[go: up one dir, main page]

RU2138892C1 - Оптическое волокно с двумя сердцевинами, способ его изготовления, волоконный лазер с двумя сердцевинами и волоконный усилитель с двумя сердцевинами - Google Patents

Оптическое волокно с двумя сердцевинами, способ его изготовления, волоконный лазер с двумя сердцевинами и волоконный усилитель с двумя сердцевинами Download PDF

Info

Publication number
RU2138892C1
RU2138892C1 RU97111166A RU97111166A RU2138892C1 RU 2138892 C1 RU2138892 C1 RU 2138892C1 RU 97111166 A RU97111166 A RU 97111166A RU 97111166 A RU97111166 A RU 97111166A RU 2138892 C1 RU2138892 C1 RU 2138892C1
Authority
RU
Russia
Prior art keywords
core
optical fiber
fiber
laser
pump
Prior art date
Application number
RU97111166A
Other languages
English (en)
Other versions
RU97111166A (ru
Inventor
Целльмер Хольгер
Бонзе Йорн
Унгер Соня
Райхель Фолькер
Original Assignee
ЛДТ ГмбХ унд Ко. Лазер-Дисплей-Технологи КГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЛДТ ГмбХ унд Ко. Лазер-Дисплей-Технологи КГ filed Critical ЛДТ ГмбХ унд Ко. Лазер-Дисплей-Технологи КГ
Publication of RU97111166A publication Critical patent/RU97111166A/ru
Application granted granted Critical
Publication of RU2138892C1 publication Critical patent/RU2138892C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

Прелагается оптическое волокно с двумя сердцевинами, состоящее из сердцевины накачки, центрально расположенной в сердцевине накачки лазерной сердцевины и окружающей сердцевину накачки оболочки. Волокно отличается тем, что выполненная в основном круглой в поперечном сечении сердцевина накачки имеет на внешней стороне проходящую в направлении распространения света в двухсердцевинном оптическом волокне сошлифованную грань, составляющую 1 - 49% от диаметра сердцевины накачки. Описан далее способ изготовления оптического волокна с двумя сердцевинами, волоконный лазер с двумя сердцевинами и волоконный усилитель с двумя сердцевинами, в которых применяется двухсердцевинное оптическое волокно согласно изобретению. Технический результат: выполненная в основном круглой сердцевина накачки со своей центрально расположенной лазерной сердцевиной обеспечивает простое сопряжение с другими волоконно-оптическими компонентами, а также простой ввод излучения накачки. 4 с. и 10 з.п. ф-лы, 6 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к оптическому волокну с двумя сердцевинами согласно ограничительной части п. 1 формулы изобретения.
Изобретение относится также к способу изготовления оптического волокна с двумя сердцевинами согласно ограничительной части п. 5 формулы изобретения.
Изобретение относится, кроме того, к волоконному лазеру с двумя сердцевинами согласно ограничительной части п. 8 формулы изобретения.
Изобретение относится также к волоконному усилителю согласно ограничительной части п. 12 формулы изобретения.
Изобретение может найти применение, например при оптической передаче информации, в лазерной технике, лазерной измерительной технике, медицинской технике и при воспроизведении изображений с помощью лазерного излучения.
Известный уровень техники
Из "Optics Letters", т. 20, N 6, с. 578-580 известен двухсердцевинный волоконный лазер с сердцевиной накачки круглого поперечного сечения, в центре которого расположена окруженная оболочкой лазерная сердцевина. Недостаток этого известного двухсердцевинного волоконного лазера состоит в том, что в центральной лазерной сердцевине поглощается лишь часть излучения накачки, поскольку внутри сердцевины накачки образуются так называемые спиральные лучи, которые не пересекают лазерную сердцевину и вследствие этого не поглощаются.
Из патента США 4815079 известен двухсердцевинный волоконный лазер с круглой сердцевиной накачки и ацентрично расположенной лазерной сердцевиной. Этот двухсердцевинный волоконный лазер сложен в изготовлении и, кроме того, проявляет тенденцию эллипсообразно деформироваться в поперечном сечении. Далее, из этого патента известен двухсердцевинный волоконный лазер с имеющей прямоугольное поперечное сечение сердцевиной накачки и центрально расположенной лазерной сердцевиной. Изготовление такого двухсердцевинного волоконного лазера также сопряжено с большими затратами. На ребрах сердцевины накачки имеют место потери излучения накачки, а ввод этого излучения накачки в световод из диодных лазеров по причине прямоугольной геометрии значительно труднее, чем в случае волоконных лазеров с круглым поперечным сечением. Кроме того, волоконные лазеры с прямоугольным поперечным сечением несовместимы со стандартными волоконно-оптическими компонентами.
Задача изобретения
В основу изобретения была положена задача разработать новое оптическое волокно с двумя сердцевинами, более простое в изготовлении, обладающее повышенной эффективностью в режиме усилителя и совместимое со способами изготовления оптических волокон и стандартными компонентами. Задачей изобретения, кроме того, является разработка волоконного лазера с двумя сердцевинами и волоконного усилителя с двумя сердцевинами, простых в изготовлении и позволяющих практически полностью поглощать излучение накачки в лазерной сердцевине и тем самым обеспечивающих более высокий оптический коэффициент полезного действия.
Краткое описание изобретения
Эта задача в соответствии с изобретением решается с помощью оптического волокна с двумя сердцевинами, охарактеризованного в ограничительной части п. 1 формулы изобретения, согласно отличительным признакам указанного пункта.
Эта задача в соответствии с изобретением решается также с помощью способа изготовления оптического волокна с двумя сердцевинами, охарактеризованного в ограничительной части п. 5 формулы изобретения, согласно отличительным признакам указанного пункта.
Эта задача в соответствии с изобретением решается также с помощью волоконного лазера с двумя сердцевинами, охарактеризованного в ограничительной части п. 8 формулы изобретения, согласно отличительным признакам указанного пункта.
Эта задача в соответствии с изобретением решается также с помощью волоконного усилителя с двумя сердцевинами, охарактеризованного в ограничительной части п. 12 формулы изобретения, согласно отличительным признакам указанного пункта.
Предпочтительные варианты выполнения изобретения представлены в зависимых пунктах формулы изобретения, относящихся к соответствующим независимым пунктам.
Согласно изобретению предлагается двухсердцевинное оптическое волокно с круглой сердцевиной накачки, имеющее центрально расположенную лазерную сердцевину, причем сердцевина накачки имеет с наружной стороны по меньшей мере одну проходящую в продольном направлении (направление распространения света) двухсердцевинного оптического волокна сошлифованную грань, за счет чего сердцевина накачки имеет D-образное поперечное сечение. Благодаря этой грани симметрия сердцевины накачки нарушается, что исключает возможность образования спиральных лучей. Вместо этого ход пучка в сердцевине накачки становится хаотическим, благодаря чему достигается почти полное поглощение в лазерной сердцевине введенного в нее излучения накачки.
В основном круглое волокно с центрально расположенной лазерной сердцевиной обеспечивает простое сопряжение его с волоконно-оптическими компонентами, а также простой ввод излучения накачки.
В способе изготовления оптического волокна с двумя сердцевинами согласно изобретению в сравнении с известными способами требуется лишь одна, относительно простая в осуществлении стадия способа, а именно, шлифование цилиндрической поверхности предварительно сформованной заготовки, так называемой преформы, которое можно осуществлять с использованием обычных плоскошлифовальных станков, применяемых в оптической промышленности.
Созданные на основе двухсердцевинного оптического волокна двухсердцевинные волоконные лазеры в сравнении с обычными волоконными лазерами имеют более высокий оптический коэффициент полезного действия и в них требуется применение волокна меньшей длины для полного поглощения излучения накачки. Благодаря в основном круглой сердцевине накачки ввод излучения накачки, в частности из подсоединенных к волокну источников накачки, реализуется особенно просто и с небольшими потерями.
Созданные на основе двухсердцевинного оптического волокна согласно изобретению двухсердцевинные волоконные усилители имеют более высокий оптический коэффициент полезного действия по сравнению с волоконными усилителями, созданными на основе обычных двухсердцевинных волокон. Благодаря в основном круглой сердцевине накачки ввод излучения накачки, в частности из подсоединенных к волокну источников накачки, реализуется особенно просто и с небольшими потерями.
Краткое описание чертежей
Ниже изобретение более подробно поясняется на чертежах, на которых показано:
на фиг. 1 - схематически принципиальное строение волоконного лазера с двумя сердцевинами,
на фиг. 2 - двухсердцевинное волокно с круглой сердцевиной накачки согласно уровню техники,
на фиг. 3 - поперечный разрез двухсердцевинного оптического волокна согласно изобретению,
на фиг. 4 - часть разреза по линии В-В двухсердцевинного оптического волокна по фиг. 3,
на фиг. 5 - график поглощения излучения накачки в зависимости от величины сошлифованной грани и длины волокна и
на фиг. 6 - схематическое принципиальное строение волоконного усилителя с двумя сердцевинами.
Подробное описание изобретения
На фиг. 1 показано принципиальное строение волоконного лазера 100, состоящего из лазерного диода 102, излучение 104 которого через оптику 106 переноса и зеркало 108 ввода вводится в двухсердцевинное оптическое волокно 110. Сформированное в волокне 110 лазерное излучение 112 выводится через зеркало 114 вывода. Оба зеркала 108 и 114 расположены непосредственно на концах волокна.
На фиг. 2 показано известное из уровня техники двухсердцевинное оптическое волокно 2 в поперечном разрезе. Двухсердцевинное оптическое волокно имеет сердцевину 4 накачки круглого сечения, изготовленную, например, из кварцевого стекла. В сердцевине 4 накачки центрально расположена круглая лазерная сердцевина 6, которая выполнена, например, из материала, легированного неодимом или другим редкоземельным металлом. Сердцевина 4 накачки по ее наружному диаметру окружена оболочкой 8, которая выполнена, например, из прозрачного полимера или стекла с более низким по сравнению с сердцевиной накачки показателем преломления. Сердцевина 4 накачки выполняет функцию как оболочки для лазерной сердцевины 6, так и волновода с высокой числовой апертурой для светового пучка накачки.
На фиг. 2 видно, что в обычном двухсердцевинном оптическом волокне с круглой в сечении сердцевиной 4 накачки образуются главным образом спиральные (геликоидные) лучи 10, которые не пересекают лазерную сердцевину 6 и поэтому не могут поглощаться этой лазерной сердцевиной. Следовательно, такие двухсердцевинные оптические волокна при работе в режиме лазера могут поглощать лишь приблизительно 10% излучения накачки.
На фиг. 3 в поперечном разрезе, а на фиг. 4 в продольном разрезе показано двухсердцевинное оптическое волокно по изобретению с выполненной, например, из кварцевого стекла сердцевиной 22 накачки, в которой центрально относительно общей оси симметрии 29 расположена круглая, выполненная, например, из легированного неодимом материала, лазерная сердцевина 24, которая окружена прозрачной оболочкой 26, имеющей низкий показатель преломления и выполненной, например, из полимера.
Показанное на фиг. 4 двухсердцевинное оптическое волокно 20 содержит также зеркала 32 и 33, которые нанесены, например, напылены, на торцы волокна, за счет чего образуется лазерная резонаторная система.
В отличие от обычных двухсердцевинных оптических волокон 2 согласно фиг. 2 периферийная поверхность сердцевины 22 накачки согласно фиг. 3 и 4 снабжена сошлифованной гранью 28, проходящей в продольном направлении волокна, а по остальному сечению выполнена круглой. Наличие грани 28 нарушает круговую симметрию двухсердцевинного оптического волокна. На фиг. 3 видно, что благодаря сошлифованной грани 28 ход лучей становится хаотическим, в результате чего по мере распространения света по двухсердцевинному оптическому волокну практически все проводимые волокном компоненты излучения могут вступить во взаимодействие с лазерной сердцевиной 24, и при соответствующей длине волокна достигается почти 100%-ное поглощение излучения накачки. Сошлифованная грань препятствует образованию спиральных лучей, и она достаточна проста в изготовлении.
Однако таких сошлифованных граней на сердцевине накачки может быть предусмотрено более одной, например, три под углом 120o, размеры которых выбраны такими, чтобы форма сердцевины накачки сохранялась в основном круглой.
Размеры двухсердцевинного оптического волокна 20 могут быть следующие:
диаметр ⌀PK сердцевины накачки (в месте без сошлифованной грани) - 10-600 мкм
диаметр ⌀LK лазерной сердцевины - 1,5-20 мкм
толщина оболочки - 5-100 мкм
высота а сошлифованной грани - 1-49% от диаметра ⌀PK сердцевины накачки
Для применения в качестве лазера длину волокна lF целесообразно выбирать в пределах от 0,3 до 50 м, а для применения в качестве усилителя - от 0,3 до 10 м.
Для выполнения волоконного резонатора, как показано на фиг. 1 и 4, на торцах двухсердцевинного оптического волокна расположены диэлектрические зеркала, причем на стороне накачки, соответственно на стороне ввода применяют зеркало 108 (фиг. 1), соответственно 32 (фиг. 4) с высокой степенью отражения для лазерного излучения и высокой степенью пропускания для излучения 104 накачки (фиг. 1), соответственно 34 (фиг. 4), а на стороне выхода применяют зеркало 114 (фиг. 1), соответственно 33 (фиг. 4) с высокой степенью отражения для излучения накачки и высокой степенью пропускания для лазерного излучения 112 (фиг. 1), соответственно 36 (фиг. 4). Зеркала 32 и 33, соответственно 108 и 114 могут быть нанесены непосредственно на торцевую поверхность волокна либо зеркала могут быть напрессованы на торцевую поверхность волокна или же установлены перед торцами волокна.
Излучение накачки многократно отражается внутри двухсердцевинного оптического волокна на границе раздела между оболочкой 26 и сердцевиной 22 накачки, пересекая при этом после одного или нескольких отражений лазерную сердцевину 24 и взаимодействуя с ней, пока не будет поглощено лазерной сердцевиной 24.
На фиг. 5 показан график поглощения A излучения накачки в двухсердцевинном оптическом волокне согласно фиг. 1 и 4 в зависимости от сошлифованной грани и длины LF волокна. Кривые 40, 42 и 44, относящиеся к сердцевине накачки диаметром 100 мкм с сошлифованными гранями соответственно 1 мкм, 5 мкм и 25 мкм, характеризуют поглощение A излучения накачки в сравнении с двухсердцевинным оптическим волокном, имеющим сердцевину накачки круглого сечения, т. е. размер сошлифованной грани согласно уровню техники составляет 0 мкм (ср. кривую 46). Из графика видно, что поглощение A уже при очень малом значении сошлифовки сердцевины накачки значительно выше поглощения A в двухсердцевинном оптическом волокне с обычной круглой сердцевиной накачки. Поглощение A далее возрастает с увеличением длины волокна, в то время как рост поглощения с увеличением сошлифованной грани выражен не так явно.
Наружную геометрию сердцевине накачки, содержащей лазерную сердцевину, придают путем сошлифовывания заготовки (преформы) в пределах от 1 до 49% от ее диаметра. Заготовку после сошлифовывания вытягивают при более низкой, чем обычная, температуре в волокно для сохранения D-образной геометрии. Химический состав лазерных волокон соответствует составу стандартных волокон, известных из литературы. Необходимый показатель преломления создают в волокне путем совместного легирования германием, фосфором и фтором.
На фиг. 6 показано принципиальное строение двухсердцевинного волоконного усилителя, состоящего из источника 202 накачки, излучение 204 которого коллимируется коллиматором 216 и через конденсор 218, например, дихроичное зеркало, с помощью оптики 206 переноса вводится в двухсердцевинное оптическое волокно 200 через торцевую поверхность 208 волокна. Торцевые поверхности 208 и 214 волокна снабжены просветляющим покрытием или срезаны под углом к оптической оси, что оптически препятствует распространению лучей в обратном направлении внутри двухсердцевинного оптического волокна. Несущее информационный сигнал излучение 220 вводится в двухсердцевинное оптическое волокно через конденсор 218 и оптику 206 переноса. На противоположной от стороны ввода торцевой поверхности 214 двухсердцевинного оптического волокна выходит усиленное излучение 212, несущее информационный сигнал.
Размеры для 4-уровневых лазерных или усилительных систем могут быть, например, следующие, мкм:
диаметр лазерной сердцевины - 5
диаметр сердцевины накачки - 125
высота сошлифованной грани - 20
Волоконный лазер, легированный неодимом в количестве 1300 част./млн., с указанной геометрией и длиной волны накачки 810 нм достигает оптического коэффициента полезного действия выше 40% при длине волны лазера 1060 нм и выходной мощности 2 Вт.
Размеры для 3-уровневых лазерных или усилительных систем и повышающих лазеров могут быть, например, следующие, мкм:
диаметр лазерной сердцевины - 3,5
диаметр сердцевины накачки - 20
высота сошлифованной грани - 5
Волоконный лазер, легированный празеодимом и иттербием, может достичь при указанной геометрии оптического коэффициента полезного действия выше 20% при длине волны лазера 635 нм и выходной мощности выше 1 Вт.

Claims (14)

1. Оптическое волокно с двумя сердцевинами, состоящее из сердцевины (22) накачки, центрально расположенной в сердцевине (22) накачки лазерной сердцевины (24) и окружающей сердцевину (22) накачки оболочки (26), отличающееся тем, что выполненная в основном круглой в поперечном сечении сердцевина (22) накачки имеет на внешней стороне по меньшей мере одну проходящую в направлении распространения света по двухсердцевинному оптическому волокну (20) сошлифованную грань (28), составляющую 1 - 49% от диаметра сердцевины (22) накачки.
2. Оптическое волокно с двумя сердцевинами по п.1, отличающееся тем, что в зависимости от длины волны лазерного излучения и применения диаметр ⌀PK сердцевины (22) накачки без сошлифованной грани (28) составляет 5 - 600 мкм, диаметр ⌀LK лазерной сердцевины (24) составляет 1,5 - 20 мкм, а измеряемая в радиальном направлении сердцевины (22) накачки высота а сошлифованной грани (28) составляет 1 - 200 мкм.
3. Оптическое волокно с двумя сердцевинами по п.1, отличающееся тем, что оболочка (26) двухсердцевинного оптического волокна выполнена из полимера или стеклянного материала с более низким по сравнению с сердцевиной (22) накачки показателем преломления и толщиной 5 - 100 мкм.
4. Оптическое волокно с двумя сердцевинами по п.1, отличающееся тем, что каждая из двух торцевых поверхностей двухсердцевинного оптического волокна ориентирована под прямым углом или под углом меньшей 90ok оптической оси и покрыта по меньшей мере в зоне лазерной сердцевины (24) зеркальным и/или просветляющим для определенных интервалов длин волн слоем.
5. Способ изготовления оптического волокна с двумя сердцевинами, предусматривающий изготовление цилиндрической преформы из кварца или стекла стандартным способом и вытягивание стекловолокна из нагретой преформы, отличающийся тем, что на наружной цилиндрической поверхности преформы после ее изготовления сошлифовывают по меньшей мере одну грань, составляющую 1 - 49% от диаметра преформы, и из шлифованной преформы вытягивают двухсердцевинное оптическое волокно, причем температуру вытягивания преформы регулируют таким образом, что наружная геометрия преформы и наружная геометрия сердцевины (22) накачки остаются конгруэнтными.
6. Способ изготовления оптического волокна с двумя сердцевинами по п.5, отличающийся тем, что на преформу после сошлифовывания грани наносят стеклянный или кварцевый слой определенной толщины с меньшим по сравнению с материалом будущей сердцевины накачки показателем преломления, причем толщину выбирают таким образом, что диаметр двухсердцевинного оптического волокна после вытягивания преформы составляет по меньшей мере 80 мкм.
7. Способ изготовления оптического волокна с двумя сердцевинами по п.5, отличающийся тем, что наружный диаметр преформы составляет 5 - 20 мм, а сошлифованная грань преформы составляет 1 - 8 мм и преформу изготавливают с постоянными по длине цилиндра наружными размерами, а двухсердцевинное оптическое волокно (100, 200, 20) вытягивают с постоянным диаметром ⌀PK сердцевины (22) накачки, измеренным в месте без сошлифованной грани (28) и составляющим 5 - 600 мкм.
8. Волоконный лазер (100) с двумя сердцевинами, в состав которого входят следующие расположенные в направлении распространения света конструктивные элементы: источник накачки (лазерный диод 102), предпочтительно оптика (106) ввода, первое диэлектрическое зеркало (108, 32), взаимодействующее с входным торцом двухсердцевинного оптического волокна (110,20), двухсердцевинное оптическое волокно (110, 20), которое состоит из сердцевины (22) накачки, лазерной сердцевины (24), расположенной центрально в сердцевине (22) накачки, и окружающей сердцевину (22) накачки оболочки (26), а также второе диэлектрическое зеркало (114,33), взаимодействующее с выходным торцом двухсердцевинного оптического волокна (110, 20), отличающийся тем, что выполненная в основном круглой в поперечном сечении сердцевина (22) накачки имеет на наружной стороне по меньшей мере одну проходящую в направлении распространения света по двухсердцевинному оптическому волокну (20) сошлифованную грань (28), которая составляет 1 - 49% от диаметра сердцевины (22) накачки.
9. Волоконный лазер с двумя сердцевинами по п.8, отличающийся тем, что длина двухсердцевинного оптического волокна составляет больше 0,1 м.
10. Волоконный лазер с двумя сердцевинами по п.8, отличающийся тем, что для 4-уровневых лазерных систем диаметр ⌀PK сердцевины (22) накачки в месте без сошлифованной грани (28) составляет 75 - 600 мкм, диаметр ⌀LK лазерной сердцевины составляет 2 - 20 мкм, а измеряемая в радиальном направлении сердцевины (22) накачки высота а сошлифованной грани (28) составляет 5 - 100 мкм.
11. Волоконный лазер с двумя сердцевинами по п.8, отличающийся тем, что для 3-уровневых лазерных систем и повышающих лазерных систем диаметр ⌀PK сердцевины (22) накачки в месте без сошлифованной грани (28) составляет 10 - 50 мкм, диаметр ⌀LK лазерной сердцевины составляет 2 - 10 мкм, а измеряемая в радиальном направлении сердцевины (22) накачки высота а сошлифованной грани (28) составляет 1 - 15 мкм.
12. Волоконный усилитель с двумя сердцевинами, в состав которого в направлении распространения света входят следующие конструктивные элементы: источник накачки (лазерный диод 202), предпочтительно коллиматорная оптика (216), конденсор (дихроичное зеркало 218), предпочтительно оптика (206) ввода, просветляющая или установленная под углом к оптической оси торцевая поверхность волокна, в которую вводится излучение накачки и оптический сигнал, двухсердцевинное оптическое волокно (200), которое состоит из сердцевины (22) накачки, лазерной сердцевины (24), расположенной центрально в сердцевине (22) накачки, и окружающей сердцевину (22) накачки оболочки (26), а также просветляющая или установленная под углом к оптической оси торцевая поверхность волокна, из которой выходит усиленный оптический сигнал, отличающийся тем, что выполненная в основном круглой в поперечном сечении сердцевина (22) накачки имеет на наружной стороне по меньшей мере одну проходящую в направлении распространения света по двухсердцевинному оптическому волокну (20) сошлифованную грань (28), которая составляет 1 - 49% от диаметра сердцевины (22) накачки.
13. Волоконный усилитель с двумя сердцевинами по п.12, отличающийся тем, что длина двухсердцевинного оптического волокна составляет больше 0,1 м, а наибольшая длина определяется тем, что усиленный оптический сигнал при работе больше усиленной спонтанной эмиссии, причем наибольшая длина двухсердцевинного оптического волокна составляет менее 50 м.
14. Волоконный усилитель с двумя сердцевинами по п.12, отличающийся тем, что для 4-уровневых систем диаметр ⌀PK сердцевины (22) накачки в месте без сошлифованной грани (28) составляет 75 - 600 мкм, диаметр ⌀LK лазерной сердцевины составляет 2 - 20 мкм, а измеряемая в радиальном направлении сердцевины (22) накачки высота а сошлифованной грани (28) составляет 5 - 100 мкм.
RU97111166A 1995-09-25 1996-09-25 Оптическое волокно с двумя сердцевинами, способ его изготовления, волоконный лазер с двумя сердцевинами и волоконный усилитель с двумя сердцевинами RU2138892C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19535526A DE19535526C1 (de) 1995-09-25 1995-09-25 Doppelkern-Faserlaser
DE19535526.1 1995-09-25
PCT/EP1996/004187 WO1997012429A1 (de) 1995-09-25 1996-09-25 Doppelkern-lichtleitfaser, verfahren zu ihrer herstellung, doppelkern-faserlaser und doppelkern-faserverstärker

Publications (2)

Publication Number Publication Date
RU97111166A RU97111166A (ru) 1999-05-20
RU2138892C1 true RU2138892C1 (ru) 1999-09-27

Family

ID=7773065

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97111166A RU2138892C1 (ru) 1995-09-25 1996-09-25 Оптическое волокно с двумя сердцевинами, способ его изготовления, волоконный лазер с двумя сердцевинами и волоконный усилитель с двумя сердцевинами

Country Status (9)

Country Link
US (1) US5864645A (ru)
EP (1) EP0793867B1 (ru)
JP (1) JP3830969B2 (ru)
CN (1) CN1095606C (ru)
CA (1) CA2204865C (ru)
DE (2) DE19535526C1 (ru)
DK (1) DK0793867T3 (ru)
RU (1) RU2138892C1 (ru)
WO (1) WO1997012429A1 (ru)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620159C2 (de) * 1996-05-07 2002-08-08 Inst Physikalische Hochtech Ev Faserlaser oder Faserverstärker mit neuartiger Brechzahlstruktur
DE69809413T2 (de) * 1997-05-27 2003-05-08 Sdl, Inc. Lasermarkierungssystem und energiesteuerungsverfahren
DE19723267A1 (de) * 1997-06-03 1998-12-10 Heidelberger Druckmasch Ag Verfahren und Anordnung zur Reduzierung des Pumplichts am Austritt eines Fiberlasers
DE19728889A1 (de) * 1997-07-07 1999-01-14 Daimler Benz Ag Lasersystem zur Farbbildprojektion mit integrierter Bildmodulation
DE19729539A1 (de) * 1997-07-10 1999-01-14 Daimler Benz Ag Laseroszillator und Verstärker zur Farbbildprojektion mit integrierter Bildmodulation
DE19736155C2 (de) * 1997-08-14 2001-12-13 Forschungsverbund Berlin Ev Anordnung für einen kompakten Faserlaser zur Erzeugung von Laserstrahlung
US5949941A (en) * 1997-11-21 1999-09-07 Lucent Technologies Inc. Cladding-pumped fiber structures
US6157763A (en) 1998-01-28 2000-12-05 Sdl, Inc. Double-clad optical fiber with improved inner cladding geometry
JP3251223B2 (ja) * 1998-02-25 2002-01-28 日本電気株式会社 光増幅器
DE19819473C2 (de) * 1998-04-30 2000-02-10 Richard Wallenstein Einrichtung zum Erzeugen kohärenter Strahlung
DE19825037C2 (de) * 1998-06-04 2000-12-21 Zeiss Carl Jena Gmbh Kurzkohärente Lichtquelle und deren Verwendung
US6192713B1 (en) 1998-06-30 2001-02-27 Sdl, Inc. Apparatus for the manufacture of glass preforms
JP3827883B2 (ja) * 1999-05-07 2006-09-27 三菱電線工業株式会社 光ファイバ
DE19926299A1 (de) * 1999-06-09 2000-12-21 Zeiss Carl Jena Gmbh Upconversionlaser
US6996316B2 (en) * 1999-09-20 2006-02-07 Cidra Corporation Large diameter D-shaped optical waveguide and coupler
JP4237357B2 (ja) * 1999-10-08 2009-03-11 信越化学工業株式会社 変形第1クラッドを有する光ファイバ母材の製造方法及び光ファイバ母材並びに光ファイバ
DE10009379C2 (de) * 2000-02-29 2002-04-25 Schneider Laser Technologies Faseroptischer Verstärker
DE10009380B4 (de) * 2000-02-29 2007-11-08 Jenoptik Ldt Gmbh Faserverstärker
JP2001267665A (ja) 2000-03-16 2001-09-28 Sumitomo Electric Ind Ltd 光増幅用光ファイバ、光ファイバ増幅器および光ファイバレーザ発振器
DE50104123D1 (de) * 2000-06-20 2004-11-18 Evotec Ag Faser-laser
JP2002111101A (ja) * 2000-09-28 2002-04-12 Toshiba Corp レーザ光源装置
US6477307B1 (en) 2000-10-23 2002-11-05 Nufern Cladding-pumped optical fiber and methods for fabricating
US6516124B2 (en) * 2001-03-02 2003-02-04 Optical Power Systems Incorporated Fiber for enhanced energy absorption
US6608956B2 (en) 2001-03-12 2003-08-19 Verrillon Inc. Dual-clad polarization-preserving optical fiber
US6816513B2 (en) * 2001-04-02 2004-11-09 Apollo Instruments, Inc. High power high efficiency cladding pumping fiber laser
US6625363B2 (en) 2001-06-06 2003-09-23 Nufern Cladding-pumped optical fiber
US6687445B2 (en) * 2001-06-25 2004-02-03 Nufern Double-clad optical fiber for lasers and amplifiers
EP1421419B1 (en) * 2001-07-12 2007-09-12 OCG Technology Licensing, LLC Optical fiber
DE10203392B4 (de) 2002-01-29 2014-09-04 Osram Opto Semiconductors Gmbh Anordnung zur Einkopplung von Strahlung in eine Lichtleitfaser
US7116887B2 (en) * 2002-03-19 2006-10-03 Nufern Optical fiber
DE10216627B4 (de) * 2002-04-15 2007-12-20 Carl Zeiss Jena Gmbh Faserlaser
US7400808B2 (en) 2003-01-10 2008-07-15 The Furukawa Electric Co., Ltd. Optical fiber, light amplifier, and light source
WO2004066007A1 (ja) * 2003-01-10 2004-08-05 The Furukawa Electric Co., Ltd 光ファイバ、光増幅器及び光源
JP4714136B2 (ja) 2003-01-24 2011-06-29 トルンプフ インコーポレイテッド ファイバレーザ
WO2004066457A1 (en) * 2003-01-24 2004-08-05 Trumpf, Inc. Side-pumped fiber laser
US6959022B2 (en) * 2003-01-27 2005-10-25 Ceramoptec Gmbh Multi-clad optical fiber lasers and their manufacture
JP2005019539A (ja) * 2003-06-24 2005-01-20 Fujikura Ltd 希土類添加ファイバおよびこれを用いた光ファイバレーザ
GB0314817D0 (en) * 2003-06-25 2003-07-30 Southampton Photonics Ltd Apparatus for providing optical radiation
EP1676158B1 (en) * 2003-09-25 2019-05-22 Nufern Apparatus and methods for accommodating loops of optical fiber
JP3952033B2 (ja) * 2004-04-02 2007-08-01 松下電器産業株式会社 光増幅ファイバと光増幅方法とレーザ発振方法とレーザ増幅装置とレーザ発振装置とレーザ装置とレーザ加工機
US20050226580A1 (en) * 2004-04-08 2005-10-13 Samson Bryce N Optical fiber for handling higher powers
US7317857B2 (en) * 2004-05-03 2008-01-08 Nufem Optical fiber for delivering optical energy to or from a work object
US7483610B2 (en) * 2004-05-03 2009-01-27 Nufern Optical fiber having reduced defect density
CA2466970A1 (en) * 2004-05-12 2005-11-12 Coractive High-Tech Inc. Double-clad optical fibers
US7412135B2 (en) * 2005-01-21 2008-08-12 Nufern Fiber optic coupler, optical fiber useful with the coupler and/or a pump light source, and methods of coupling light
WO2007022641A1 (en) * 2005-08-25 2007-03-01 Institut National D'optique Flow cytometry analysis across optical fiber
JP2007094209A (ja) * 2005-09-29 2007-04-12 Rohm Co Ltd 光受信装置
JP4299826B2 (ja) * 2005-11-30 2009-07-22 株式会社住田光学ガラス 蛍光ファイバを用いた白色発光装置
US7835608B2 (en) * 2006-03-21 2010-11-16 Lockheed Martin Corporation Method and apparatus for optical delivery fiber having cladding with absorbing regions
US7768700B1 (en) 2006-11-30 2010-08-03 Lockheed Martin Corporation Method and apparatus for optical gain fiber having segments of differing core sizes
US8536542B2 (en) 2006-08-25 2013-09-17 Institut National D'optique Flow cytometry analysis across optical fiber
DK2140294T3 (en) 2007-03-21 2016-08-22 Nufern Optical fiber article to handling of major energy and manufacturing method or use thereof
RU2421855C2 (ru) 2007-08-28 2011-06-20 Фудзикура Лтд. Волокно с легированной редкоземельным элементом сердцевиной и многослойной оболочкой, волоконный усилитель и волоконный лазер
US8888767B2 (en) * 2008-12-02 2014-11-18 Biolitec Pharma Marketing Ltd Diode laser induced vapor/plasma mediated medical procedures and device
DE102009035375A1 (de) 2009-03-10 2010-09-30 J-Fiber Gmbh Verfahren zur Herstellung einer optischen Faser
JP5531589B2 (ja) * 2009-12-03 2014-06-25 パナソニック株式会社 ダブルクラッドファイバ及びファイバレーザ装置
CN103253859A (zh) * 2013-05-09 2013-08-21 中国科学院上海光学精密机械研究所 涂覆层d形磷酸盐微结构带隙型光纤的制备方法
CN104022431A (zh) * 2014-04-28 2014-09-03 中国科学院上海光学精密机械研究所 宽带宽高信噪比超短激光脉冲装置
CN111596404A (zh) * 2020-06-15 2020-08-28 湖南杰瑞天光电有限公司 一种可传输双光束的光纤及其耦合方法
US20230288630A1 (en) * 2020-08-08 2023-09-14 Pavilion Integration Corporation Multi-core fiber, methods of making and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815079A (en) * 1987-12-17 1989-03-21 Polaroid Corporation Optical fiber lasers and amplifiers
US5373576A (en) * 1993-05-04 1994-12-13 Polaroid Corporation High power optical fiber
US5418880A (en) * 1994-07-29 1995-05-23 Polaroid Corporation High-power optical fiber amplifier or laser device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL193330C (nl) * 1978-01-13 1999-06-02 Western Electric Co Optische golfleider en werkwijze voor het vervaardigen daarvan.
US5309452B1 (en) * 1992-01-31 1998-01-20 Univ Rutgers Praseodymium laser system
JPH0685356A (ja) * 1992-08-17 1994-03-25 Ishikawajima Harima Heavy Ind Co Ltd レーザー発振装置
US5530710A (en) * 1995-05-15 1996-06-25 At&T Corp. High-power pumping of three-level optical fiber laser amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815079A (en) * 1987-12-17 1989-03-21 Polaroid Corporation Optical fiber lasers and amplifiers
US5373576A (en) * 1993-05-04 1994-12-13 Polaroid Corporation High power optical fiber
US5418880A (en) * 1994-07-29 1995-05-23 Polaroid Corporation High-power optical fiber amplifier or laser device

Also Published As

Publication number Publication date
CN1166239A (zh) 1997-11-26
JPH10510104A (ja) 1998-09-29
DE19535526C1 (de) 1997-04-03
CN1095606C (zh) 2002-12-04
DE59602381D1 (de) 1999-08-12
CA2204865A1 (en) 1997-04-03
JP3830969B2 (ja) 2006-10-11
EP0793867B1 (de) 1999-07-07
US5864645A (en) 1999-01-26
WO1997012429A1 (de) 1997-04-03
DK0793867T3 (da) 2000-04-10
EP0793867A1 (de) 1997-09-10
CA2204865C (en) 2001-08-14

Similar Documents

Publication Publication Date Title
RU2138892C1 (ru) Оптическое волокно с двумя сердцевинами, способ его изготовления, волоконный лазер с двумя сердцевинами и волоконный усилитель с двумя сердцевинами
RU97111166A (ru) Оптическое волокно с двумя сердцевинами, способ его изготовления, лазерное волокно с двумя сердцевинами и оптический усилитель с двумя сердцевинами
JP3298799B2 (ja) クラッディングポンプファイバとその製造方法
US6278816B1 (en) Noise reduction technique for cladding pumped optical amplifiers
US5121460A (en) High-power mode-selective optical fiber laser
US5710786A (en) Optical fibre laser pump source for fibre amplifiers
JP2781399B2 (ja) 光フアイバ及びそれを用いた光学装置
CA1210486A (en) Fiber optic amplifier
US3779628A (en) Optical waveguide light source coupler
US7437046B2 (en) Optical fiber configuration for dissipating stray light
US6411762B1 (en) Optical fiber with irregularities at cladding boundary
US6301421B1 (en) Photonic crystal fiber lasers and amplifiers for high power
US6115526A (en) Ultra high numerical aperture high power optical fiber laser
US6831934B2 (en) Cladding pumped fiber laser
US7920763B1 (en) Mode field expanded fiber collimator
US6546169B1 (en) Pump couplers for double-clad fiber devices
US6816652B1 (en) Pump fiber bundle coupler for double-clad fiber devices
US4946239A (en) Optical power isolator
JP2007249213A (ja) 光ファイバを側面ポンピングする方法とその装置
US7215858B2 (en) Ring core fiber
US6477301B1 (en) Micro-optic coupler incorporating a tapered fiber
JP5688565B2 (ja) ファイバレーザ装置と光増幅方法
US20020172459A1 (en) Method and apparatus for coupling light into an optical waveguide
JP3479219B2 (ja) 増幅用光ファイバ
US20030103724A1 (en) High power optical fiber coupling

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150926