17,0)•10-5, кг/т•oС.
М1=К1•(С2 - С1)•t/C1,
где М1 - весовой расход кремнийсодержащих материалов, кг/т выплавляемой стали;
С1 - содержание углерода в стали перед выпуском из конвертера, мас.%;
С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%;
t - температура стали в конвертере перед выпуском, oС;
K1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования стали, равный (8,2-17,0)•10-5, кг/т•oС.
Вторая порция состоит из марганецсодержащих и/или из кремнийсодержащих материалов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали, которая вводится при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости.
Третья порция состоит из алюминия в виде кусков, которая вводится при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости. Весовой расход алюминия устанавливают по соотношению:
М2=К2•Al•Т/а,
где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали;
Al - необходимое содержание алкания в стали после ее выпуска из конвертера, мас.%;
а - величина усвоения сталью алюминия, равная 15-30%;
Т - масса выплавляемой стали, т;
К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.
М2=К2•Al•Т/а,
где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали;
Al - необходимое содержание алкания в стали после ее выпуска из конвертера, мас.%;
а - величина усвоения сталью алюминия, равная 15-30%;
Т - масса выплавляемой стали, т;
К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.
В качестве кремнийсодержащего ферросплава используют ферросилиций с содержанием кремния в пределах 30-80 мас. %, остальное железо. В качестве кремнийсодержащего ферросплава возможно использовать силикокальций с содержанием кремния 40-70 мас.% и кальция 10-40 мас.%, остальное железо. В качестве кремнийсодержащих материалов используют силикокальций и ферросилиций с весовым соотношением в пределах 1:(1-10). В качестве марганецсодержащего ферросплава используют ферромарганец с содержанием марганца в пределах 50-95 мас. %, остальное железо. В качестве марганецсодержащих ферросплавов используют силикомарганец с содержанием кремния в пределах 10-25 мас.% и марганца в пределах 50-75 мас.%, остальное железо. Отношение подаваемых во второй порции весовых количеств кремнийсодержащих и марганецсодержащих ферросплавов устанавливают в пределах 1:(1-10).
В таблице приведены примеры осуществления способа с различными технологическими параметрами.
В первом примере вследствие несоблюдения необходимых технологических параметров происходит перерасход алюминия из-за малого количества кремнийсодержащих материалов в 1-й порции, сталь загрязнена глиноземом из-за большого расхода алюминия.
В пятом примере вследствие несоблюдения технологических параметров происходит перерасход ферросплавов, сталь переокислена вследствие малого расхода алюминия.
В оптимальных примерах 2-4 вследствие соблюдения технологических параметров повышается степень усвоения углерода, марганца, алюминия из ферросплавов и легирующих материалов, а также повышается эффективность удаления продуктов раскисления из жидкой стали.
Применение изобретения позволяет повысить усвоение С, Мn, Аl, содержащихся в ферросплавах и легирующих материалах, на 2-10%.
Claims (7)
1. Способ раскисления и легирования стали, включающий выплавку стали в конвертере, выпуск стали из конвертера в сталеразливочный ковш, подачу в ковш в процессе выпуска раскислителей и легирующих материалов в виде ферросплавов и алюминия, отличающийся тем, что раскислители и легирующие материалы подают тремя порциями, при этом первая порция состоит из кремнийсодержащих ферросплавов и науглероживателя с весовым соотношением 1:(0,1-10,0), которая вводится с начала выпуска под струю стали до наполнения ковша в пределах 0,2-0,3 высоты его рабочей полости, весовой расход кремнийсодержащих ферросплавов в первой порции устанавливают по соотношению
М1=К1•(С2-С1)•t/С1,
где М1 - весовой расход кремнийсодержащих ферросплавов, кг/т выплавляемой стали;
С1 - содержание углерода в стали перед выпуском из конвертера, мас.%;
С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%;
t - температура стали в конвертере перед выпуском, oС;
К1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования, равный (8,2-17,0)•10-5, кг/т•oС,
вторая порция состоит из марганецсодержащих и/или из кремнийсодержащих ферросплавов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали, которая вводится при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости, третья порция состоит из алюминия, которая вводится при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости, при этом весовой расход алюминия устанавливают по соотношению
М2=К2•Al•Т/а,
где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали;
Al - необходимое содержание алюминия в стали после ее выпуска из конвертера, мас.%;
Т - масса выплавляемой стали, т;
а - величина усвоения сталью алюминия, равная 15-30%;
К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.
М1=К1•(С2-С1)•t/С1,
где М1 - весовой расход кремнийсодержащих ферросплавов, кг/т выплавляемой стали;
С1 - содержание углерода в стали перед выпуском из конвертера, мас.%;
С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%;
t - температура стали в конвертере перед выпуском, oС;
К1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования, равный (8,2-17,0)•10-5, кг/т•oС,
вторая порция состоит из марганецсодержащих и/или из кремнийсодержащих ферросплавов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали, которая вводится при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости, третья порция состоит из алюминия, которая вводится при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости, при этом весовой расход алюминия устанавливают по соотношению
М2=К2•Al•Т/а,
где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали;
Al - необходимое содержание алюминия в стали после ее выпуска из конвертера, мас.%;
Т - масса выплавляемой стали, т;
а - величина усвоения сталью алюминия, равная 15-30%;
К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.
2. Способ по п.1, отличающийся тем, что в качестве кремнийсодержащего ферросплава используют ферросилиций с содержанием кремния в пределах 30-80 мас.%, остальное - железо.
3. Способ по п.1, отличающийся тем, что в качестве кремнийсодержащего ферросплава используют силикокальций с содержанием кремния в пределах 40-70 мас.% и кальция в пределах 10-40 мас.%, остальное - железо.
4. Способ по п. 1, отличающийся тем, что в качестве кремнийсодержащих ферросплавов используют силикокальций и ферросилиций с весовым соотношением 1:(1-10).
5. Способ по п.1, отличающийся тем, что в качестве марганецсодержащего ферросплава используют ферромарганец с содержанием марганца в пределах 50-95 мас.%, остальное - железо.
6. Способ по п.1, отличающийся тем, что в качестве марганецсодержащих ферросплавов используют силикомарганец с содержанием кремния в пределах 10-25 мас.% и марганца в пределах 50-75 мас.%, остальное - железо.
7. Способ по п.1, отличающийся тем, что соотношение подаваемых во второй порции весовых количеств кремнийсодержащих и марганецсодержащих ферросплавов устанавливают в пределах 1:(1-10).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001117600A RU2202628C2 (ru) | 2001-06-28 | 2001-06-28 | Способ раскисления и легирования стали |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001117600A RU2202628C2 (ru) | 2001-06-28 | 2001-06-28 | Способ раскисления и легирования стали |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2202628C2 true RU2202628C2 (ru) | 2003-04-20 |
Family
ID=20251131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2001117600A RU2202628C2 (ru) | 2001-06-28 | 2001-06-28 | Способ раскисления и легирования стали |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2202628C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107630119A (zh) * | 2016-07-18 | 2018-01-26 | 鞍钢股份有限公司 | 一种转炉碳脱氧工艺的合金化方法 |
CN115125364A (zh) * | 2022-07-14 | 2022-09-30 | 新疆伊犁钢铁有限责任公司 | 一种在炼钢工序降低合金成本的生产方法 |
-
2001
- 2001-06-28 RU RU2001117600A patent/RU2202628C2/ru active
Non-Patent Citations (1)
Title |
---|
ЯКУШЕВ А.М. Справочник конвертерщика. - Челябинск: Металлургия, Челябинское отделение, 1990, с.276-285. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107630119A (zh) * | 2016-07-18 | 2018-01-26 | 鞍钢股份有限公司 | 一种转炉碳脱氧工艺的合金化方法 |
CN115125364A (zh) * | 2022-07-14 | 2022-09-30 | 新疆伊犁钢铁有限责任公司 | 一种在炼钢工序降低合金成本的生产方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114107601A (zh) | 一种镁预处理细化钢中稀土夹杂物的方法 | |
CN104498661A (zh) | 一种高碳钢氧含量的控制方法 | |
CN110747395A (zh) | 工业超纯铁及其生产方法 | |
RU2202628C2 (ru) | Способ раскисления и легирования стали | |
RU2219249C1 (ru) | Способ внепечной обработки стали в ковше | |
CA2559154A1 (en) | Method for a direct steel alloying | |
RU2461635C1 (ru) | Способ внепечной обработки стали кальцием | |
US5085691A (en) | Method of producing general-purpose steel | |
RU2185448C1 (ru) | Способ обработки стали в ковше | |
RU2392333C1 (ru) | Способ производства низкоуглеродистой стали | |
JP2010001533A (ja) | Mn合金の製造方法 | |
RU2201458C1 (ru) | Способ модифицирования стали | |
RU2206625C1 (ru) | Способ обработки стали в ковше | |
RU2514125C1 (ru) | Способ раскисления низкоуглеродистой стали | |
RU2465341C2 (ru) | Способ обработки низкоуглеродистой стали в ковше | |
RU2681961C1 (ru) | Способ производства особонизкоуглеродистой стали | |
RU2816888C1 (ru) | Способ производства стали с регламентированным пределом по содержанию серы | |
RU2138563C1 (ru) | Способ обработки стали в ковше | |
RU2031131C1 (ru) | Способ выплавки стали в конвертере | |
RU2212452C1 (ru) | Способ легирования стали марганцем | |
RU2460807C1 (ru) | Способ производства высокоуглеродистой стали с последующей непрерывной разливкой в заготовку малого сечения | |
RU2096491C1 (ru) | Способ производства стали | |
KR100910471B1 (ko) | 용강의 청정도 및 탈류효율 향상 방법 | |
RU2104311C1 (ru) | Способ легирования стали марганцем | |
RU2212451C1 (ru) | Способ получения стали для металлокорда |