RU2062353C1 - Ветроэлектростанция - Google Patents
Ветроэлектростанция Download PDFInfo
- Publication number
- RU2062353C1 RU2062353C1 RU93025791A RU93025791A RU2062353C1 RU 2062353 C1 RU2062353 C1 RU 2062353C1 RU 93025791 A RU93025791 A RU 93025791A RU 93025791 A RU93025791 A RU 93025791A RU 2062353 C1 RU2062353 C1 RU 2062353C1
- Authority
- RU
- Russia
- Prior art keywords
- wind
- tent
- air
- air flow
- cone
- Prior art date
Links
- 238000005192 partition Methods 0.000 claims abstract description 11
- 238000004146 energy storage Methods 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000002485 combustion reaction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000446 fuel Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000002912 waste gas Substances 0.000 abstract 1
- 239000002699 waste material Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000010754 BS 2869 Class F Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000010796 biological waste Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Wind Motors (AREA)
Abstract
Использование: в ветроэнергетике, в частности в устройствах, преобразующих энергию ветра в электрическую. Сущность изобретения: повышение мощности ветродвигателя путем увеличения скорости потока воздуха обеспечивается тем, что ветроэлектростанция, содержащая концентратор потока воздуха в виде шатра, ветроколесо 8, генератор электротока 9, инерционный аккумулятор 10 энергии, при этом в центре концентратора установлена цилиндрическая вытяжная труба, а внутри шатра соосно с ним установлен конус с вогнутой поверхностью. Внутренняя поверхность шатра и наружная поверхность конуса 4 соединены между собой перегородками 5, образующими сужающиеся воздушные каналы, направленные от периферии к центру и снизу вверх в цилиндрическую вытяжную трубу, в которой размещено ветроколесо 8 на вертикальном валу 7, передающем вращение от ветроколеса 8 на вал генератора электротока 9 и инерционного аккумулятора 10 энергии. На верхней части перегородок 5 установлены шарнирно заслонки 12 для перекрытия потока воздуха. Конструкция ветроэлектростанции позволяет увеличить площадь захватывающего потока воздуха и весь потока направить на ветроколесо 8 в вытяжную трубу, что в несколько раз увеличит скорость потока, а значит, и мощность ветродвигателя. Мощность ветродвигателя можно увеличить и за счет подачи в рабочую полость концентратора отработанных горячих потоков газа или воздуха, полученных путем сжигания утилизированного топлива. 1 з. п. ф-лы, 4 ил.
Description
Изобретение относится к области нетрадиционных источников энергии, в частности к устройствам, преобразующим энергию ветра в энергию электрическую.
Известен ветродвигатель Колобушкиных (а. с. СССР N 1211448, кл. F 03D 1/04), содержащий башню с окнами, внутри которой установлен поворотный аппарат с флюгерной лопастью, направляющий попавший в окна поток ветра вверх к ветроколесу. Ветроколесо представляет собой комбинированную конструкцию из горизонтального ветроколеса с ободом, на котором установлены вертикальные лопасти, воспринимающие потоки воздуха, попавшие в верхние окна башни. Ветроколесо установлено на вертикальном валу, передающем вращение на вал генератора электротока.
К недостаткам ветродвигателя Колобушкиных следует отнести относительную громоздкость и сложность конструкции как поворотной части ветродвигателя, так и самого ветроколеса, что значительно снизит и общий КПД электродвигателя и годовой ресурс его работы, ибо ветер при малых скоростях не сможет включить его в работу.
Известен ветроэлектрический агрегат (а. с. СССР N 1307078, кл. F 03D 1/04), содержащий генератор, ветроколесо и концентратор энергии ветра.
Недостатком этого изобретения является то, что эффективность концентратора низка, ибо он обеспечивает частичную концентрацию потока воздуха. Проходящий же с боков и сверху ветроколеса поток воздуха уходит не работая, н отдавая своей энергии агрегату.
Наиболее близким по конструкции к предлагаемому является техническое решение ветроагрегата (Д.де Рензо "Ветроэнергетика", Москва, 1982 г. перевод с английского В.В.Зубарева, под редакцией Я.И.Шефтера, с. 32). Ветроагрегат представляет собой усеченный конус в виде шатра с приподнятыми над землей краями для свободного прохода воздуха под конусом в любом направлении.
В горловине конуса установлены ветроколеса на вертикальном валу, который передает от ветроколеса вращение на генератор электротока или инерционный аккумулятор (типа маховика). Над конусом установлены поворотные направляющие лопасти для завихрения потока воздуха. Часть свободно проходящего под конусом воздуха поднимается вверх в горловину к ветроколесу. Проходя через установленные под углом лопасти поток завихряется и дополнительно засасывает воздух из конуса. При этом величина потока воздуха и его скорость увеличиваются, что повышает эффективность работы ветроагрегата.
К недостаткам описанного ветроагрегата относится то, что основная часть потока воздуха, попавшего под приподнятый шатер (открытый свободно во все стороны), пройдет насквозь без отдачи своей энергии. И только часть потока поднимается вверх в горловину к ветроколесам.
Задача изобретения повышение мощности ветроустановки за счет захвата широкого потока воздуха и концентрации его в узкий, но высокоскоростной поток.
Эта задача решается тем, что в ветроэлектростанции, содержащей концентратор потока воздуха, выполненный в виде приподнятого над землей шатра, ветроколесо с вертикальным валом, генератор электротока и инерционный аккумулятор, на горловине шатра концентратора установлена вертикальная вытяжная труба, в полости которой и установлено одно или несколько ветроколес на вертикальных валах, кинематически связанных с валом генератора электротока и инерционным аккумулятор, а внутри шатра расположен конус с вогнутой поверхностью, причем внутренняя поверхность шатра и наружная поверхность конуса соединены между собой вертикальными перегородками, образующими сужающиеся воздушные каналы, направленные от периферии шатра к центру и снизу вверх к вертикальной вытяжной трубе и лопастям ветроколес, а на верхней части перегородок установлены шарнирно заслонки, регулирующие величину движущегося к ветроколесам потока воздуха, причем в воздушных каналах концентратора размещены устройства для сжигания газа или подачи потоков горячего воздуха.
Так как мощность ветроэлектростанции имеет кубическую зависимость от скорости ветра, обдувающего ветроколесо (Шефтер Я.И. Рождественский И.В. "Ветронасосные и ветроэлектрические агрегаты", Москва, 1967 г.), то для повышения мощности ветроэлектростанции выгоднее идти путем увеличения скорости ветра, обдувающего ветроколесо, чем путем увеличения диаметра последнего. Теоретически увеличение скорости ветра с помощью концентратора в 4-5 раз может дать увеличение мощности электростанции, соответственно в 64- 125 раз по сравнению с ветроагрегатом, имеющим такой же диаметр ветроколеса, работающего при обычной внешней скорости, без концентрации потока воздуха.
Поэтому в предполагаемом изобретении для преобразования энергии ветра в энергию электрическую применен, как и в известном, круговой шатер с приподнятыми краями, опирающийся на опоры, но, в отличие от него, шатер снаружи на горловине имеет вертикальную вытяжную трубу, а внутри шатра установлен конус с вогнутой поверхностью. Конус и шатер соединены между собой вертикальными перегородками. Перегородки образуют замкнутые сужающиеся воздушные каналы, открытые широкой частью для входа потока воздуха и узкой частью для выдачи суженного и ускоренного потока в вертикальную вытяжную трубу, в которой установлены ветроколеса на вертикальных валах. Таким образом весь воздушный поток, входящий в шатер, пройдет через вытяжную трубу (через ветроколеса), но уже с более высокой скоростью, чем скорость наружного ветра.
На фиг.1 показан общий вид ветроэлектростанции. На фиг.2 показана схема концентрации попавших в шатер потоков воздуха. На фиг.3 дан разрез по А-А и показано направление движения потоков воздуха. На фиг.4 дан разрез по Б-Б конуса и вертикальных перегородок.
Ветроэлектростанция состоит из концентратора, имеющего вертикальную вытяжную трубу 1 и открытого с боков шатра 2 с приподнятыми крыльями, опирающимися на стойки 3.
Вертикальная вытяжная труба 1 установлена снаружи шатра на его горловине, а внутри шатра соосно с ним установлен конус 4 с вогнутой поверхностью. Внутренняя поверхность шатра и наружная поверхность конуса соединены между собой вертикальными перегородками 5, разделяющими пространство между шатром и конусом на каналы 6, сужающиеся к центру шатра и снизу вверх. Воздух с любой стороны шатра может входить в эти каналы и, сжимаясь и ускоряясь, устремляться в полость вертикальной вытяжной трубы, внутри которой установлены на вертикальных соосных (типа труба в трубе) валах 7 два ветроколеса 8. Внутренняя и наружная независимо вращающиеся части вала 7 кинематически связаны с валом генератора электротока 9 и валом инерционного аккумулятора 10, на которые и передают крутящий момент от ветроколес 8. Вертикальный вал 7 для обеспечения устойчивости фиксируется с растяжками 11, закрепленными на стенке вертикальной вытяжной трубы 1.
С целью предупреждения поломок ветроколеса 8 при высоких скоростях наружного ветра и для возможности регулирования величины подаваемого потока воздуха к ветроколесам (поддержание заданной мощности установки) на верхней части перегородок 5 установлены вертикально на шарнирах заслонки 12, управляемые (изменением угла наклона) с помощью тросов 13. Это управление может быть как ручным (лебедками), так и автоматическим (с помощью датчиков от скорости ветра в трубе 1 или частоты вращения ветроколеса 8).
В каналах 6 установлены устройства 14 для сжигания утилизированного газа. Устройства расположены на кольцевой трубе 15, к которой газ подводится по газоводу 16. Через указанные газоводы и устройства может в каналы 6 подаваться и поток горячего воздуха от печей сжигания биологических отходов.
Ветроэлектростанция работает следующим образом. Поток ветра любого направления, встречая на своем пути открытый со всех сторон шатер 2, входит через окна в каналы 6 и, сужаясь между вертикальными перегородками 5, внутренней поверхностью шатра 2 и вогнутой поверхностью конуса 4, устремляется к центру и снизу вверх в полость вертикальной вытяжной трубы 1. При сужении потока воздуха скорость его движения возрастает в несколько раз. Величина ускорения зависит от величины соотношения фронтальной площади задуваемого общего потока воздуха в шатер 2 и площади внутреннего сечения вертикальной вытяжной трубы 1. Необходимо учитывать потери скорости потока от трения частиц воздуха между собой, трения их о стенки каналов (от качества их поверхностей), о выступы. Затем ускоренный поток воздуха попадает на лопасти нижнего ветроколеса 8, вращает его, создавая крутящий момент на валу 7 (на наружной его части), который кинематически связан с валом генератора 9.
Ротор генератора получает вращение и начинает вырабатывать электроток для потребителя. Далее, поток воздуха, отдав часть энергии нижнему ветроколесу устремляется к лопастям верхнего ветроколеса 8. Угол разворота плоскостей лопастей верхнего и нижнего ветроколес регулируется в зависимости от скорости потока воздуха и наиболее оптимального режима работы. Крутящий момент от верхнего ветроколеса передается на вал 7 (на внутреннюю его независимо вращающуюся часть) и от него на вал инерционного аккумулятора 10. Но внутренний вал 7 имеет возможность переключаться на другой генератор или другой какой-либо механизм.
Для повышения эффективности работы ветра (особенно в регионах с низкой среднегодовой его скоростью) и для повышения степени регулирования и стабильности работы ветроагрегатов в каналы 6 шатра 2 в устройства 14 по газоводу 16 и трубе 15 подается утилизированный газ, например от факелов нефтепромыслов или нефтеперерабатывающих заводов, который сгорая в потоках воздуха нагревает его, улучшает конвекцию и тягу в вытяжной трубе 1, а также создает лучшие условия для регулирования и поддержания стабильности работы ветроагрегатов. Если отсутствует факельный газ, но вблизи от ветроэлектростанции имеются отходы биомасс (городские свалки, отходы лесозаготовок, отходы ферм и т.п.), то можно, сжигая эти отходы в печах, подавать в каналы 6 через газоводы 16 и устройства 14 горячий воздух. В случае возникновения больших скоростей наружного ветра и образования в вертикальной вытяжной трубе 1 сверхдопустимых ураганных скоростей в потоке, то с целью предохранения от поломок ветроколес и других элементов, путем натяжения тросов 13, наклоняют заслонки 12 и часть потока отсекается, завихряется, что снижает его скорость. Заслонки 12 могут практически полностью перекрыть доступ ветра к ветроколесам (на период, например профилактического осмотра состояния ветроколес).
Внутреннее помещение конуса 4 может быть весьма значительным (например при строительстве ветроэлектростанций мощностью в 5-6 тысяч киловатт) и может быть использовано не только для размещения генераторов и приборов управления станцией, но и какого-либо технологического оборудования для производства той или иной продукции (при обеспечении звуком и теплоизоляции) и может быть выполнено в два и три этажа.
Таким образом предлагаемая конструкция ветроэлектростанции позволяет освободиться от строительства мощных и тяжеловесных башенных опор для установки ветроколес больших диаметров (60-80 и более метров), применения специальных и дорогостоящих материалов и технологий изготовления ветроколес и гондол для генераторов, что требует больших финансовых затрат. Позволяет иметь возможность регулировать режимы работы ветроагрегатов, их устойчивость в режиме работы при широких диапазонах скоростей наружного ветра, позволяет эксплуатировать их при низких (недоступных для существующих ветроагрегатов) скоростях ветра, и главное применение предлагаемой ветроэлектростанции при значительно меньшем (в 4-5 раз) диаметре ветроколеса позволит получить относительно большую мощность на ветроагрегате. ЫЫЫ2
Claims (2)
1. Ветроэлектростанция, содержащая концентратор потока воздуха, выполненный в виде приподнятого над землей шатра, ветроколесо с вертикальным валом, генератор электротока и инерционный аккумулятор, отличающаяся тем, что на горловине шатра концентратора размещена вертикальная вытяжная труба, в полости которой установлены одно или несколько ветроколес на вертикальных валах, кинематически связанных с валом генератора электротока и инерционным аккумулятором, а внутри шатра расположен конус с вогнутой поверхностью, причем внутренняя поверхность шатра и наружная поверхность конуса соединены между собой вертикальными перегородками, образующими сужающиеся воздушные каналы, направленные от периферии шатра к центру и снизу вверх к вертикальной вытяжной трубе и лопастям ветроколес, при этом на верхней части перегородок установлены шарнирно заслонки, регулирующие величину движущегося к ветроколесам потока воздуха.
2. Ветроэлектростанция по п. 1, отличающаяся тем, что в воздушных каналах концентратора размещены устройства для сжигания газа или подачи потоков горячего воздуха.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU93025791A RU2062353C1 (ru) | 1993-04-28 | 1993-04-28 | Ветроэлектростанция |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU93025791A RU2062353C1 (ru) | 1993-04-28 | 1993-04-28 | Ветроэлектростанция |
Publications (2)
Publication Number | Publication Date |
---|---|
RU93025791A RU93025791A (ru) | 1995-10-27 |
RU2062353C1 true RU2062353C1 (ru) | 1996-06-20 |
Family
ID=20141265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU93025791A RU2062353C1 (ru) | 1993-04-28 | 1993-04-28 | Ветроэлектростанция |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2062353C1 (ru) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2285147C1 (ru) * | 2005-04-25 | 2006-10-10 | Николай Васильевич Селезнёв | Ветроэлектростанция |
RU2293210C1 (ru) * | 2005-10-12 | 2007-02-10 | Александр Алексеевич Соловьев | Аэродинамическая установка |
RU2323368C2 (ru) * | 2005-05-17 | 2008-04-27 | Виктор Васильевич Палагин | Аэроэлектростанция |
WO2009008763A1 (fr) * | 2007-07-12 | 2009-01-15 | Vladimir Vladimirovich Tebuev | Procédé de génération d'énergie éolienne utilisant la structure d'un immeuble d'habitation |
RU2418946C2 (ru) * | 2008-08-20 | 2011-05-20 | Денис Викторович Долгов | Способ утилизации попутного нефтяного газа |
RU2546897C2 (ru) * | 2013-07-24 | 2015-04-10 | Андрей Федорович Авраменко | Ветроэнергетическая установка и способ производства электроэнергии |
RU2552635C2 (ru) * | 2013-10-07 | 2015-06-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" | Устройство для преобразования кинетической энергии ветра в механическую энергию |
EP2660466A4 (en) * | 2010-12-31 | 2017-10-04 | Beijing Hengju Chemical Group Corporation | Impact type wind-driven power generating device |
-
1993
- 1993-04-28 RU RU93025791A patent/RU2062353C1/ru active
Non-Patent Citations (1)
Title |
---|
Авторское свидетельство СССР № 1211448, кл. F O3 D I/04, опублик. 1986. Авторское свидетельство СССР N1307078, кл. F ОЗ D I/04, опублик. 1987. Рензо Д.де. Ветроэнергетика. Пер.с англ. под ред. Шефтера Я.И.-М.: 1982, с. 32 - прототип. Шефтер Я.И., Рождественский И.В.Ветронасосные и ветроэлектрические агрегаты.-М., 1967. * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2285147C1 (ru) * | 2005-04-25 | 2006-10-10 | Николай Васильевич Селезнёв | Ветроэлектростанция |
RU2323368C2 (ru) * | 2005-05-17 | 2008-04-27 | Виктор Васильевич Палагин | Аэроэлектростанция |
RU2293210C1 (ru) * | 2005-10-12 | 2007-02-10 | Александр Алексеевич Соловьев | Аэродинамическая установка |
WO2009008763A1 (fr) * | 2007-07-12 | 2009-01-15 | Vladimir Vladimirovich Tebuev | Procédé de génération d'énergie éolienne utilisant la structure d'un immeuble d'habitation |
RU2418946C2 (ru) * | 2008-08-20 | 2011-05-20 | Денис Викторович Долгов | Способ утилизации попутного нефтяного газа |
EP2660466A4 (en) * | 2010-12-31 | 2017-10-04 | Beijing Hengju Chemical Group Corporation | Impact type wind-driven power generating device |
RU2546897C2 (ru) * | 2013-07-24 | 2015-04-10 | Андрей Федорович Авраменко | Ветроэнергетическая установка и способ производства электроэнергии |
RU2552635C2 (ru) * | 2013-10-07 | 2015-06-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" | Устройство для преобразования кинетической энергии ветра в механическую энергию |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6674181B2 (en) | Wind-driven twin turbine | |
RU2089749C1 (ru) | Способ получения пригодной для использования энергии из параллельных потоков и устройство для его осуществления | |
US4224528A (en) | Solar thermal and wind energy power source | |
CN102052255B (zh) | 冲击式风力发电装置 | |
US8207625B1 (en) | Electrical power generating arrangement | |
US20100296913A1 (en) | Wind power generating system with vertical axis jet wheel turbine | |
CA2592077A1 (en) | Omni-directional wind turbine | |
US20160186718A1 (en) | Wind-energy conversion system and methods apparatus and method | |
RU2062353C1 (ru) | Ветроэлектростанция | |
WO2015192102A1 (en) | Horizontally channeled vertical axis wind turbine | |
US20160186727A1 (en) | Wind-energy conversion system and methods apparatus and method | |
RU2638120C1 (ru) | Ветротурбинная установка | |
KR100531220B1 (ko) | 풍력 발전장치 | |
US20160186726A1 (en) | Wind-energy conversion system and methods apparatus and method | |
US5895201A (en) | Apparatus for wind power | |
SU1268792A1 (ru) | Ветродвигатель | |
CN1780984A (zh) | 旋流式风力发电站及以其取得电力的方法 | |
RU2156884C1 (ru) | Ветросиловая энергоустановка башенного типа | |
RU2147079C1 (ru) | Ветровая энергетическая установка | |
RU2070661C1 (ru) | Вихревая электростанция | |
CN103147927B (zh) | 可控旋式菲涅尔透镜阵列真空磁悬浮风电系统 | |
KR20220167097A (ko) | 흡기실과 배기실을 구비한 수직축 풍력발전기 | |
KR102798134B1 (ko) | 고효율 수직축 풍력발전기 | |
US20230340939A1 (en) | Vortex dynamic power generation structure | |
RU2626498C1 (ru) | Ветроэлектростанция |