RU2065894C1 - Многослойное покрытие, коррозионностойкое в галогенидсодержащих средах - Google Patents
Многослойное покрытие, коррозионностойкое в галогенидсодержащих средах Download PDFInfo
- Publication number
- RU2065894C1 RU2065894C1 RU93015513A RU93015513A RU2065894C1 RU 2065894 C1 RU2065894 C1 RU 2065894C1 RU 93015513 A RU93015513 A RU 93015513A RU 93015513 A RU93015513 A RU 93015513A RU 2065894 C1 RU2065894 C1 RU 2065894C1
- Authority
- RU
- Russia
- Prior art keywords
- layer
- thickness
- coating
- multilayer coating
- corrosion
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Laminated Bodies (AREA)
Abstract
Многослойное покрытие, коррозионностойкое в галогенсодержащих средах, предназначенное для нанесения на стальную поверхность включает следующие слои: внутренний слой меди, толщиной 0,5-3 мкм, слой на основе сплава никеля с 10-12% фосфора толщиной 3-4 мкм, слой на основе сплава никеля с содержанием фосфора 5-6% толщиной 3-4 мкм, оксидно-фосфатный слой толщиной 0,1 мкм, внешний гидрофобизирующий слой кремнийорганического полимера толщиной 0,1 мкм. 1 табл.
Description
Изобретение относится к области нанесения защитных металлических покрытий, а именно к нанесению покрытий на основе никеля химическим способом и может быть ипользовано для защиты стальных изделий (болтов, гаек, гвоздей, шайб и т.п.) от атмосферной коррозии.
Известны однослойные покрытия сплавом никель-фосфор, получаемые химическим осаждением из растворов,содержащих соль никеля, восстановитель, а также различные буферные и комплексообразующие добавки (Гальванотехника. Справочник. /П/ред. А.М.Гринберга и др. -М-: Металлургия. -1987. -с.372-382.). Эти покрытия относятся к катодным и обладают удовлетворительной защитной способностью по отношению к стали при отсутствии в них сквозной пористости, что достигается лишь при большой толщине покрытия (более 25 мкм). Кроме покрытия даже при значительной толщине подвержены питтенговой коррозии в галогенид содержащих средах.
Известны также покрытия, включающие помимо никелевого слоя тонкие оксидный и гидрофобизирующий слои (органические смазки) (Грилихес С.Я. Тихонов К. И./ Электролитические и химические покрытия. М. Металлургия, 1977). Такие покрытия также защищают основной металл лишь при значительной толщине, и кроме того, недостаточно стойки к наличию галогенид-ионов, например в морской воде.
Из описанных в литературе покрытий наиболее близко к заявляемому многослойное коррозионностойкое покрытие, основной слой которого со стороны стального листа представляет собой сплав на основе никеля толщиной 0,01 5 мкм (заявка Японии N 1-136975, кл. C 23 C 28/02^ 1989). Недостатком этих покрытий является подверженность питтинговой коррозии в галогенидсодержащих средах. Хорошая коррозионная стойкость достигается при их значительной толщине, что делает такие покрытия неэкономичными.
Целью настоящего изобретения является достижение высокой коррозионной стойкости многослойного покрытия на никельфосфорной основе к галогенсодержащим средам при малой общей толщине покрытия.
Поставленная цель достигается тем, что покрытие включает слой меди толщиной 0,5 3 мкм, прилегающий к основному металлу; основной слой никельфосфорного покрытия с содержанием фосфора 10 12% (вес.) толщиной 3 4 мкм; слои: никельфосфорный с содержанием фосфора 5 6% (вес.) толщиной 3 4 мкм и оксидно-фосфатный толщиной 0,1 мкм, расположенные между основным и внешним слоями; и внешний гидрофобизирующий слой кремнийорганического полимера толщиной 0,1 мкм.
Большой защитный эффект предлагаемого покрытия по сравнению с известным достигается за счет комплекса факторов, а именно: внешний слой никельфосфорного покрытия с меньшим содержанием фосфора служит анодом по отношению к внутреннему слою, обеспечивает дополнительную внутреннюю электрохимическую защиту покрытия; внутренний слой меди предотвращает развитие питтинговой коррозии на всю глубину покрытия и коррозионное поражение основного металла; наиболее высокие свойства покрытия получены за счет сочетания свойств всех слоев, входящих в покрытие, что позволяет достичь практически полной защиты основного металла от коррозии в галогенидсодержащих средах при небольшой общей толщине покрытия (7 10 мкм).
Покрытия наносили на болты М10 • 100 (класс прочности 5,8) изготовленные из стали 08 кп. Изделия с покрытиями отжигали в муфельной печи при 400oC в течение 15 минут. Толщину покрытий контролировали по изменению массы образцов-свидетелей и с помощью толщиномера МТ-20.
Коррозионные испытания проведены в камере влажности по режиму: выдержка а течение 8 часов при 90oC и 16 часов при 20oC при относительной влажности 100% при частичном погружении образцов в 10% NaCl. Длительность испытаний (кроме образцов отдельно отмеченных в таблице) составила 10 циклов. Данные коррозионных испытаний приведены в таблице. Примечание: 10-му баллу по шкале стойкости соответствует полное отсутствие продуктов коррозии, О-му - более 50% поверхности, занятой продуктами коррозии.
Коррозионная стойкость заявляемого покрытия (п. 8 табл.) превышает стойкость однослойного никельфосфорного покрытия толщиной 25 мкм (п. 2. табл.), а также однослойного никельфосфорного покрытия толщиной 15 мкм со слоем меди толщиной 3 мкм с оксидным и гидрофобизирующими слоями (п. 5 табл. 1).
Стойкость заявляемого покрытия намного выше, чем у цинковых покрытий (пп. 6, 7. табл.). Цинковые покрытия полностью разрушались за 2 3 цикла, в то время как отдельные точечные поражения на заявляемом покрытии появлялись через 10 циклов. Следует отметить, что дальнейшая выдержка заявляемого покрытия в коррозионной среде не приводит к появлению новых очагов коррозии и к распространению уже имеющихся на поверхности.
В то же время исключение оксидно-фосфатного (п. 12. табл.), гидрофобизирующего (п. 13. табл. 1) или обоих слоев (п. 14. табл.) приводит к существенному снижению стойкости покрытий по сравнению с заявляемым (п. 8. табл. ).
Снижение толщины слоя меди до 0,1 мкм также приводит к уменьшению коррозионной стойкости на 2 4 балла (п. 11. табл.), в особенности на резьбовой поверхности (т.е. при большой шероховатости поверхности).
Таким образом, предлагаемое покрытие обеспечивает высокий защитный эффект в условиях коррозии в галогенидсодержащих средах при небольшой общей толщине покрытия. ТТТ1
Claims (1)
- Многослойное покрытие, коррозионностойкое в гологенидсодержащих средах, предназначенное для нанесения на стальную поверхность, содержащее основной слой, выполненный из сплава на основе никеля толщиной 3-4 мкм, и внешний слой, отличающееся тем, что дополнительно содержит слой из сплава меди толщиной 0,5-3 мкм, нанесенный на основной слой со стороны изделия, слой на основе сплава никеля с 5-6% фосфора толщиной 3-4 мкм и оксидно-фосфатный слой толщиной 0,1 мкм, расположенный между основанием и внешним слоем, при этом основной слой содержит 10-12% фосфора, а внешний слой представляет собой гидрофобизирующий слой кремнеорганического полимера толщиной 0,1 мкм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU93015513A RU2065894C1 (ru) | 1993-03-25 | 1993-03-25 | Многослойное покрытие, коррозионностойкое в галогенидсодержащих средах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU93015513A RU2065894C1 (ru) | 1993-03-25 | 1993-03-25 | Многослойное покрытие, коррозионностойкое в галогенидсодержащих средах |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2065894C1 true RU2065894C1 (ru) | 1996-08-27 |
RU93015513A RU93015513A (ru) | 1997-01-20 |
Family
ID=20139206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU93015513A RU2065894C1 (ru) | 1993-03-25 | 1993-03-25 | Многослойное покрытие, коррозионностойкое в галогенидсодержащих средах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2065894C1 (ru) |
-
1993
- 1993-03-25 RU RU93015513A patent/RU2065894C1/ru active
Non-Patent Citations (1)
Title |
---|
Заявка Японии N 1-136975 кл. C 23C 28/02, 1989. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fratesi et al. | Corrosion resistance of Zn-Ni alloy coatings in industrial production | |
Schäfer et al. | Improving the corrosion protection of aluminium alloys using reactive magnetron sputtering | |
Fayomi et al. | Tribo-Mechanical Investigation and Anti-Corrosion Properties of Zn-TiO2 Thin Film Composite Coatings from Electrolytic Chloride Bath. | |
Echaniz et al. | Effect of seawater constituents on the performance of thermal spray aluminum in marine environments | |
Suo et al. | Corrosion behaviour of TiN and CrN coatings produced by magnetron sputtering process on aluminium alloy | |
Mirza et al. | Influence of nano additives on protective coatings for oil pipe lines of Oman | |
US4563253A (en) | Method of making corrosion inhibited metal | |
RU2065894C1 (ru) | Многослойное покрытие, коррозионностойкое в галогенидсодержащих средах | |
Wharton et al. | An electrochemical evaluation of possible non-chromate conversion coating treatments for electrodeposited zinc-nickel alloys | |
Keawhan et al. | Corrosion behavior of AISI 4140 steel surface coated by physical vapor deposition | |
Cruz et al. | Cyanide-free copper-silver electroplated coatings on carbon steel exposed to 5% NaClO bleacher | |
JP4939539B2 (ja) | ケイ素、炭素、水素および窒素に基づく耐食性被覆 | |
Patel et al. | Corrosion behavior of Ti2N thin films in various corrosive environments | |
Chang et al. | Assessment of corrosion resistant coatings for a depleted U-0.75 Ti alloy | |
RU2065893C1 (ru) | Многослойное коррозионностойкое покрытие | |
Baldwin et al. | The corrosion behaviour of zinc alloy and aluminium alloy coated steel panels in a marine environment | |
Chen et al. | The Initial Corrosion Behavior of AZ31B Magnesium Alloy in Chloride and Sulfate Solutions | |
Diaz-Ballote et al. | Improving the corrosion resistance of hot dip galvanized zinc coatings by alloying | |
Zazi et al. | Dissolution of Ag/AgCl Reference Electrode and Deposition of Silver Onto the Surface of 5083 H321 Aluminum Alloy, During Corrosion in 3 wt% NaCl Solution at Rest Potential | |
Hsu et al. | Effects of thickness of electroless Ni-P deposit on corrosion fatigue damage of 7075-T6 under salt spray atmosphere | |
Hans et al. | Corrosion behaviour of steel coated with an Ni-P/PVD hybrid layer | |
Vourlias et al. | Ability of metallic coatings to protect low carbon steels from aqueous corrosion | |
Kumar et al. | Study on Corrosion Behaviour of Dip Coating of Zinc on Mild Steel | |
Oluwole et al. | Investigating corrosion charateristics of Electroplated medium carbon steel in sodium carbonate environment for decorative objects applications | |
Jannat et al. | Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution |