RU2043967C1 - Состав для синтеза карбидов тугоплавких металлов - Google Patents
Состав для синтеза карбидов тугоплавких металлов Download PDFInfo
- Publication number
- RU2043967C1 RU2043967C1 RU94000494A RU94000494A RU2043967C1 RU 2043967 C1 RU2043967 C1 RU 2043967C1 RU 94000494 A RU94000494 A RU 94000494A RU 94000494 A RU94000494 A RU 94000494A RU 2043967 C1 RU2043967 C1 RU 2043967C1
- Authority
- RU
- Russia
- Prior art keywords
- metal
- chloride
- alkali
- carbides
- refractory
- Prior art date
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Использование: в твердосплавной промышленности, производстве шлифовальных и полированных материалов, в металлургической и инструментальной промышленности. Сущность изобретения: карбиды тугоплавких металлов (тантала, ниобия, титана) получают в расплавах, содержащих, (мас.): хлориды щелочных и щелочноземельных металлов 40,0 74,0; щелочной или щелочноземельный металл или их смеси 8,0 19,8; оксид или хлорид тугоплавкого металла 14,7 43,4; углерод / сажа или углеводы/ 1,5 - 9,0. Изобретение позволяет упростить процесс получения карбидов тугоплавких металлов и снизить температуру процесса. 1 з. п. ф-лы
Description
Изобретение относится к получению карбидов и может быть использовано в твердосплавной промышленности, производстве шлифовальных и полировальных материалов, в металлургической и инструментальной промышленности.
Известна соляная ванна и способ для цементации черных металлов [1] В состав расплава входит один или несколько хлоридов щелочных металлов, мас. 85-99 (предпочтительно KCl: NaCl 50:50), активатор, представляющий собой кислородсодержащее соединение стронция или бария 0,25-8,0 (например, оксиды, гидратированные хлориды, соли карбоновых кислот, предпочтительно оксалат стронция). Температура обработки 900-1050оС. В процессе эксплуатации расплава на его поверхность помещается порошок мелкодисперсного графита (размер частиц 0,05-0,17 мм) в количестве 1% от массы расплава. При непрерывной эксплуатации расплава в него ежедневно добавляют графит (1-3% в сутки). Длительность цементации зависит от температуры расплава и для 900 и 950оС составляет соответственно 4 и 2 ч.
Однако известный расплав имеет следующие недостатки:
при непрерывной эксплуатации расплава в него необходимо ежедневно добавлять мелкодисперсный графит;
при наличии в расплаве кислородсодержащих соединений возможно образование, кроме карбидов, оксидов.
при непрерывной эксплуатации расплава в него необходимо ежедневно добавлять мелкодисперсный графит;
при наличии в расплаве кислородсодержащих соединений возможно образование, кроме карбидов, оксидов.
Из известных наиболее близким к изобретению является способ получения карбидов [2] Синтез карбидов проводят взаимодействием смесей гидрированного металла и углерода либо гидрида металла и углерода в расплаве хлоридов, например, хлоридов калия и натрия, фторидов натрия, калия, карбонатов натрия, калия с последующим выщелачиванием хлоридов водой. Температура синтеза 850-950оС. Получены карбиды титана и ниобия.
Недостатком известного способа является сложность получения карбидов. Для ведения процесса необходимо специально получать гидриды металлов, что значительно усложняет процесс, так как сначала нужно получить из хлорида чистый металл, потом его необходимо прогидрировать. Исходные продукты предварительно прессуют для получения брикетов, что является дополнительной сложной операцией. Температура получения карбидов от 850 до 950оС.
Задачей изобретения является упрощение способа получения карбидов тугоплавких металлов и снижение температуры процесса. В качестве транспортного расплава используют ионно-электронный расплав, который получают растворением щелочных или щелочно-земельных металлов в расплавленном хлориде выше температуры плавления хлорида.
Для выполнения поставленной задачи карбиды тугоплавких металлов получают в расплавах, содержащих, мас. Хлориды щелочных или щелочно-земель- ных металлов 40,0-74,0 Щелочной или щелочно- земельный металл или их смесь 8,0-19,8; Оксид или хлорид тугоплавкого металла 14,7-43,4 Углерод 1,5-9,0.
В качестве хлоридов щелочных или щелочно-земельных металлов используют хлорид лития, смесь хлорида лития с хлоридом калия, хлорид кальция или магния, карналлит (смесь хлорида магния с хлоридом калия). В качестве щелочного металла или щелочно-земельного металла используют металлический литий, кальций, магний или смесь кальция с магнием, в качестве углерода сажу или углеводы.
Преимуществом предлагаемого расплава является упрощение процесса за счет того, что присутствие в расплаве щелочных или щелочно-земельных металлов позволяет снизить температуру процесса и использовать исходное сырье в виде оксида или галогенида тугоплавкого металла. При этом исключается дополнительная операция получения гидрида металла. Снижение температуры приводит к экономии электроэнергии и сохранности оборудования.
П р и м е р 1. Для опыта взяли, мас. оксид ниобия 17,3; сажа 2,6; хлорид кальция 60,3; металлический кальций 19,8 и поместили в металлический стакан, который установили в металлическую пробирку с атмосферой инертного газа. Пробирку нагрели до 900оС, выдержали при этой температуре 6 ч. Содержимое отмыли, отфильтровали, высушили. Получили порошок черного цвета. Рентгенофазовый анализ показал карбид ниобия NbC. Химический анализ показал формулу NbC0,90.
П р и м е р 2. Взяли, мас. хлорид ниобия 43,4; хлорид лития 18,0; хлорид калия 22,4; металлический литий 7,6; углевод 8,6, выдержали в металлическом стакане 10 ч при 600оС. После охлаждения стакана порошок отмыли от солей, отфильтровали, высушили. По рентгенофазовому анализу порошок представляет собой карбид ниобия NbC.
П р и м е р 2. Взяли, мас. хлорид ниобия 43,4; хлорид лития 18,0; хлорид калия 22,4; металлический литий 7,6; углевод 8,6, выдержали в металлическом стакане 10 ч при 600оС. После охлаждения стакана порошок отмыли от солей, отфильтровали, высушили. По рентгенофазовому анализу порошок представляет собой карбид ниобия NbC.
П р и м е р 3. Взяли, мас. оксид ниобия 16,7; хлорид магния 70,0; металлический магний 10,0; сажа 3,3 и в металлическом стакане выдержали при 900оС 2 ч. Содержимое стакана отмыли, отфильтровали, высушили. Получили порошок черного цвета. Рентгенофазовый анализ показал карбид ниобия NbC.
П р и м е р 4. В металлический стакан загрузили, мас. оксид ниобия 16,4; хлорид калия 30,3; металлический магний 12,3; сажа 2,4. После выдержки 10 ч при 700оС, отмывки и сушки получили порошок карбида ниобия NbC (рентгеноструктурный анализ).
П р и м е р 5. В металлический стакан загрузили, мас. оксид ниобия 14,7; хлорид кальция 74,0; металлический кальций 2,2; металлический магний 7,4; сажа 1,7. После выдержки 10 ч при 900оС, отмывки и сушки получили порошок карбида ниобия NbC (рентгеноструктурный анализ).
П р и м е р 6. В металлический стакан загрузили, мас. хлорид тантала 43,0; хлорид калия 22,2; хлорид лития 17,8; металлический литий 8,0; углевод 9,0. После выдержки 15 ч при 600оС, охлаждения, отмывки и сушки получили порошок карбида тантала состава: по химическому анализу ТаС0,99, по рентгенофазному анализу ТаС.
П р и м е р 7. В металлический стакан загрузили, мас. оксид тантала 23,6; хлорид магния 61,4; металлический магний 13,5; углевода 1,5. После выдержки 8 ч при 700оС, отмывки и сушки получили порошок карбида тантала состава ТаС (рентгенофазный анализ).
П р и м е р 8. В металлический стакан загрузили, мас. оксид тантала 28,0; хлорид кальция 54,8; металлический кальций 15,3; сажа 1,9. После выдержки 9 ч при 900оС, охлаждения, отмывки, сушки получили порошок карбида тантала состава ТаС (рентгенофазовый анализ).
П р и м е р 9. В металлический стакан загрузили, мас. оксид титана 17,0; хлорид кальция 70,0; металлический кальций 19,0; сажа 4,0. После выдержки 4 ч при 900оС, охлаждения, отмывки, сушки получили порошок карбида титана состава TiC (рентгенофазовый анализ).
Предлагаемый состав для синтеза карбидов тугоплавких металлов позволяет упростить процесс за счет того, что исходным сырьем может служить его оксид или хлорид; удешевить технологию за счет исключения дополнительных операций получения гидридов тугоплавких металлов; снизить температуру процесса, что приведет к экономии электроэнергии, и улучшить охрану труда и пожаробезопасность технологии, а также сохранность оборудования.
Claims (1)
1. СОСТАВ ДЛЯ СИНТЕЗА КАРБИДОВ ТУГОПЛАВКИХ МЕТАЛЛОВ, содержащий их соединения, углерод и хлориды щелочного или щелочноземельного металла, отличающийся тем, что он дополнительно содержит щелочной, или щелочноземельный металл или их смесь при следующем соотношении компонентов, мас.
Хлориды щелочного или щелочноземельного металла 40,0 74,0
Щелочной, или щелочноземельный металл, или их смесь 8,0 19,8
Оксид или хлорид тугоплавкого металла 14,7 43,4
Углерод 1,5 9,0
2. Состав по п.1, отличающийся тем, что в качестве соединений тугоплавких металлов используют хлорид или оксид ниобия, тантала, титана.
Щелочной, или щелочноземельный металл, или их смесь 8,0 19,8
Оксид или хлорид тугоплавкого металла 14,7 43,4
Углерод 1,5 9,0
2. Состав по п.1, отличающийся тем, что в качестве соединений тугоплавких металлов используют хлорид или оксид ниобия, тантала, титана.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU94000494A RU2043967C1 (ru) | 1994-01-05 | 1994-01-05 | Состав для синтеза карбидов тугоплавких металлов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU94000494A RU2043967C1 (ru) | 1994-01-05 | 1994-01-05 | Состав для синтеза карбидов тугоплавких металлов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2043967C1 true RU2043967C1 (ru) | 1995-09-20 |
RU94000494A RU94000494A (ru) | 1996-11-20 |
Family
ID=20151213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU94000494A RU2043967C1 (ru) | 1994-01-05 | 1994-01-05 | Состав для синтеза карбидов тугоплавких металлов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2043967C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014107481A1 (en) * | 2013-01-02 | 2014-07-10 | Third Millennium Materials, Llc | Metal-carbon compositions |
RU2639797C1 (ru) * | 2016-08-11 | 2017-12-22 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Способ получения порошка карбида |
RU2680339C1 (ru) * | 2018-01-23 | 2019-02-19 | Общество с ограниченной ответственностью "МЕТСИНТЕЗ" | Способ получения ультра- и нанодисперсных порошков тугоплавких карбидов переходных металлов iv и v подгрупп |
-
1994
- 1994-01-05 RU RU94000494A patent/RU2043967C1/ru not_active IP Right Cessation
Non-Patent Citations (2)
Title |
---|
1. Патент США N 4591397, кл. C 23C 9/10, опубл.1986. * |
2. Авторское свидетельство СССР N 305745, кл. C 01B 31/30, 1972. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014107481A1 (en) * | 2013-01-02 | 2014-07-10 | Third Millennium Materials, Llc | Metal-carbon compositions |
RU2639797C1 (ru) * | 2016-08-11 | 2017-12-22 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Способ получения порошка карбида |
RU2680339C1 (ru) * | 2018-01-23 | 2019-02-19 | Общество с ограниченной ответственностью "МЕТСИНТЕЗ" | Способ получения ультра- и нанодисперсных порошков тугоплавких карбидов переходных металлов iv и v подгрупп |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100960055B1 (ko) | 티타늄-함유 금속 또는 TiO2-함유 물질로부터 티타늄 금속을 제조하는 방법, 및 일메나이트 또는 TiO2-함유 물질로부터 티타늄을 회수하는 방법 | |
US10988830B2 (en) | Scandium master alloy production | |
JP7270223B2 (ja) | 金属カーバイドおよび炭化水素の製造方法、ならびに金属カーバイド組成物 | |
JP5094031B2 (ja) | スカンジウム含有合金の製造方法 | |
JP7270224B2 (ja) | 金属カーバイドおよび炭化水素の製造方法、ならびに金属カーバイド組成物 | |
CA2581749A1 (en) | Magnesium removal from magnesium reduced metal powders | |
RU2043967C1 (ru) | Состав для синтеза карбидов тугоплавких металлов | |
US2782116A (en) | Method of preparing metals from their halides | |
JP4763169B2 (ja) | 金属リチウムの製造方法 | |
US2766110A (en) | Method of refining uranium | |
US2049291A (en) | Method of making copper-titanium alloys | |
US4003738A (en) | Method of purifying aluminum | |
US4636250A (en) | Recovery of uranium alloy | |
US2785065A (en) | Method of producing metals from their halides | |
SU139658A1 (ru) | Способ получени треххлористого титана в расплаве | |
Suri et al. | A nitriding process for the recovery of niobium from ferroniobium | |
RU2082793C1 (ru) | Способ получения гафния | |
RU2639165C1 (ru) | Способ получения лигатуры "алюминий - гадолиний" | |
JPS5959846A (ja) | スクラツプ中のマグネシウムを除去、回収する方法 | |
US2894887A (en) | Production of titanium trihalides | |
SU174792A1 (ru) | ||
JPH05331589A (ja) | 稀土類−鉄合金の製造方法 | |
US3324016A (en) | Process for preparing fluorine | |
SU682342A1 (ru) | Флюс дл пайки термокомпенсаторов | |
US2844459A (en) | Method for the production op cadmium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20110106 |