[go: up one dir, main page]

RU2183759C2 - Кислородо-водородный жидкостный ракетный двигатель - Google Patents

Кислородо-водородный жидкостный ракетный двигатель Download PDF

Info

Publication number
RU2183759C2
RU2183759C2 RU2000102271A RU2000102271A RU2183759C2 RU 2183759 C2 RU2183759 C2 RU 2183759C2 RU 2000102271 A RU2000102271 A RU 2000102271A RU 2000102271 A RU2000102271 A RU 2000102271A RU 2183759 C2 RU2183759 C2 RU 2183759C2
Authority
RU
Russia
Prior art keywords
oxygen
hydrogen
pump
gas
engine
Prior art date
Application number
RU2000102271A
Other languages
English (en)
Other versions
RU2000102271A (ru
Inventor
Н.Ф. Иванов
Original Assignee
Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" filed Critical Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева"
Priority to RU2000102271A priority Critical patent/RU2183759C2/ru
Publication of RU2000102271A publication Critical patent/RU2000102271A/ru
Application granted granted Critical
Publication of RU2183759C2 publication Critical patent/RU2183759C2/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Кислородо-водородный жидкостный ракетный двигатель предназначен для использования в транспортных космических системах. Двигатель включает камеру с трактом регенеративного охлаждения водородом и автономные турбонасосные агрегаты. Кислородный насос одного турбонасосного агрегата снабжен приводом по замкнутой безгазогенераторной схеме с дожиганием. Водородный насос другого турбонасосного агрегата снабжен приводом по открытой газогенераторной схеме на основных компонентах топлива. Выходная полость турбины турбонасосного агрегата кислорода сообщена газоводом со смесительной головкой газогенератора привода турбонасосного агрегата водорода. Изобретение позволяет увеличить удельный импульс тяги двигателя и уменьшить его габариты при неизменной степени расширения сопла за счет повышения давления в камере, достигаемого повышением давления за насосом первого турбонасосного агрегата. 2 ил.

Description

Кислородо-водородный жидкостный ракетный двигатель (ЖРД) относится к ракетно-космической технике и предназначен для транспортных космических систем (ТКС), хотя бы один из компонентов топлива которых является криогенной жидкостью.
Конкурентоспособность современных ТКС определяется стоимостью выведения единицы массы полезного груза (ПГ) на заданную орбиту и их надежностью. Существенное снижение стоимости выведения возможно на многоразовых ТКС. Первые многоразовые системы "Спейс-Шаттл" [1] и "Буран" [2] не дали ожидаемых результатов снижения стоимости выведения. Во многом это объясняется попыткой решения новых задач старыми методами - для повышения удельного импульса ЖРД максимально форсировалось давление в камере сгорания (свыше 200 кГс/см2). Это привело к необходимости выполнения их двигателей по замкнутой газогенераторной схеме с дожиганием, характеризующейся предельно напряженным режимом работы турбонасосных агрегатов (ТНА). В результате, для обеспечения приемлемой надежности, кислородо-водородные двигатели "Шаттла" приходится перебирать после каждого полета при прогнозировании ресурса в 55 полетов [1, с.87] , а кислородо-водородные ЖРД "Бурана" обеспечили только однократное применение. О значении надежности при современной стоимости ПГ говорят, например, потери из-за аварий ракет-носителей (РН) только в США за неполный год в сумме 3,5 млрд. долл. [3]. Опыт создания и эксплуатации первых многоразовых систем показал необходимость системного подхода к надежности, ресурсу и удельному импульсу ЖРД.
Известны ЖРД открытой схемы с выбросом продуктов привода ТНА после турбины во внешнюю среду, обеспечивающие высокую надежность ТКС. Например, РН типа "Союз" с такими двигателями эксплуатируются уже несколько десятилетий и зарекомендовали себя самыми надежными средствами выведения ПГ [4]. Новейшая европейская тяжелая РН "Ариан 5" имеет на первой ступени кислородо-водородный ЖРД "Вулкан", выполненный по открытой схеме [5, с.85].
Однако такие двигатели не нашли применения в многоразовых ТКС несмотря на их простоту и высокую надежность из-за ограниченного давления в камере сгорания (не превышает 100 кГс/см2).
Известны кислородо-водородные ЖРД замкнутой безгазогенераторной схемы с дожиганием типа RL10, также десятилетиями эксплуатации подтвердившие свою высокую надежность [5, с.47]. Привод турбины ТНА этого двигателя обеспечивается газифицированным в тракте регенеративного охлаждения камеры водородом.
К недостаткам этого ЖРД относится еще более ограниченное давление в камере сгорания (не превышает 50 кГс/см2).
Известен кислородо-водородный ЖРД ( США, патент 4171615, кл. F 02 К 9/02 ), принятый за прототип предлагаемого изобретения. Храктерной особенностью этого кислородо-водородного ЖРД является применение комбинированной системы подачи компонентов топлива - замкнутой безгазогенераторной, аналогичной двигателю RL10, и открытой газогенераторной. Такая комбинация, сочетая простоту и надежность указанных систем, позволяет существенно повысить давление в камере сгорания, увеличивая тем самым удельный импульс тяги и сокращая габариты двигателя при неизменной степени расширения сопла. Для кислородо-водородного двигателя достижимое давление в камере сгорания поднимается за счет автономного привода каждого ТНА до уровня около 120-150 кГс/см2 в зависимости от соотношения компонентов топлива. Кислородо-водородный ЖРД включает камеру с трактом регенеративного охлаждения и автономные ТНА топливных компонентов, первый из которых снабжен приводом по замкнутой безгазогенераторной схеме с дожиганием, второй ТНА снабжен приводом по открытой газогенераторной схеме на основных компонентах топлива. При этом отборы компонентов топлива для газогенератора выполнены сразу за насосами, тем самым исключая часть компонента топлива из тракта регенеративного охлаждения и привода турбины первого ТНА с соответствующим ограничением давления за насосом этого ТНА.
Задачей изобретения является увеличение удельного импульса тяги двигателя и сокращение его габаритов при неизменной степени расширения сопла за счет повышения давления в камере, достигаемого повышением давления за насосом первого ТНА.
Поставленная задача достигается тем, что в кислородо-водородном ЖРД, включающем камеру с трактом регенеративного охлаждения водородом и автономные ТНА, кислородный насос которых снабжен приводом по замкнутой безгазогенераторной схеме с дожиганием, водородный насос снабжен приводом по открытой газогенераторной схеме на основных компонентах топлива в отличие от известных решений, выходная полость турбины ТНА кислорода сообщена газоводом со смесительной головкой газогенератора привода ТНА водорода.
Изобретение поясняется чертежами на примере кислородно-водородного двигателя в двух вариантах:
фиг.1 - схема кислородо-водородного ЖРД с сопловым насадком;
фиг.2 - схема кислородо-водородного ЖРД с соплами крена.
На чертежах представлены следующие позиции:
1 - камера двигателя;
2 - ТНА кислорода;
3 - ТНА водорода;
4 - газогенератор;
5 - регулятор тяги;
6 - регулятор соотношения компонентов;
7 - тракт регенеративного охлаждения;
8 - смесительная головка камеры;
9 - смесительная головка газогенератора;
10 - сопловой насадок;
11 - насос кислорода;
12 - турбина кислорода;
13 - входная полость турбины кислорода;
14 - выходная полость турбины кислорода;
15 - насос водорода;
16 - турбина водорода;
17 - входная полость турбины водорода;
18 - выхлопные патрубки;
19 - отсечной клапан кислорода;
20 - отсечной клапан водорода;
21 - газовод турбины кислорода;
22 - входной газовод газогенератора;
23 - трубопровод кислорода газогенератора;
24 - напорная магистраль кислорода;
25 - выходной газовод газогенератора;
26 - патрубок сброса водорода;
27 - коллектор сброса газа;
28 - сопла крена.
Кислородо-водородный ЖРД включает камеру 1, создающую основную тягу двигателя, первый ТНА (кислорода) 2 и второй ТНА (водорода) 3, обеспечивающие подачу компонентов, газогенератор 4 привода ТНА 3. Регулятор тяги 5 служит для поддержания тяги двигателя в заданном диапазоне, регулятор соотношения компонентов 6 поддерживает расход водорода, соответствующий расходу кислорода. Тракт регенеративного охлаждения 7 обеспечивает допустимый температурный режим камеры 1 и привод ТНА 2. Смесительные головки 8 камеры 1 и 9 газогенератора 4 создают условия для нормального горения компонентов топлива. Сопловой насадок 10 увеличивает степень расширения продуктов сгорания камеры 1 и газогенератора 4, создавая дополнительную тягу (один из вариантов утилизации продуктов сгорания). Насос кислорода 11 создает давление, необходимое для подачи компонента в камеру 1 и газогенератор 4. Привод насоса 11 обеспечивает турбина кислорода 12. Входная полость турбины кислорода 13 создает условия для нормальной работы турбины 12, выходная полость турбины кислорода 14 формирует поток газа для подачи в смесительные головки 8 и 9. Насос водорода 15 создает давление для подачи компонента в тракт регенеративного охлаждения 7, привод насоса 15 обеспечивает турбина водорода 16. Входная полость турбины водорода 17 создает условия для нормальной работы турбины 16. Отработанные газы отводятся от турбины 16 выхлопными патрубками 18. Отсечные клапаны кислорода 19 и водорода 20 открывают или отсекают подачу компонентов в камеру 1 и газогенератор 4. Газовод турбины кислорода 21 сообщает тракт регенеративного охлаждения 7 с входной полостью турбины 13. Входной газовод газогенератора 22 соединяет выходную полость турбины кислорода 14 со смесительной головкой 9, трубопровод кислорода газогенератора 23 сообщает напорную магистраль кислорода 24 со смесительной головкой 9. Выходной газовод газогенератора 25 служит для подвода газа к входной полости 17. Патрубок сброса водорода 26 обеспечивает сброс газифицированного водорода в обход турбины 12 для регулирования тяги. Коллектор сброса газа 27 равномерно распределяет отработанный на турбине 16 газ по периферии соплового насадка 10. Качающиеся сопла крена 28 (фиг.2) создают дополнительную тягу и обеспечивают управление летательным аппаратом по крену (второй вариант утилизации продуктов сгорания газогенератора).
В исходном состоянии насосы кислорода 11 и водорода 15 сообщены с баками компонентов топлива расходными магистралями и захоложены до рабочего состояния. Функционирование двигателя начинается с открытия отсечного клапана водорода 20, при этом жидкий водород под баковым давлением или при дополнительной раскрутке турбины 16 от бортовых баллонов поступает в тракт регенеративного охлаждения 7, где газифицируется за счет аккумулированного конструкцией тепла. Через газовод 21 водород подается на турбину 12 и далее в камеру 1, а через газовод 22 - в газогенератор 4 и на турбину 16, истекая через патрубки 18 и сопловой насадок 10 или сопла крена 28 (фиг.2). По достижении расчетного давления открывается отсечной клапан кислорода 19 и окислитель через напорную магистраль 24 поступает в смесительную головку 8, а по трубопроводу 23 - в смесительную головку 9. В камере 1 и газогенераторе 4 компоненты зажигаются от источника воспламенения, интенсифицируется процесс подогрева газа в тракте регенеративного охлаждения 7. Регулятором тяги 5 и соотношения компонентов 6 двигатель выводится на расчетный режим тяги. Выключение ЖРД начинается переводом регулятора 5 на режим малой тяги за счет сброса части водорода через патрубок 26 в обход турбины 12. Падает расход кислорода через камеру 1 и газогенератор 4, ТНА 3 так же переходит на малый расход водорода. По достижении расчетного давления за насосами кислорода 11 закрывается отсечной клапан 19, прекращается горение в камере 1 и газогенераторе 4. Закрывается отсечной клапан 20, прекращается подача водорода в двигатель.
Для предлагаемого кислородо-водородного ЖРД проведена оценка возможного повышения давления за насосом ТНА кислорода, являющегося определяющим для достижимого давления в камере сгорания.
Исходные данные для расчета представлены в табл.1.
На основании этих исходных данных определены относительные расходы водорода в двигателе, приведенные в табл.2.
Таким образом, повышение давления за насосом кислорода по сравнению с прототипом, пропорциональное увеличению расхода газифицированного водорода через турбину ТНА кислорода, составит 2/12,3•100%=16,3%.
Указанный уровень достижимых давлений в камере сгорания делает реальным применение предлагаемого двигателя не только на разгонных блоках, но и на ракетах-носителях. Кроме того, облегчается компоновка ЖРД на изделии за счет уменьшения габаритов двигателя.
Комплектующие указанного кислородо-водородного ЖРД освоены отечественной промышленностью.
ЛИТЕРАТУРА
1. "МТКС "Спейс Шаттл". Часть 1. Технико-экономическое обоснование и основные характеристики". ГОНТИ - 4 (РКК "Энергия"), 1976.
2. "Многоразовый орбитальный корабль "Буран". 1995 г., М.: Машиностроение.
3. "Президент США распорядился провести расследование причин шести неудачных запусков". Еженедельник "Аэрокосмос", 20, 1999, "ИТАР-ТАСС". М.: ИТАР-ТАСС.
4. "Ракеты-носители государственного космического центра "Прогресс". "Отечественные ракеты-носители", Санкт-Петербург, 1996.
5. В. В. Андреев, В. А. Мазарченков "Зарубежные ракетные двигатели". "Министерство обороны РФ", 1997 г.

Claims (1)

  1. Кислородо-водородный жидкостный ракетный двигатель, включающий камеру с трактом регенеративного охлаждения водородом и автономные турбонасосные агрегаты, кислородный насос которых снабжен приводом по замкнутой безгазогенераторной схеме с дожиганием, водородный насос снабжен приводом по открытой газогенераторной схеме на основных компонентах топлива, отличающийся тем, что выходная полость турбины турбонасосного агрегата кислорода сообщена газоводом со смесительной головкой газогенератора привода турбонасосного агрегата водорода.
RU2000102271A 2000-01-27 2000-01-27 Кислородо-водородный жидкостный ракетный двигатель RU2183759C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000102271A RU2183759C2 (ru) 2000-01-27 2000-01-27 Кислородо-водородный жидкостный ракетный двигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000102271A RU2183759C2 (ru) 2000-01-27 2000-01-27 Кислородо-водородный жидкостный ракетный двигатель

Publications (2)

Publication Number Publication Date
RU2000102271A RU2000102271A (ru) 2001-11-27
RU2183759C2 true RU2183759C2 (ru) 2002-06-20

Family

ID=20229984

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000102271A RU2183759C2 (ru) 2000-01-27 2000-01-27 Кислородо-водородный жидкостный ракетный двигатель

Country Status (1)

Country Link
RU (1) RU2183759C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455515C1 (ru) * 2011-04-04 2012-07-10 Николай Борисович Болотин Трехступенчатая ракета-носитель, жидкостный ракетный двигатель и блок сопел крена
RU2474719C1 (ru) * 2011-12-29 2013-02-10 Николай Борисович Болотин Кислородно-водородный жидкостный ракетный двигатель
RU2755848C1 (ru) * 2020-06-23 2021-09-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Криогенный жидкостный ракетный двигатель комбинированной схемы (варианты)
RU2765219C1 (ru) * 2020-11-10 2022-01-26 Акционерное общество "КБхиммаш им. А.М. Исаева" Жидкостный ракетный двигатель, выполненный по схеме без дожигания в камере

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455515C1 (ru) * 2011-04-04 2012-07-10 Николай Борисович Болотин Трехступенчатая ракета-носитель, жидкостный ракетный двигатель и блок сопел крена
RU2474719C1 (ru) * 2011-12-29 2013-02-10 Николай Борисович Болотин Кислородно-водородный жидкостный ракетный двигатель
RU2755848C1 (ru) * 2020-06-23 2021-09-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Криогенный жидкостный ракетный двигатель комбинированной схемы (варианты)
RU2765219C1 (ru) * 2020-11-10 2022-01-26 Акционерное общество "КБхиммаш им. А.М. Исаева" Жидкостный ракетный двигатель, выполненный по схеме без дожигания в камере

Similar Documents

Publication Publication Date Title
RU2158839C2 (ru) Жидкостный ракетный двигатель с дожиганием турбогаза
US5161365A (en) Endothermic fuel power generator and method
US4771600A (en) Tripropellant rocket engine
AU2008309663B2 (en) Method and device enabling a rocket engine pump to be driven by an internal combustion engine
US6619031B1 (en) Multi-mode multi-propellant liquid rocket engine
JP6093450B2 (ja) 極低温燃料組成物及び二元燃料航空機システム
US11181076B2 (en) Rocket engine bipropellant supply system including an electrolyzer
US5010730A (en) Gas-fed hybrid propulsion system
US20070169461A1 (en) Catalytic bipropellant hot gas generation system
US4771599A (en) Tripropellant rocket engine with injector
JP2016510376A (ja) 航空機において燃料を供給するための極低温燃料システム及び方法
US8572948B1 (en) Rocket engine propulsion system
US20070175222A1 (en) Multipurpose gas generator ramjet/scramjet cold start system
US5444973A (en) Pressure-fed rocket booster system
US5267437A (en) Dual mode rocket engine
JP2013540941A (ja) 二元燃料航空機エンジン制御システム及びその運転方法
GB2240813A (en) Hypersonic and trans atmospheric propulsion
RU2520771C1 (ru) Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа
US3396538A (en) Water injection for thrust augmentation
RU2183759C2 (ru) Кислородо-водородный жидкостный ракетный двигатель
RU2302547C1 (ru) Жидкостный ракетный двигатель
RU2095607C1 (ru) Жидкостный ракетный двигатель на криогенном топливе
US5440886A (en) Method of gas generation and plant for effecting same
US5214910A (en) Dual mode accessory power unit
RU2299345C1 (ru) Жидкостный ракетный двигатель и способ его запуска