[go: up one dir, main page]

RU2128806C1 - Способ сжигания нефтяного кокса - Google Patents

Способ сжигания нефтяного кокса Download PDF

Info

Publication number
RU2128806C1
RU2128806C1 RU97108897/06A RU97108897A RU2128806C1 RU 2128806 C1 RU2128806 C1 RU 2128806C1 RU 97108897/06 A RU97108897/06 A RU 97108897/06A RU 97108897 A RU97108897 A RU 97108897A RU 2128806 C1 RU2128806 C1 RU 2128806C1
Authority
RU
Russia
Prior art keywords
coke
coal
petroleum coke
fuel
burning
Prior art date
Application number
RU97108897/06A
Other languages
English (en)
Other versions
RU97108897A (ru
Inventor
В.Л. Шульман
В.С. Паршуков
В.К. Глазков
Original Assignee
Открытое акционерное общество по наладке, совершенствованию технологии и эксплуатации электростанций и сетей "Уралтехэнерго"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество по наладке, совершенствованию технологии и эксплуатации электростанций и сетей "Уралтехэнерго" filed Critical Открытое акционерное общество по наладке, совершенствованию технологии и эксплуатации электростанций и сетей "Уралтехэнерго"
Priority to RU97108897/06A priority Critical patent/RU2128806C1/ru
Application granted granted Critical
Publication of RU2128806C1 publication Critical patent/RU2128806C1/ru
Publication of RU97108897A publication Critical patent/RU97108897A/ru

Links

Images

Abstract

Способ сжигания нефтяного кокса относится к теплоэнергетике, в частности к технологии сжигания нефтяного кокса. Сжигание нефтяного кокса осуществляют совместно с каменным углем при тонкости размола, соответствующей тонкости размола тощих углей, и при оптимальной доле нефтяного кокса, соответствующей выходу летучих составляющих топлив, определяемой соотношением
Figure 00000001
где bк - доля нефтяного кокса в коксоугольной смеси; массовый расход в единицу времени; bу- доля каменноугольного топлива, массовый расход в единицу времени; V г лк - выход летучих нефтяного кокса на горючую массу, %; V г лу - выход летучих каменного угля на горючую массу, %. При этом пылеприготовление нефтяного кокса и каменного угля осуществляют совместно или раздельно с последующим смешиванием перед входом в горелку или осуществляют раздельную их подачу. Технический результат заключается в обеспечении возможности использования нефтяного кокса в качестве энергетического топлива. 2 ил.

Description

Изобретение относится к области теплоэнергетики, в частности к технологии сжигания нефтяного кокса.
Нефтяной кокс - продукт глубокой переработки нефти, который в нашей стране в качестве топлива используют совсем недавно.
По условиям хранения, подготовки и организации сжигания нефтяной приближается к углям, имеет малый выход летучих (подобно тощим углям, антрацитам, что затрудняет воспламенение и выгорание частиц кокса).
Нефтяной кокс имеет высокую удельную теплоту сгорания (7800 - 8100 ккал/кг), что снижает массу транспортируемого и перерабатываемого на ТЭС материала и повышает температуру факела в топке.
Известен способ сжигания нефтяного кокса, при котором для поддержания стабильного горения дополнительно сжигают природный газ ("Мировая теплоэнергетика", N 2, 1994 , с. 43 - 44).
Недостатком указанного технического решения является необходимость включения в состав топливного баланса - угольной станции других видов топлив (высокореакционных), что требует прокладки дополнительных магистралей, систем подачи и хранения этих топлив.
Известен способ сжигания нефтяного кокса в котлах с циркулирующим кипящим слоем (ЦКС). Эти котлы обеспечивают высокую степень сжигания углерода, не требуют выжигания дополнительно более качественного топлива (Мировая электроэнергетика, N 2, 1994 , с. 44).
В нашей стране не существует подобных конструкций топочных устройств.
Техническая задача, стоящая перед предлагаемым техническим решением, - обеспечить возможность использования нефтяного кокса в качестве энергетического топлива путем сжигания последнего в камерных топочных устройствах существующих котлоагрегатов, работающих на различных видах углей.
Для решения поставленной задачи по известному способу сжигания нефтяного кокса, основанному на смешивании последнего с другими видами энергетического топлива, сжигание нефтяного кокса осуществляют в котлах с камерными топочными устройствами совместно с каменноугольным топливом; при этом тонкость размола кокса соответствует тонкости размола тощих углей, а оптимальная доля нефтяного кокса в смеси соответствует выходу летучих составляющих топлив и определяется соотношением
Figure 00000003

где bк - доля нефтяного кокса в коксоугольной смеси (массовый расход в единицу времени);
bу - доля каменноугольного топлива в коксоугольной смеси, (массовый расход в единицу времени);
V г лк - выход летучих нефтяного кокса на горячую массу, %;
V г лу - выход летучих каменного угля на горячую массу, %.
Пылеприготовление нефтяного кокса и каменного угля при этом осуществляют совместно или раздельно с последующим смешиванием перед входом в горелку или обеспечивают раздельную их подачу.
Предлагаемое техническое решение поясняется рисунками.
На фиг. 1 представлена технологическая схема подготовки (совместной) коксоугольной смеси к сгоранию; на фиг. 2 представлена технологическая схема раздельного пылеприготовления.
Предлагаемая схема (фиг. 1) содержит склад нефтяного кокса 1, склад каменного угля 2, узел дозирования и смешивания составляющих топлива 3, топливоподачу к бункерам топлива 4, систему сушки и пылеприготовления 5, бункер пыли 6 и далее в горелку 7 либо, минуя бункер пыли 6, по пылепроводу прямого вдувания 8 в горелку 7.
Фиг. 2. Схема раздельного подачи и пылеприготовления топлива содержит 2 параллельные нитки, каждая из которых включает склад топлива 1, 1, топливоподачу 2, 2, систему сушки и пылеприготовления 3, 3, которые объединяются на входе в пылевой бункер 4, и связанный далее пылепроводом, с горелкой 5 (для пылесистемы с промбункером), либо непосредственно в горелку 5 через узел смешения 6 (для пылесистемы прямого вдувания).
Использование настоящего изобретения предусматривает сжигание нефтяного кокса в пылеугольных камерных топках энергетических котлов в смеси с проектным твердым топливом, что позволит нивелировать некоторые специфические свойства нефтяного кокса (по воспламенению, возгоранию, влиянию на коррозионные процессы, высокому содержанию углерода в уносе и отложениях в конвективной шахте, увеличенным выбросом окислов серы), при этом максимальная доля нефтяного кокса в коксоугольной смеси определяется конструкцией топочно-горелочного устройства и качеством проектного топлива. Сжигание нефтяного кокса при подмешивании его ко всем видам углей, используемых в энергетике (до 10 - 15% от общего массового расхода топлива), принципиально возможно с различной эффективностью практически во всех существующих конструкциях топочно-горелочных устройств. Однако и в этом случае, и в других режимах использования кокса непременным условием является обеспечение определенной тонкости размола угля - до R90 ≤ 8%.
Увеличенная доля кокса в смеси с проектным топливом может быть обеспечена в определенном классе существующих топочно-горелочных устройств, которые могут быть ранжированы по степени приспособленности к сжиганию кокса следующим образом:
1) Оптимальными для воспламенения и выгорания нефтяного кокса являются высокотемпературные топки с ограниченным теплоотводом к экранирующим поверхностям нагрева в зоне формирования факела - топки с пережимом в нижней части с полностью закрытыми футеровочной массовой экранными трубами (обеспечивая температуру в ядре факела до 1650 - 1750oC, позволяет сжигать низкореакционные топлива - тощие угли, антрациты с отводом шлака в расплавленном состоянии), а также топки с зажигательным поясом в районе горелочного пояса на высоту до 3 м, применяемые для эффективного сжигания тощих углей.
2) Пригодны также для сжигания нефтяного кокса (как автономно, так и в смеси в углем) топки с компактным, сомкнутым факелом, который организуется большим числом встречно расположенных вихревых горелок (с фронта и на задней стенке топки); такие котлы рассчитываются на угли марки "СС", близкие к тощим;
3) При такой компановке с увеличением шага горелок, индивидуализацией факелов условия сжигания нефтяного кокса (как и всякого тощего угля) ухудшаются. Такие решения используются во многих типах котлов, спроектированных на экибастузский уголь, который лишь условно определяется как тощий. Здесь, вероятно, речь может идти только о совместном сжигании с проектным топливом.
4) Менее благоприятно для использования нефтяного кокса встречное размещение горелок на боковых стенках экранированной топки фронтальное расположение вихревых горелок в связи с увеличением в этом случае интенсивности теплоотвода от факела.
5) Неблагоприятны условия сжигания нефтяного кокса в топках с прямоточными горелками, в том числе и с тангенциальным их расположением, а также с плоскофакельными горелками.
Проблемы организации использования нефтяного кокса в энергетике не исчерпываются условиями устойчивого воспламенения и полного выгорания. Важнейшее место при этом занимают вопросы надежности оборудования.
1) Для совместного сжигания нефтяного кокса с углем характер коррозионных процессов не изучен, однако можно полагать, что существенно отличаясь от механизма коррозионных процессов в мазутных котлах аналогичен условиям сжигания сернистых углей, для которых разработаны эффективные способы предотвращения высокотемпературной и низкотемпературной сернистой коррозии. В энергетике отсутствует опыт использования твердых топлив с повышенным содержанием ванадия (характерным для нефтяного кокса), понадобятся специальные исследования возможности развития ванадиевой коррозии высокотемпературных поверхностей нагрева.
2) Предварительные расчеты показывают, что сжигание кокса и коксоугольной смеси смещает ядро факела в верхнюю часть топки, увеличивая несколько температуру на входе в пароперегреватель, а также в районе воздухоподогревателя, возможно выше допустимого уровня. Поддержание расчетных (либо близких к ним) показателей по температуре металла поверхностей нагрева осуществляется выбором приемлемой доли кокса в смеси с углем, регулированием общего избытка воздуха в топке.
3) Для предотвращения отложений в конвективных поверхностях нагрева, золоуловителях углеродистых частиц, склонных к возгоранию, целесообразно не превышать долю кокса в смеси с углем выше 60 - 70oC; перед плановым остановом котла для удаления возможного скопления углеродосодержащих частиц перейти на сжигание расчетного угля. При внеплановых остановах произвести очистку, обмывку.
Совместное сжигание кокса и проектного твердого топлива ослабляет напряженность экологических проблем, которые могут возникнуть при автономном сжигании кокса.
Экологические свойства нефтяного кокса определяются минимальным содержанием минеральных включений и соответственно незначительным выделением золошлаковых частиц при сжигании кокса; высоким содержанием в коксе (в его минеральной части) тяжелых металлов-ванадия, никеля; повышенным содержанием в органической части кокса сернистых соединений.
В целом экологические проблемы при сжигании коксоугольной смеси не являются лимитирующим фактором включений нефтяного кокса в топливный баланс ТЭС. Они решаются:
- выбором объекта, для которого имеется определенный экологический резерв дополнительного выброса сернистого ангидрида;
- использование кокса на ТЭС, для которого проектное топливо близко по своим экологическими характеристикам к нефтяному коксу;
- реализацией при необходимости дополнительных технологических решений;
- выбором приемлемого в конкретном случае состава коксоугольной смеси.
Формирование коксоугольной смеси заданного состава может осуществляться:
- непосредственно на угольном складе послойной укладкой кокса и угля в штабеля;
- при раздельном хранении угля и кокса на складе в отдельных штабелях и создании специального смесительного комплекса;
- при раздельном поступлении угля и кокса на блок топливоподачи ТЭС путем подачи угля и кокса в отдельные приемные бункера с регулируемой шибером на выдаче на два параллельных транспортера разгружающих далее транспортируемый материал на общую транспортную ленту.
Таким образом, использование нефтяного кокса в энергетике в виде коксоугольной смеси позволяет:
1) использовать существующее оборудование ТЭС;
2) сократить срок включения нефтяного кокса в топливный баланс энергетики;
3) обеспечить эффективное решение вопросов надежности оборудования при сжигании кокса;
4) ослабить проявление отдельных экологически неблагоприятных свойств нефтяного кокса.
1. Совместное сжигание нефтяного кокса и угля принципиально изменяет характер отложений на высокотемпературных поверхностях нагрева и условия высокотемпературной ванадиевой коррозии металла:
- если при сжигании беззольного ванадийсодержащего топлива (мазут, кокс торфяной) на поверхностях нагрева в топке образуются липкие, трудноудаляемые отложения. Для снижения интенсивности коррозионных процессов в мазутных котлах вводится присадка, содержащая определенную комбинацию магния, алюминия, кремния, образующиеся при этом сухие отложения препятствуют диффузии кислорода к поверхности металла и тем самым снижают интенсивность коррозии;
- при сжигании коксоугольной смеси роль присадки могут играть золовые частицы угля, содержащие в достаточном количестве указанные вещества, повышающие температуру плавления золовой смеси: практика показывает, что сжигание твердого топлива с подсветкой ванадийсодержащим мазутом ни в одном случае не приводила к развитию высокотемпературной ванадиевой коррозии. Данные испытаний, проведенных заявителем, на котле с использованием коксоугольной смеси, показывают, что образующиеся в этом режиме отложения на поверхностях нагрева (экраны, пароперегреватель) - сухие, легко удаляемые, непрочные, что косвенным образом свидетельствует об отсутствии условия для развития ванадиевой коррозии.
2. Совместное сжигание нефтяного кокса и угля изменяет характер отложений в конвективном газоходе. Вместо характерного для режима сжигания кокса содержания углерода в отложенных от 50 до 80% (что создает реальную опасность возгорания этих отложений и разрушения воздухоподогревателя), при сжигании коксоугольной смеси содержание углерода в золовых отложениях в конвективной шахте не превышает 15 - 18%, что практически исключает возможность пожара и обеспечивает надежность и безопасность работы конвективных поверхностей нагрева по термическому режиму.
3. При совместном сжигании нефтяного кокса и угля за счет присутствия абразивных золоугольных частиц в потоке дымовых газов обеспечивает вынос частиц золы кокса за пределы тракта котла и улавливание их в золоуловителях. При автономном сжигании кокса (как и мазута) возникает проблема удаления с поверхностей нагрева отложений с высоким содержанием ванадия, обладающих значительной токсичностью, что требует обеспечения специальных мер по обеспечению необходимых санитарно-гигиенических требований для безопасной работы персонала.
4. Влияние повышенного содержания серы в нефтяном коксе и увеличенный выброс сернистого ангидрида в определенной мере нивелируется при сжигании коксоугольной смеси присутствием в дымовых газах значительного количества золовых частиц угля (содержания соединения кальция), способность связывать от 10 до 50% всего количества сернистого ангидрида в пределах рабочего тракта котла.
5. При автономном сжигании в камерных топках нефтяного кокса, которое является малореакционным топливом, условия воспламенения частиц кокса целиком определяются излучением от ограждающих поверхностей покрытых энергостойкой обмуровкой, которые не всегда имеют в топочных устройствах.
При сжигании кокса в смеси натурального твердого топлива в рассчитанных на этот уголь топочно-горелочных устройств обеспечиваются надежная стабилизация пылеугольного факела, необходимые условия достаточно раннего воспламенения угольной пыли. За счет интенсивного прогрева частиц кокса, находящихся непосредственно в высокотемпературном пылеугольном факеле до температуры воспламенения, инициируется развитие факела коксовой пыли (независимо от влияния излучения в ограждающих поверхностях). При различной плотности и объема пылеугольного факела формируются различные условия воспламенения частиц кокса.
Совместное сжигание кокса с проектным твердым топливом исключает необходимость реконструкции существующих систем пылеприготовления (в связи с сокращением массы перерабатываемого материала при переходе от угля к коксу).
6. Автономное сжигание нефтяного кокса требует организации специальных систем очистки дымовых газов от золовых частиц кокса с большим содержанием углерода, электрофизическими свойствами, возможностью залипания на электродах, гидрофобностью.
Сжигание коксоугольной смеси позволяет эффективно использовать существующие системы золоулавливания.

Claims (2)

1. Способ сжигания нефтяного кокса, основанный на смешивании его с другими видами энергетических топлив, отличающийся тем, что сжигание его осуществляют в котлах с камерными топочными устройствами совместно с каменноугольным топливом, при этом тонкость размола кокса соответствует тонкости размола тощих углей, а оптимальная доля нефтяного кокса соответствует выходу летучих составляющих топлив и определяется соотношением
Figure 00000004

где bk - доля нефтяного кокса в коксоугольной смеси; массовый расход в ед. времени;
by - доля каменноугольного топлива; массовый расход в единицу времени;
V г лк - выход летучих нефтяного кокса на горючую массу, %;
V г лу - выход летучих каменного угля на горючую массу, %.
2. Способ по п. 1, отличающийся тем, что пылеприготовление нефтяного кокса и каменного угля осуществляют совместно или раздельно с последующим смешиванием перед входом в горелку или осуществляют раздельную их подачу.
RU97108897/06A 1997-05-28 1997-05-28 Способ сжигания нефтяного кокса RU2128806C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97108897/06A RU2128806C1 (ru) 1997-05-28 1997-05-28 Способ сжигания нефтяного кокса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97108897/06A RU2128806C1 (ru) 1997-05-28 1997-05-28 Способ сжигания нефтяного кокса

Publications (2)

Publication Number Publication Date
RU2128806C1 true RU2128806C1 (ru) 1999-04-10
RU97108897A RU97108897A (ru) 1999-04-27

Family

ID=20193499

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97108897/06A RU2128806C1 (ru) 1997-05-28 1997-05-28 Способ сжигания нефтяного кокса

Country Status (1)

Country Link
RU (1) RU2128806C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2565651C2 (ru) * 2013-10-29 2015-10-20 Общество с ограниченной ответственностью "ЗиО-КОТЭС" (ООО "ЗиО-КОТЭС") Способ получения и сжигания композиционного кавитационного топлива из нефтяного кокса

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Роберт Росси. Побочный продукт перегонки нефти - перспективное топливо для электростанций. - Мировая электроэнергетика, 1994, N 2, с. 42. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2565651C2 (ru) * 2013-10-29 2015-10-20 Общество с ограниченной ответственностью "ЗиО-КОТЭС" (ООО "ЗиО-КОТЭС") Способ получения и сжигания композиционного кавитационного топлива из нефтяного кокса

Similar Documents

Publication Publication Date Title
Werther et al. Combustion of agricultural residues
CA1227970A (en) Method and apparatus for combustion of diverse materials and heat utilization
NL8202855A (nl) Werkwijze om een toevoegsel toe te voegen aan een stroom verbrandingsgassen.
CN107208887A (zh) 可根据煤型调整的固体和液体/气体燃料的全自动化无烟燃烧热水/蒸汽锅炉
US3699903A (en) Method for improving fuel combustion in a furnace and for reducing pollutant emissions therefrom
US20080105176A1 (en) Staged-coal injection for boiler reliability and emissions reduction
Miller Fuel considerations and burner design for ultra-supercritical power plants
EP0432293B1 (en) Method for recovering waste gases from coal combustor
RU2379237C1 (ru) Сжигание твердого топлива для промышленного плавления со шлакообразующей топкой
CN213066123U (zh) 燃烧固废物的循环流化床焚烧锅炉
CN110006030A (zh) 一种煤粉预热解高效燃尽及低氮还原装置和方法
US5094177A (en) Concurrent-flow multiple hearth furnace for the incineration of sewage sludge filter-cake
RU2128806C1 (ru) Способ сжигания нефтяного кокса
JPS62141408A (ja) 循環型流動床燃焼装置
CN101479530B (zh) 灰分中未燃烧碳的增氧燃烧
US4780136A (en) Method of injecting burning resistant fuel into a blast furnace
CN106705065A (zh) 工业垃圾与生活垃圾混合燃烧的锅炉
CN112664953A (zh) 一种燃烧固废物的循环流化床焚烧锅炉
JPS5917063B2 (ja) 揮発分の多い固体燃料を用いた石灰石の焼成方法
JPS63267814A (ja) 微粉炭燃焼方法
JPH0297591A (ja) 炭素含有物質の炉内での燃焼方法
CN108534175A (zh) 一种燃煤锅炉等离子气化点火稳燃装置及方法
RU2009402C1 (ru) Способ сжигания малореакционного пылевидного топлива и устройство для его осуществления
RU2158877C1 (ru) Вихревая камерная топка
JPS6146806A (ja) オイルコ−クスの燃焼方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20020529