[go: up one dir, main page]

RU2142562C1 - Электроимпульсный способ разрушения горных пород и искусственных материалов - Google Patents

Электроимпульсный способ разрушения горных пород и искусственных материалов Download PDF

Info

Publication number
RU2142562C1
RU2142562C1 RU97118216A RU97118216A RU2142562C1 RU 2142562 C1 RU2142562 C1 RU 2142562C1 RU 97118216 A RU97118216 A RU 97118216A RU 97118216 A RU97118216 A RU 97118216A RU 2142562 C1 RU2142562 C1 RU 2142562C1
Authority
RU
Russia
Prior art keywords
electrodes
destruction
electrode
high voltage
voltage pulses
Prior art date
Application number
RU97118216A
Other languages
English (en)
Other versions
RU97118216A (ru
Inventor
А.М. Адам
С.Г. Боев
В.Ф. Важов
Д.В. Жгун
Б.С. Левченко
В.М. Муратов
С.С. Пельцман
Original Assignee
Научно-исследовательский институт высоких напряжений при Томском политехническом университете
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский институт высоких напряжений при Томском политехническом университете filed Critical Научно-исследовательский институт высоких напряжений при Томском политехническом университете
Priority to RU97118216A priority Critical patent/RU2142562C1/ru
Priority to PCT/JP1998/004964 priority patent/WO1999022900A1/ja
Publication of RU97118216A publication Critical patent/RU97118216A/ru
Application granted granted Critical
Publication of RU2142562C1 publication Critical patent/RU2142562C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Disintegrating Or Milling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

Изобретение относится к области разрушения электрическими разрядами горных пород при проходке горных выработок, бурении скважин, а также бетонных изделий и др. искусственных материалов. Способ позволяет существенно повысить эффективность разрушения. Для этого предложено электрический пробой осуществлять на спадающей части импульсов высокого напряжения при времени до пробоя не менее 0,25•10-6с, а число электродов выбирать так, чтобы суммарное электрическое сопротивление электродной системы в жидкости было не менее восьмикратного волнового сопротивления источника импульсов. На железобетонное изделие устанавливают зафиксированные между собой электроды, арматуру удаляют лишь при полном разрушении изделия, причем электроды устанавливают на равном расстоянии от элементов арматуры. По бетонному изделию с постоянной скоростью V перемещают один высоковольтный электрод при подаче на него импульсов высокого напряжения с заданной частотой. Перед разрушением объекта в нем делают отверстия, заливают их водой и соседние разнополярные электроды погружают в отверстия на глубину не менее 1/3 расстояния между центрами отверстий, кроме того, при заданной глубине разрушения поверхностного слоя определяют расстояние между разнополярными электродами. 5 з.п. ф-лы, 3 табл., 3 ил.

Description

Изобретение относится к области разрушения горных пород и искусственных твердых материалов, например бетона, керамики и др., электрическими импульсными разрядами и может найти применение в горном деле при проходке горных выработок, при бурении скважин большого диаметра, а также в строительстве для разрушения некондиционных железобетонных изделий, при ремонтно-строительных работах на дорогах, аэродромах и т.п.
Известен способ разрушения горных пород, предназначенный для бурения скважин электрическими импульсными разрядами (Большая советская энциклопедия. М. : Советская энциклопедия, 1978, т. 30, с. 58). При этом способе на горную породу в скважине устанавливают бур, выполненный в виде заземленной трубы, внутри которой размещен вращающийся высоковольтный электрод, затем осуществляют промывку жидкостью (дизельным топливом, трансформаторным маслом и др. ), электрическая прочность которой превышает электрическую прочность горной породы, а после на внутренний токовод подают импульсы высокого напряжения с крутым фронтом при очень малом времени воздействия каждого импульса. В этом случае разряд происходит в твердом теле, что приводит к разрушению горной породы.
Недостатком этого способа является его низкая эффективность, т.к. в нем не предусмотрены пути оптимизации процесса разрушения горной породы и требуется вращение внутреннего токопровода.
Известен также взятый за прототип способ разрушения горных пород и искусственных материалов (Семкин Б.В., Усов А.Ф., Курец В.Н. Основы электроимпульсного разрушения материалов. М. : Наука, 1995, с. 7-11, 20-23, 34-62, 220-224, 240-243), который является наиболее близким к предложенному способу по технической сущности. Согласно выбранному за прототип электроимпульсному способу разрушения горных и искусственных материалов на разрушаемый объект или в предварительно пробуренные в нем любым способом отверстия (шпуры) устанавливают электроды, места контакта которых с разрушаемым объектом заливают жидкостью, в том числе водой. Затем к электродам подводят импульсы высокого напряжения с такими параметрами, чтобы электрический пробой произошел в массиве разрушаемого объекта на фронте импульса при экспозиции напряжения 0,1 • 10-6 с и менее. Продукты разрушения постоянно или периодически удаляют. При этом предусмотрена оптимизация некоторых параметров разрушения.
Недостатком этого способа является сравнительно низкая его эффективность, т. к. способ исследовался при экспозиции напряжения менее 0,1 • 10-6 с, электрический пробой осуществлялся на фронте импульса напряжения в основном при малых межэлектродных промежутках (первые десятки миллиметров), часто при противостоящих электродах, что не позволяло выявить некоторые эффективные пути оптимизации процесса разрушения горных пород и искусственных материалов при дециметровых промежутках между электродами, в т.ч. расположенными на одной поверхности разрушаемого объекта.
Основной технической задачей является повышение эффективности разрушения за счет дополнительной оптимизации процесса разрушения. Предложенный способ позволяет устранить некоторые недостатки известного способа и повысить эффективность разрушения по сравнению с прототипом в 1,6 - 1,8 раза.
Указанная техническая задача достигается тем, что в электроимпульсном способе разрушения горных пород и искусственных материалов, при котором на разрушаемый объект или в предварительно пробуренные в нем отверстия устанавливают электроды, места контакта этих электродов с разрушаемым объектом заливают жидкостью, в т.ч. водой, к электродам подводят импульсы высокого напряжения, которые осуществляют электрический пробой в объеме разрушаемого объекта и его разрушение, и удаляют продукты разрушения, согласно предложенному решению электрический пробой осуществляют на спадающей части импульсов высокого напряжения положительной или отрицательной полярности при времени до пробоя не менее 0,25 • 10-6 с.
Целесообразно также число электродов выбирать так, чтобы суммарное сопротивление электродной системы в жидкости было не менее восьмикратного волнового сопротивления источника импульсов высокого напряжения.
Кроме того, целесообразно на железобетонное изделие, погруженное в жидкость, устанавливать несколько зафиксированных между собой электродов и подавать на них импульсы высокого напряжения, разрушая изделие до арматуры, затем, не удаляя арматуры, электроды установить на равном расстоянии от элементов арматуры и продолжить процесс разрушения, при этом необходимо, чтобы поверхность электрода была покрыта слоем изоляции, а металлическая арматура была заземлена или имела противоположный потенциал.
Целесообразно в разрушаемом объекте предварительно сделать отверстия для установки в них снабженных изоляцией электродов на глубину не менее 1/3 расстояния между центрами соседних отверстий, затем установить в два соседних отверстия по электроду и на один из них подать импульсы высокого напряжения, предварительно заземлив другой электрод или подключив его к источнику импульсов высокого напряжения другой полярности, при этом боковая поверхность электродов покрыта твердой изоляцией.
Целесообразно по бетонному или железобетонному изделию с постоянной скоростью перемещать один высоковольтный электрод, одновременно подавая на него импульсы высокого напряжения с частотой F = (1,0 - 1,2) • 2V/L, 1/с,
где V - скорость перемещения высокольтного электрода, см/с;
L - межэлектродный промежуток, см,
при этом арматура или противоположный электрод заземлены или имеют противоположный потенциал.
Также целесообразно в случаях, когда необходимо снять вертикальный слой горной породы или искусственного материала и при этом задана глубина такого разрушения Hз, выбирать расстояние между разнополярными электродами Lрасч. из условия Lрасч. = (6,1 - 6,4) • Hз - 2,4 см.
Для пояснения сущности предложенного способа на фиг. 1 приведена типовая осциллограмма напряжения холостого хода генератора импульсов высокого напряжения (чувствительность временной развертки 0,1 мкс на деление); на фиг. 2 - типовая осциллограмма импульса напряжения при пробое твердого диэлектрика на фронте волны напряжения, что характерно для известных вариантов электроимпульсного способа разрушения (время до начала пробоя 0,1 мкс); на фиг. 3 представлена осциллограмма импульса напряжения при пробое бетона на спаде импульса напряжения, что предусмотрено в предложенном способе (чувствительность временной развертки 0,2 мкс на деление; время до начала пробоя 0,9 мкс).
Пример 1. Электроимпульсное разрушение осуществляется следующим образом. Для каждого эксперимента в металлический бак укладывается бетонный блок, на который устанавливаются с заданным межэлектродным промежутком L два стальных электрода, покрытых полиэтиленовой изоляцией. Затем в бак выше уровня бетонного блока заливается техническая вода, и электроды подключаются к источнику импульсов высокого напряжения, который обеспечивает электрический пробой бетона на спадающей части импульсов высокого напряжения при времени до пробоя τпр не менее 0,25 мкс. Результаты экспериментов приведены в табл. 1, где Uпр - напряжение пробоя бетона, а Uп - посадки напряжения, т.е. снижение импульсного напряжения из-за растекания токов в воде.
Из табл. 1 видно, что при разрушении электрическими пробоями на спадающей части импульсов высокого напряжения (при τпр ≥ 0,25 мкс) посадки напряжения меньше в 1,7 раза и более. В результате этого значительно меньше потери электроэнергии из-за растекания токов в воде. Также создаются возможности для применения источников импульсов высокого напряжения и электроизоляционных элементов, рассчитанных на меньший класс напряжения, увеличения срока их службы. В итоге снижается стоимость затрат на электроимпульсное разрушение.
Пример 2. Для проверки влияния на эффективность электроимпульсного разрушения суммарного электрического сопротивления электродной системы Zн, отнесенного к волновому сопротивлению источника импульсов высокого напряжения Zгин, изменяется число электродов. Известно, что с увеличением числа электродов Zн уменьшается. Опыты проводятся при электрическом пробое бетона на спадающей части импульсов высокого напряжения при времени до пробоя не менее 0,25 • 10-6 с. Изучается влияние отношения Zн/Zгин на искажение генерируемых импульсов напряжения в первую очередь на изменение амплитуды напряжения. Для наглядности за основу взят коэффициент изменения амплитуды напряжения K = Uн/Uхх, где Uн - напряжение на нагрузке, а Uхх - напряжение холостого хода генератора. Полученные данные сведены в табл. 2.
Из табл. 2 следует, что отношение Zн/Zгин необходимо поддерживать не менее 8, тогда К близок к единице, или более 8, тогда К стремится к 1. В этих случаях снижение амплитуды напряжения практически отсутствует. Аналогичные данные получены и по влиянию Zн/Zгин на изменение длины фронта импульса напряжения. Из полученных экспериментальных данных следует, что для достижения наибольшей эффективности разрушения электродную систему нужно конструировать так, чтобы Zн/Zгин ≥ 8.
Пример 3. Используются железобетонные блоки с поверхностью 450 х 600 мм и толщиной 300 мм. Горизонтально в блоках размещается однослойная (на глубине около 150 мм) или двухслойная (на глубине 100 и 200 мм) металлическая арматура с ячейкой 150 х 150 мм. Каждый блок помещается в бак из нержавеющей стали, заполненный технической водой. Железобетонный блок полностью погружается в воду. Вода не циркулирует. На блоки устанавливаются электродные устройства трех типов: одноэлектродное, многоэлектродное с подвижными относительно друг друга в вертикальном направлении электродами, а также выполненное в соответствии с предложенным изобретением многоэлектродное устройство с зафиксированными между собой электродами. Электроды сделаны из стальных прутков диаметром 12 мм, покрытых полиэтиленовой изоляцией диаметром 38 мм. Многоэлектродное устройство выполнено двухрядным по три электрода в каждом ряду. На электродные устройства импульсы подаются от генератора импульсов высокого напряжения, выполненного на номинальное напряжение 500 кВ. Арматура железобетонных блоков заземляется или имеет противоположный потенциал. Электрический пробой осуществляется на спадающей части импульсов высокого напряжения при времени до пробоя 0,25 - 0,95 мкс. В результате экспериментов установлено следующее. Одноэлектродное устройство позволяет разрушать бетонные изделия, но требует сравнительно больших затрат времени на перестановку. Есть проблемы и с центрированием глубоко ушедшего в бетонное изделие электрода. Многоэлектродное устройство с подвижными электродами позволяет вести высокоэффективное разрушение бетонного изделия с его поверхности. Но к арматуре электроды приближаются с разной скоростью, и происходит замыкание одного электрода на арматуру до того, как под другими бетон разрушится на такую же глубину. При этом разрушение прекращается. Расположение электродов на равном расстоянии от арматуры позволяет избежать электрических пробоев изоляционного покрытия электродов и короткого замыкания на арматуру. Кроме этого, создается возможность полного разрушения бетонных изделий не только до арматуры, но и под ней без переворачивания этих изделий.
Наилучшая эффективность разрушения получена при использовании многоэлектродного устройства с зафиксированными между собой электродами. Энергозатраты при этом ниже в 1,6 раза и более.
Пример 4. Бетонные и гранитные блоки имеют вертикальные отверстия диаметром 40 мм и глубиной до 200 мм. Расстояние между соседними отверстиями изменяется в пределах 100 - 300 мм. В два соседних отверстия, заполненных технической водой, на одинаковую глубину от поверхности блока опускается по одному электроду. Электроды выполнены из стальных прутков диаметром 12 мм, покрытых полиэтиленовой изоляцией диаметром 38 мм. На один электрод подают импульсы высокого напряжения, а другой при этом заземлен или имеет противоположный потенциал. При погружении электродов на глубину менее 1/3 расстояния между центрами соседних отверстий происходит полное или частичное перекрытие разрядов по поверхности блоков. Число полностью внедрившихся разрядов незначительно. При соотношении вышеназванных параметров значительно больше 1/3 возникает необходимость резкого повышения энергии высоковольтных импульсов. Оптимальные результаты получены при соотношении 1/3 и несколько выше, т.к. в этом случае число полностью внедрившихся разрядов достигает 90% и более. В предварительно пробуренные отверстия, если их больше двух, может быть установлено несколько высоковольтных электродов и несколько электродов противоположной полярности, расположенных в шахматном порядке. При этом для получения оптимального результата они должны быть опущены в отверстия на глубину не менее 1/3 расстояния между центрами соседних отверстий.
Пример 5. Железобетонный блок помещается в бак с технической водой. Блок выполнен с однослойной арматурой, размещенной на глубине 100 мм от поверхности. Размер каждой ячейки арматуры 50 х 50 мм. Высоковольтный электрод первоначально устанавливают вертикально на угол железобетонного блока. На него подаются импульсы высокого напряжения. Арматура при этом заземлена или имеет противоположный потенциал. При подаче импульсов на высоковольтный электрод его перемещают в горизонтальной плоскости вдоль железобетонного блока с заданной скоростью V = 50 - 60 см/с. Импульсы высокого напряжения подают с частотой в пределах (1 - 1,2)•2V/L, т.е. F = 10 - 12 имп/с, где L - расстояние от высоковольтного электрода до арматуры, см. Эксперименты показали, что это оптимальные пределы. При частоте меньше 2V/L, т.е. в примере конкретного выполнения меньше 10 имп/с, количества импульсов недостаточно для разрушения всего бетона между электродами и арматурой. В результате остаются неразрушенные участки. При частоте больше 1,2 • 2V/L (в примере больше 12 имп/с) происходит переизмельчение бетона, и резко увеличиваются удельные энергозатраты.
Роль второго электрода (вместо арматуры) может выполнять решетка, на которой размещают бетонный блок, или наложенные на бетонный блок пластины, прутки, вдоль которых перемещают высоковольтный электрод.
Пример 6. Используются блоки гранита с поверхностью 900 х 1200 мм и толщиной 600 мм. На каждый блок гранита, помещенный в металлический бак, устанавливаются два стержневых электрода, покрытых полиэтиленовой изоляцией. В бак наливается техническая вода, уровень которой выше места контакта электродов с гранитным блоком на 100 мм. Один электрод заземляется, а на другой подают импульсы высокого напряжения. После подачи 1 - 3 импульсов электроды перемещают на расстояние, равное половине межэлектродного промежутка. Снова подают импульсы высокого напряжения и снова перемещают электроды. Подобные циклы повторяются до разрушения слоя по всей поверхности блока. Заданные глубины разрушения поверхностного слоя Hз. приведены в табл. 3. Расстояния между разнополярными электродами Lрасч. вычислены по формуле Lрасч. = (6,1 - 6,4)Hз. - 2,4. В табл. 3 приведены результаты для коэффициента 6,1. В последней строке табл. 3 представлены экспериментально полученные глубины разрушения Hэксп.. Сравнение полученных Hз. и Hэксп. показывает их незначительную разницу, особенно при больших межэлектродных промежутках.
Исследования проведены на гранитных (табл. 3), бетонных и граносиенитных блоках при Lрасч. до 40 см. Результаты экспериментов наиболее оптимальны, когда при определении Lрасх. по формуле Lрасч. = k • Hз. - 2,4 коэффициент k = 6,1 - 6,4. При k < 6,1 в экспериментах получено Hэксп. значительно меньше Hз., а при k > 6,4 Hэксп. больше Hз.. Кроме того, при k > 6,4 для обеспечения электрического пробоя необходимо увеличение импульсного напряжения, что в свою очередь приводит к увеличению энергозатрат, т.к. в формулу расчета энергии единичного импульса напряжение входит во второй степени.

Claims (6)

1. Электроимпульсный способ разрушения горных пород и искусственных материалов, при котором на разрушаемый объект или в предварительно пробуренные в нем отверстия устанавливают электроды, места контакта этих электродов с разрушаемым объектом заливают жидкостью, в т.ч. водой, к электродам подводят импульсы высокого напряжения, которые осуществляют электрический пробой в объеме разрушаемого объекта и его разрушение, и удаляют продукты разрушения, отличающийся тем, что электрический пробой осуществляют на спадающей части импульсов высокого напряжения положительной или отрицательной полярности при времени до пробоя не менее 0,25•10-6с.
2. Способ по п. 1, отличающийся тем, что число электродов выбирают так, чтобы суммарное электрическое сопротивление электродной системы в жидкости было не менее восьмикратного волнового сопротивления источника импульсов высокого напряжения.
3. Способ по любому из п. 1 или 2, отличающийся тем, что на железобетонное изделие, погруженное в жидкость, устанавливают несколько зафиксированных между собой электродов и подают на них импульсы высокого напряжения, разрушая изделия до арматуры, затем, не удаляя арматуры, электроды устанавливают на равном расстоянии от элементов арматуры и продолжают процесс разрушения, при этом боковая поверхность используемых электродов покрыта слоем изоляции, а металлическая арматура заземлена или имеет противоположный потенциал.
4. Способ по любому из пп. 1 и 2, отличающийся тем, что в разрушаемом объекте предварительно делают отверстия для установки в них электродов на глубину нс менее 1/3 расстояния между центрами соседних отверстий, затем в два соседних предварительно заполненных жидкостью отверстия устанавливают по электроду и на один из них подают импульсы высокого напряжения, предварительно заземлив другой электрод или подключив его к источнику импульсов высокого напряжения другой полярности, при этом боковая поверхность электродов покрыта твердой изоляцией.
5. Способ по п.1, отличающийся тем, что по бетону или железобетонному изделию с постоянной скоростью перемещают один высоковольтный электрод, одновременно подавая на него импульсы высокого напряжения с частотой
F=(1-1,2)•2V/L, 1/c,
где V - скорость перемещения высоковольтного электрона, см/с;
L - расстояние от торца высоковольтного электрода до арматуры, см,
причем арматура или противоположный электрод заземлены или имеют противоположный потенциал.
6. Способ по любому из пп. 1, 2 и 5, отличающийся тем, что при заданной глубине разрушения поверхностного слоя расстояние между разнополярными электродами выбирают из условия
Lpacч = (6,1:6,4)H3 - 2,4, см,
где Lpacч - расстояние между разнополярными электродами, см;
H3 - заданная глубина разрушения, см.
RU97118216A 1997-11-04 1997-11-04 Электроимпульсный способ разрушения горных пород и искусственных материалов RU2142562C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU97118216A RU2142562C1 (ru) 1997-11-04 1997-11-04 Электроимпульсный способ разрушения горных пород и искусственных материалов
PCT/JP1998/004964 WO1999022900A1 (en) 1997-11-04 1998-11-02 Apparatus and method for breaking solid insulator with electric pulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97118216A RU2142562C1 (ru) 1997-11-04 1997-11-04 Электроимпульсный способ разрушения горных пород и искусственных материалов

Publications (2)

Publication Number Publication Date
RU97118216A RU97118216A (ru) 1999-08-10
RU2142562C1 true RU2142562C1 (ru) 1999-12-10

Family

ID=20198678

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97118216A RU2142562C1 (ru) 1997-11-04 1997-11-04 Электроимпульсный способ разрушения горных пород и искусственных материалов

Country Status (2)

Country Link
RU (1) RU2142562C1 (ru)
WO (1) WO1999022900A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111391A (zh) * 2012-01-13 2013-05-22 黄强 高能液爆定点爆破抛撒农用物料备用装置
RU2524101C2 (ru) * 2011-03-23 2014-07-27 Николай Данилович Рязанов Способ электроимпульсного бурения скважин, электроимпульсной буровой наконечник
RU2526947C1 (ru) * 2013-05-13 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ разрушения многокомпонентных изделий

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2420358B (en) 2004-11-17 2008-09-03 Schlumberger Holdings System and method for drilling a borehole
US9416594B2 (en) 2004-11-17 2016-08-16 Schlumberger Technology Corporation System and method for drilling a borehole
WO2009026647A1 (en) * 2007-08-30 2009-03-05 The University Of Queensland Method and apparatus for breaking solid materials
JP5051724B2 (ja) * 2008-12-10 2012-10-17 黒崎播磨株式会社 構造体の解体方法
CN102698918B (zh) * 2012-01-13 2015-01-21 黄强 高能液爆抛撒物料的备用装置
CN102696314B (zh) * 2012-01-13 2015-04-22 黄强 高能液爆的抛撒农用物料装置以及进行抛撒的方法
JP6399344B2 (ja) * 2014-09-30 2018-10-03 太平洋セメント株式会社 炭素繊維含有物の粉砕方法
JP7604235B2 (ja) 2021-01-06 2024-12-23 学校法人早稲田大学 積層体の解体方法およびそのための装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2083824C1 (ru) * 1995-06-13 1997-07-10 Научно-исследовательский институт высоких напряжений при Томском политехническом университете Способ разрушения горных пород
JP3103019B2 (ja) * 1995-07-26 2000-10-23 日立造船株式会社 被破壊物の破壊装置および破壊方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Семкин Б.В. и др. Основы электроимпульсного разрушения горных пород и искуственных материалов. - М.: Наука, 1995, с. 7-11, 20-23, 34-62, 220 -224. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524101C2 (ru) * 2011-03-23 2014-07-27 Николай Данилович Рязанов Способ электроимпульсного бурения скважин, электроимпульсной буровой наконечник
CN103111391A (zh) * 2012-01-13 2013-05-22 黄强 高能液爆定点爆破抛撒农用物料备用装置
CN103111391B (zh) * 2012-01-13 2015-07-29 黄强 高能液爆定点爆破抛撒农用物料备用装置
RU2526947C1 (ru) * 2013-05-13 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ разрушения многокомпонентных изделий

Also Published As

Publication number Publication date
WO1999022900A1 (en) 1999-05-14

Similar Documents

Publication Publication Date Title
RU2142562C1 (ru) Электроимпульсный способ разрушения горных пород и искусственных материалов
RU2123596C1 (ru) Электроимпульсный способ бурения скважин и буровая установка
US4741405A (en) Focused shock spark discharge drill using multiple electrodes
RU2083824C1 (ru) Способ разрушения горных пород
RU2393319C2 (ru) Способ бурения, бурильная машина, буровая головка и оборудование низа бурильной колонны для бурения с помощью импульсов электрического разряда
JPH09174552A (ja) 金属材料と組み合わされた弾性材料からできた複合材料の解体方法及びその装置
EP0221155A1 (en) Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
Boev et al. Electropulse technology of material destruction and boring
RU82764U1 (ru) Электроимпульсный буровой наконечник
RU97118216A (ru) Электроимпульсный способ разрушения горных пород и искусственных материалов
WO2020234202A1 (en) Drill head for electro-pulse-boring
Boev et al. Destruction of granite and concrete in water with pulse electric discharges
RU2409735C1 (ru) Электроимпульсный буровой наконечник
RU2441127C1 (ru) Электроимпульсное породоразрушающее устройство
RU69152U1 (ru) Электроимпульсное буровое долото
RU2167991C2 (ru) Способ и устройство для электромеханического бурения скважин
RU2013135C1 (ru) Высоковольтный электрод для электроимпульсного разрушения материалов
RU81258U1 (ru) Устройство для разрушения поверхностного слоя изделий из искусственных материалов и природного камня
RU2283937C2 (ru) Электроимпульсный бур
RU2471965C1 (ru) Способ ликвидации и предотвращения образования асфальтено-смоло-парафиновых отложений и установка для его осуществления
RU182477U1 (ru) Электрогидравлическая буровая головка
RU2286432C1 (ru) Электроимпульсный буровой наконечник
RU2319009C2 (ru) Способ бурения горных пород электрическими импульсными разрядами и буровой снаряд
RU2231593C1 (ru) Способ разрушения ледяного покрова
RU2468205C1 (ru) Электроимпульсный способ резания блоков горных пород

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20110525

MM4A The patent is invalid due to non-payment of fees

Effective date: 20131105