RU2092431C1 - Высокочастотная озонаторная установка - Google Patents
Высокочастотная озонаторная установка Download PDFInfo
- Publication number
- RU2092431C1 RU2092431C1 RU95106887A RU95106887A RU2092431C1 RU 2092431 C1 RU2092431 C1 RU 2092431C1 RU 95106887 A RU95106887 A RU 95106887A RU 95106887 A RU95106887 A RU 95106887A RU 2092431 C1 RU2092431 C1 RU 2092431C1
- Authority
- RU
- Russia
- Prior art keywords
- water
- coolant
- inlet
- circuit
- pump
- Prior art date
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Изобретение относится к очистке промышленных и бытовых сточных вод, технологических газовых выбросов, подготовке питьевой воды и воды плавательных бассейнов, обеззараживанию технологического оборудования и продукции сельского хозяйства. Высококачественная озонаторная установка содержит разделенные между собой диэлектрическим изолятором и разрядной зоной низковольтный электрод и высоковольтный электрод с охлаждающими полостями, оснащенными электроизолирующими входными патрубками, насос, теплообменник, соединенные между собой трубопроводом таким образом, что их внутренние полости образуют рециркуляционный контур, заполненный охлаждающей жидкостью и гидравлически изолированный от разрядной зоны, систему электропитания электродов, причем, к входу в насос подключен трубопроводом бак, расположенный выше установки и заполненный охлаждающей жидкостью и подушкой инертного газа, в контур перед входными патрубками включен гидравлический фильтр, внутренние поверхности контура, бака, соединительных трубопроводов выполнены из некоррозирующихся материалов в среде охлаждающей жидкости в высокочастотной озонаторной установке используется дисциллированная вода, а электроизолирующие патрубки покрыты теплоизолятором 2 з.п. ф-лы, 1 ил.
Description
Изобретение относится к химическому машиностроению и может быть использовано в установках по очистке промышленных и бытовых сточных вод, технологических газовых выбросов, подготовке питьевой воды и воды плавательных бассейнов, а также в химической технологии, других отраслях народного хозяйства и позволяет увеличить производительность озонаторной установки, коэффициент полезного действия, надежность работы за счет интенсификации охлаждения ее электродов и диэлектрического изолятора между ними, упростить конструкцию озонаторной установки за счет исключения из ее состава устройства для обессоливания охлаждающей жидкости, а также повысить электробезопасность работ при эксплуатации установки за счет использования дистиллированной воды в замкнутом охлаждающем контуре.
Известно устройство для генерации озона, содержащее концентричные трубчатые электроды с камерами для подачи соответствующей охлаждающей жидкости, при этом по крайней мере внутренняя камера подключена к устройству с деионизирующей смолой для возвращения в цикл непроводящей охлаждающей жидкости. Наружный электрод выполнен в виде металлического цилиндра, который заземляют при использовании устройства. Внутренний электрод высокого напряжения герметизирован подводящей и отводящей трубами для охлаждающей жидкости и имеет покрытие из диэлектрика. В качестве охлаждающей жидкости для электрода высокого напряжения применяют деионизированную воду, смешанную с гликолем для низкотемпературного охлаждения. Заземленный электрод можно охлаждать неочищенной водой [1]
Недостатком этого устройства является наличие в его составе деионизирующей смолы для охлаждения жидкости, что приводит к необходимости оснащения и периодической замены смолы и, как следствие, к удорожанию изготовления и эксплуатации устройства.
Недостатком этого устройства является наличие в его составе деионизирующей смолы для охлаждения жидкости, что приводит к необходимости оснащения и периодической замены смолы и, как следствие, к удорожанию изготовления и эксплуатации устройства.
Известен генератор озона, отличающийся тем, что электродная трубка высокого напряжения имеет собственный замкнутый цикл охладителя среды, в котором ионообменная смола поддерживает электрическое сопротивление обессоленной водной охлаждающей среды более 1 МОм•см-1[2]
Недостатком известного генератора озона является наличие в его составе деионизирующей смолы.
Недостатком известного генератора озона является наличие в его составе деионизирующей смолы.
Наиболее близким к предлагаемому является озонатор, содержащий высоковольтный электрод в виде трубы, внутри которой по герметичным трубопроводам прокачивается охлаждающая жидкость малой электропроводимости - деионизированная вода, которая пропускается через ионообменную смолу, чтобы поддержать электропроводность воды ниже заданного значения [3]
Недостатком известного озонатора является наличие в его составе деионизирующей смолы, что приводит к удорожанию изготовления и эксплуатации озонатора.
Недостатком известного озонатора является наличие в его составе деионизирующей смолы, что приводит к удорожанию изготовления и эксплуатации озонатора.
Целью изобретения является устранение указанных недостатков известных озонаторных установок, упрощение их конструкции и технологии эксплуатации.
Поставленная цель достигается тем, что в предлагаемой высокочастотной озонаторной установке, содержащей разделенные между собой диэлектрическим изолятором и разрядной зоной низковольтный и высоковольтный электроды с охлаждающими полостями, оснащенными электроизоляционными патрубками подвода и отвода охлаждающей жидкости с малой электропроводностью, насос, теплообменник, соединенные между собой трубопроводами таким образом, что образуют рециркуляционный контур, заполненный охлаждающей жидкостью, предусмотрен бак, подключенный трубопроводом к входу в носос, расположенный выше установки, заполненной охлаждающей жидкостью и подушкой инертного газа, гидравлический фильтр, установленный в охлаждающем контуре на входе жидкости в патрубки охлаждающих полостей электродов, внутренние поверхности контура, бака и соединительных трубопроводов выполнены из некоррозирующихся материалов в среде охлаждающей жидкости, в качестве охлаждающей жидкости используется вода, а электроизолирующие патрубки покрыты теплоизолятором.
Совокупность существенных признаков предложенного устройства, по мнению авторов, является новой, что позволяет сделать вывод о новизне предложенного технического решения.
Предложенная высокочастотная озонаторная установка представлена на чертеже, где 1-электрод низковольтный; 2-электрод высоковольтный; 3-изолятор диэлектрический; 4,5,6,7-патрубки электроизолирующие; 8-фильтр гидравлический; 9-теплообменник; 10-насос; 11-трубопровод контура оединительный; 12-трубопровод подключения бака; 13-бак; 14-теплоизолятор; 15-система электропитания электродов; А-полость охлаждающая высоковольтного электрода; В-полость охлаждающая низковольтного электрода; С-разрядная зона.
В состав озонаторной установки входят низковольтный электрод 11 высоковольтный электрод 2, разделенные между собой диэлектрическим изолятором 3 и разрядной зоной С. Высоковольтный электрод снабжен охлаждающей полостью А, которая оснащена электроизоляционными патрубками 4 на входе и 5 на выходе, низковольтный электрод снабжен охлаждающей полостью В, которая оснащена электроизоляционными патрубками 6 на входе и 7 на выходе, гидравлический фильтр 8, теплообменник 9, насос 10, соединенные между собой своими входами и выходами с помощью трубопроводов 11 таким образом, что образуют рециркуляционный контур, заполненный охлаждающей жидкостью. К контуру на входе в насос с помощью трубопровода 12 подключен бак 13, который заполнен охлаждающей жидкостью и подушкой инертного газа, патрубки покрыты теплоизолятором 14, для электропитания электродов предусмотрена система 15,внутренние поверхности контуру покрыты материалами, некоррозирующимися в среде охлаждающейся жидкости, а в качестве охлаждающей жидкости в установке применена дистиллированная вода.
Высокочастотная озонаторная установка работает следующим образом. Кислородосодержащий газ (воздух) поступает на вход в разрядную зону С, где движется к выходу между электродом 1 и электродом 2. Вследствие того, что к электродам от системы 15 приложено переменное высокочастотное напряжение необходимой величины, между электродами через диэлектрик 3 возникает электрический разряд, образующий озоно-содержащую смесь газа на выходе из разрядной зоны. При этом для исключения перегрева электродов, диэлектрика и газа обеспечивается их охлаждение дистиллированной водой, поступающей в полости А и В. Нагретая вода из охлаждающих полостей электродов поступает по трубопроводам 11 и электроизолирующим вставкам 7,5 на вход в насос 10, который подает воду в теплообменник 9, где она охлаждается внешней охлаждающей средой. Охлажденная вода из теплообменника поступает на вход в фильтр 8 и далее через вставку 4,6 в полости А и В. При этом электроизоляция насоса, теплообменника, фильтра и трубопроводов, а также снятие тока по охлаждающей жидкости обеспечивается с помощью электроизоляционных вставок и за счет применения дистиллированной воды, обладающей диэлектрическими свойствами. При работе насоса по его уплотнениям возможны утечки воды из контура, которые компенсируются за счет его подпитки дистиллированной водой, находящейся в баке 13 и поступающей на вход в насос по трубопроводу 12. Увеличение объема воды при ее нагреве также компенсируется за счет перетекания ее из насоса в бак по этому же трубопроводу. Исключение насыщения воды воздухом, что приводит к повышенной коррозии черных электродов в среде воды охлаждения, загрязнению ее продуктами коррозии и уменьшению удельного электрического сопротивления воды обеспечивается за счет наличия в баке подушки инертного газа. К этим же целям дополнительно приводит проход воды через фильтр 8 и использование в качестве охлаждающей жидкости дистиллированной воды, а также применение для изготовления агрегатов установки нержавеющих сталей или покрытие их внутренних поверхностей материалами, некоррозирующимися в среде дистиллированной воды. При этом теплоизолятор 14 на наружных поверхностях электроизолирующих патрубков исключает появление там конденсата паров воды из окружающего воздуха, что обеспечивает исключение течения тока по конденсату от электродов к агрегатам контура, повышение электробезопасности и экономичности озонаторной установки.
Применение предложенной высокочастотной озонаторной установки по сравнению с известными озонаторными установками позволяет:
упростить конструкцию и технологию эксплуатации озонаторной установки;
снизить стоимость эксплуатации установки;
повысить электробезопасность установки при производстве озона;
уменьшить расход охлаждающей жидкости.
упростить конструкцию и технологию эксплуатации озонаторной установки;
снизить стоимость эксплуатации установки;
повысить электробезопасность установки при производстве озона;
уменьшить расход охлаждающей жидкости.
Claims (3)
1. Высокочастотная озонаторная установка, содержащая разделенные между собой диэлектрическим изолятором и разрядной зоной, низковольтный и высоковольтный электроды с охлаждающими полостями, оснащенными электроизоляционными входными и выходными патрубками охлаждающей жидкости с малой электропроводностью, насос, теплообменник, соединенные между собой трубопроводами таким образом, что их внутренние полости образуют рециркуляционный контур, заполненный охлаждающей жидкостью и гидравлически изолированный от разрядной зоны, систему электропитания электродов, отличающаяся тем, что в ней к входу в насос подключен трубопроводом бак, расположенный выше установки и заполненный охлаждающей жидкостью и подушкой инертного газа, в контур перед входными патрубками включен гидравлический фильтр, а внутренние поверхности контура, бака и соединительных трубопроводов выполнены из некоррозирующихся материалов в среде охлаждающей жидкости.
2. Установка по п.1, отличающаяся тем, что в ней гидравлический контур заполнен дистиллированной водой, а бак заполнен дистиллированной водой и подушкой инертного газа.
3. Установка по п.1, отличающаяся тем, что в ней электроизолирующие патрубки покрыты теплоизолятором.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU95106887A RU2092431C1 (ru) | 1995-04-28 | 1995-04-28 | Высокочастотная озонаторная установка |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU95106887A RU2092431C1 (ru) | 1995-04-28 | 1995-04-28 | Высокочастотная озонаторная установка |
Publications (2)
Publication Number | Publication Date |
---|---|
RU95106887A RU95106887A (ru) | 1997-01-20 |
RU2092431C1 true RU2092431C1 (ru) | 1997-10-10 |
Family
ID=20167269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95106887A RU2092431C1 (ru) | 1995-04-28 | 1995-04-28 | Высокочастотная озонаторная установка |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2092431C1 (ru) |
-
1995
- 1995-04-28 RU RU95106887A patent/RU2092431C1/ru active
Non-Patent Citations (1)
Title |
---|
1. Заявка Великобритании N 1516741, кл. C 01 B 13/11, 1978. 2. Заявка Японии N 99200, кл. C 01 B 13/11, 1974. 3. Патент США N 4025441, кл. C 01 B 12/11, 1977. * |
Also Published As
Publication number | Publication date |
---|---|
RU95106887A (ru) | 1997-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103819030B (zh) | 气液混合介质阻挡放电水处理装置与方法 | |
US4079260A (en) | Ozone generator | |
CN108341466A (zh) | 利用等离子体放电处理流水系统中的水的方法 | |
WO2016178501A1 (ko) | 저온 수중 플라즈마 발생 장치 | |
US4025441A (en) | Ozone generating apparatus | |
CN108101159A (zh) | 一种高压介质阻挡放电等离子体废水处理装置 | |
CN105060408A (zh) | 一种水下低温等离子体废水处理方法及装置 | |
CN105174223A (zh) | 一种自冷型臭氧发生器 | |
US6332960B1 (en) | Electrostatic fluid purifying device and method of purifying a fluid | |
CN104310534A (zh) | 基于臭氧和双氧水同时产生技术的水处理系统 | |
US10183881B1 (en) | Systems and methods for treating industrial feedwater | |
RU2092431C1 (ru) | Высокочастотная озонаторная установка | |
KR101286816B1 (ko) | 플라즈마 고도수처리 장치 | |
CN207986677U (zh) | 一种高效节能的流体除杂灭活装置 | |
CN109761304B (zh) | 用于水处理的微波等离子体发生模块、反应器及其应用 | |
CN204939042U (zh) | 一种水下低温等离子体废水处理装置 | |
KR20090118713A (ko) | 유체의 정전처리 장치 | |
CN107010603A (zh) | 一种用于水处理的臭氧发生装置及方法 | |
JP2002517072A5 (ru) | ||
FI97721B (fi) | Menetelmä ja laite vesipitoisen nesteen käsittelemistä varten | |
KR100278150B1 (ko) | 다중 방전형 고효율 오존발생장치 | |
CN206359246U (zh) | 一种水冷式管式臭氧发生器 | |
US5501845A (en) | Chilled oxygen for an ionization device | |
CN207986683U (zh) | 一种臭氧发生装置 | |
CN206720742U (zh) | 一种用于水处理的臭氧发生装置 |