[go: up one dir, main page]

RU2039631C1 - Способ изготовления истираемого материала - Google Patents

Способ изготовления истираемого материала Download PDF

Info

Publication number
RU2039631C1
RU2039631C1 RU93042915/02A RU93042915A RU2039631C1 RU 2039631 C1 RU2039631 C1 RU 2039631C1 RU 93042915/02 A RU93042915/02 A RU 93042915/02A RU 93042915 A RU93042915 A RU 93042915A RU 2039631 C1 RU2039631 C1 RU 2039631C1
Authority
RU
Russia
Prior art keywords
nickel
granules
cells
binder
iron
Prior art date
Application number
RU93042915/02A
Other languages
English (en)
Other versions
RU93042915A (ru
Inventor
С.Т. Телевный
Р.Т. Варфоломеева
В.П. Мигунов
Original Assignee
Всероссийский научно-исследовательский институт авиационных материалов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Всероссийский научно-исследовательский институт авиационных материалов filed Critical Всероссийский научно-исследовательский институт авиационных материалов
Priority to RU93042915/02A priority Critical patent/RU2039631C1/ru
Application granted granted Critical
Publication of RU2039631C1 publication Critical patent/RU2039631C1/ru
Publication of RU93042915A publication Critical patent/RU93042915A/ru

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

Способ изготовления истираемого материала для уплотнения радиальных зазоров газовых турбин включает смешивание компонентов, гранулирование до получения гранул размерами 0,25 0,8 мм со следующим химическим составом, мас. хром 1,5 4,5, железо 0,01 2,5, нитрид бора 7,0 10,5, углерод 0,01 0,1, никель остальное, заполнение сотовых ячеек с последующим спеканием в вакууме или защитной среде. Способ позволяет получить материал, имеющий истираемость в 3,4 4,5 раза и эрозионную стойкость на 30 40% выше, чем известный. 1 табл.

Description

Изобретение относится к машиностроению, в частности к уплотнениям радиальных зазоров проточной части газовых турбин с рабочей температурой до 1150оС.
Существенным способом повышения эффективности газовых турбин является минимизация радиальных зазоров между корпусом и деталями ротора (рабочими лопатками), позволяющая снизить утечки горячих газов (продуктов сгорания топлива). Применяемые для этого уплотнения позволяют сократить удельный расход топлива и повысить полезную мощность турбины.
Высокотемпературный скоростной газовый поток на входе в турбину требует использования уплотнительных материалов, имеющих сочетание следующих свойств: жаростойкости, сопротивления термической усталости (термостойкость), стойкости к газовой эрозии, достаточной механической прочности. Наряду с этим уплотнительные материалы должны обладать хорошей истираемостью, т.е. они должны легко срабатываться при врезании в них рабочих лопаток или гребней лабиринтов, минимально их изнашивая. Не допускается схватывание трущихся деталей и перенос материалов на сопряженные детали ротора. Совмещенное в одном материале перечисленных требований вызывает серьезные трудности при создании высокотемпературных уплотнительных материалов.
Используемые в газовых турбинах сотовые уплотнения позволяют существенно уменьшить величину радиального зазора, так как они допускают скольжения торцов рабочих лопаток по сотам. Это обусловлено тем, что сотовая поверхность значительно уменьшает площадь металлического контакта по сравнению с гладким уплотнением. Однако сотовое уплотнение вызывает дополнительные потери мощности у концов лопаток, которые вызваны главным образом пульсациями давления газа в ячейках сотов с частотой, равной произведению числа лопаток на число оборотов ротора. Помимо этого эффективность турбины с сотовым уплотнением ниже, чем турбины с гладким уплотнением при той же величине радиального зазора (Речкоблит А.Я. Эффективность применения сотовых уплотнений радиального зазора в газовых турбинах. Труды ЦИАМ N 479. 1970). В жестких условиях эксплуатации газовых турбин сотовые уплотнения быстро деформируются и прогорают. Для устранения этих недостатков рекомендуется заполнение сотов материалами, обладающими указанными выше свойствами.
Известен способ заполнения ячеистых конструкций путем напыления одного или нескольких слоев жаростойких керамических материалов и верхнего пористого истираемого слоя из сплава системы Ni-Cr-Co-Al-Mo/W-Ta-Re-Y-Hf-Si (патент США N 5080934, кл. F 01 D 11/08, 427/271, 1991).
Также известен способ заполнения истираемым материалом ячеек сотовой структуры лентой, состоящей из двух слоев: нижнего, содержащего припой системы Ni-B-Si, и верхнего, являющегося истираемым и содержащего сплавы систем Ni-Cr, Co-Al-Y и диатомовую землю. Оба слоя включают связующее и пластификатор. Ленту впрессовывают в сотовые ячейки роликом, а затем подвергают термообработке (патент США N 4409054, кл. 156/293, B 29 C 19/00, 1981).
Оба указанных способа отличаются сложностью осуществления и не позволяют качественно заполнить истираемым материалом маленькие и глубокие сотовые ячейки.
Наиболее близким к предлагаемому по технической сущности является способ заполнения сотовых ячеек дисперсией пустотелых микросфер из неорганического жаростойкого материала, расположенных в плавкой матрице, путем плазменного или газопламенного напыления (Заявка ЕПВ N 0067746, кл. С 23 С 7/00, 1982).
Однако указанный способ предусматривает применение пустотелых микросфер (на основе Al2O3, AlSi или углерода), изготовление которых сложно, а малейшие механические напряжения и деформации при напылении приводят к их хрупкому разрушению, что сильно снижает истираемость получившейся структуры. Кроме того, таким способом можно заполнять только неглубокие (до 2 мм) и крупноячеистые (более 4 мм) соты.
Техническая задача создание способа изготовления истираемого материала преимущественно для уплотнения радиальных зазоров газовых турбин, лишенного вышеуказанных недостатков, а также состава такого материала, имеющего повышенную истираемость и стойкость к газовой эрозии при температуре до 1150оС, которым можно заполнять соты с любыми размерами и глубиной ячеек.
Для решения указанной задачи предложен способ изготовления истираемого материала, включающий смешивание компонентов и заполнение сотовых ячеек, который отличается от известного тем, что смесь компонентов перед заполнением сотовых подвергают гранулированию на связующем, никелированию до получения гранул размерами 0,25.0,8 мм со следующим химическим составом, мас.
Хром 1,5.4,5
Железо 0,01.2,5
Нитрид бора 7,0.10,5
Углерод 0,01.0,1
Никель Остальное с последующим спеканием в вакууме или защитной среде.
В качестве связующего могут быть использованы, например, водный раствор поливинилового спирта, эмульсия поливинилацетат, раствор этилсиликата в этаноле, алюмофосфатные связи и др.
Никелирование гранул может осуществляться, например, в аммиачных растворах химического никелирования путем разложения карбонилов никеля, нанесением на поверхность гранул мелкого порошка металлического никеля на связующем и др.
Гранулирование смеси компонентов на связующем позволяет достичь высокой степени гомогенности материала, которую не удается получить, применяя механическую смесь порошков. Это дает возможность повысить эрозионную стойкость и добиться хорошей термостойкости заполненных сотов. Гранулы, каждая из которых включает в себя все необходимые компоненты и имеет определенные размеры (0,25.0,8 мм), обеспечивают возможность регулирования размеров пор и получения оптимальной пористости, обуславливающей достаточную истираемость материала. Никелирование гранул создает условия для достаточно прочного соединения гранул как между собой (этим обеспечивается когезионная прочность), так и со стенками сотовых ячеек и подложкой (адгезионная прочность) за счет диффузии никеля при высокотемпературном спекании. Следствием этого являются высокие термо- и эрозионная стойкости, а также истираемость (прирабатываемость) заполненных сотов при контакте с контртелом (рабочими лопатками).
Сочетание предлагаемого способа и специально подобранного состава позволяет достичь поставленную задачу.
П р и м е р 1. Механические смешивали порошковые компоненты в следующей пропорции, мас. сплав на основе никеля, содержащий хром, железо и углерод 50, нитрид бора 50. Смешивали порошковую смесь (шихту) со связующим-водным раствором поливинилового спирта. Получены гранулы размером 0,25 мм. Затем никелировали гранулы путем нанесения на их поверхность порошка металлического никеля на связующем водном растворе поливинилового спирта и заполнениями ячейки сотов никелированными гранулами, имеющими следующий химический состав, мас. хром 1,5, железо 0,01, нитрид бора 10,5, углерод 0,01, никель остальное. Спекали заполненные соты в среде аргона при температуре 1100оС в течение 3,5 ч.
П р и м е р 2. Механически смешивали порошковые компоненты в следующей пропорции, мас. сплав на основе никеля, содержащий хром, железо и углерод, 60, нитрид бора 40. Смешивали порошковую смесь со связующим раствором этилсиликата в этаноле. Получены гранулы размером 0,5 мм. Затем никелировали гранулы путем химического осаждения никеля в аммиачном растворе и заполняли ячейки сотов никелированными гранулами, имеющими следующий химический состав, мас. хром 2,5, железо 1,2, нитрид бора 8, углерод 0,04, никель остальное. Спекали заполненные соты в вакууме (остаточное давление 10-4 мм рт.ст.) при температуре 110оС в течение 4 ч.
П р и м е р 3. Механически смешивали порошковые компоненты в следующей пропорции, мас. сплав на основе никеля, содержащий хром, железо и углерод, 75, нитрид бора 25. Смешивали порошковую смесь со связующим водным раствором алюмохромфосфата. Получены гранулы размером 0,8 мм. Затем никелировали гранулы путем осаждения никеля из карбонильной газовой фазы в виброкипящем слое и заполняли ячейки сотов никелированными гранулами, имеющими следующий химический состав, мас. хром 4,5, железо 2,5, нитрид бора 7,0, углерод 0,1, никель остальное. Спекали заполненные соты в вакууме ( остаточное давление 10-4 мм рт.ст.) при температуре 1100оС в течение 4,5 ч.
Примеры 1.3 по предлагаемому способу.
П р и м е р 4. Механически смешивали порошковые компоненты в следующей пропорции, мас. сплав на основе никеля, содержащий хром, железо и углерод 40, нитрид бора 60. Смешивали порошковую смесь со связующим раствором этилсиликата в этаноле. Получены гранулы размером 0,15 мм. Затем никелировали гранулы путем осаждения никеля из карбонильной газовой фазы и заполняли ячейки сотов никелированными гранулами, имеющими следующий химический состав, мас. хром 1,2, железо 0,008, нитрид бора 12, углерод 0,001, никель остальное. Спекали заполненные соты в вакууме при температуре 1100оС в течение 3,5 ч.
П р и м е р 5. Механически смешивали порошковые компоненты в следующей пропорции, мас. сплав на основе никеля, содержащий хром, железо и углерод, 85, нитрид бора 15. Смешивали порошковую смесь со связующим раствором этилсиликата в этаноле. Получены гранулы размером 1 мм. Затем никелировали гранулы путем осаждения никеля из карбонильной газовой фазы в виброкипящем слое и заполняли ячейки сотов никелированными гранулами, имеющими следующий химический состав, мас. хром 6,6, железо 3, нитрид бора 4,5, углерод 0,15, никель остальное. Спекали заполненные соты в вакууме при температуре 1100оС в течение 4,5 ч.
Примеры 4 и 5 запредельные составы и размеры гранул.
П р и м е р 6. Механически смешивали пустотелые микросферы из оксида алюминия диаметром 10.200 мкм с плавким связующим порошком сплава на основе никеля, содержащим хром. Осуществляли плазменное напыление в соты смеси, имеющей следующий химический состав, мас. хром 19, оксид алюминия 5, никель остальное. Проводили термообработку заполненных сотов: нагрев в вакууме до температуры 1450оС.
П р и м е р 6 по известному способу (прототип).
Свойства материалов, изготовленных по предлагаемому способу, приведенные в таблице, были получены на образцах в лабораторных условиях. Гранулами были заполнены паяные соты из сплава Х20Н80Т (ЭИ435) с ячейками шестиугольной формы (диаметр вписанной окружности 2,5 мм, толщина стенок сотов 0,1 мм). Для сравнения приведены свойства прототипа.
Из таблицы видно, что соты, заполненные никелированными гранулами по предлагаемому способу, работоспособны до температуры 1150оС. Предлагаемый материал по термостойкости превосходит известный (прототип), стойкость к абразивной эрозии предлагаемого материала на 30.40% выше, чем известного. Кроме того, твердость предлагаемого материала значительно (в 4,5.5 раз) ниже твердости известного, который обладает высокой твердостью из-за присущей ему хрупкости, обусловленной наличием пустотелых керамических микросфер. Отношение работы трения, характеризующей способность материала истираться (прирабатываться), к глубине врезания (которое является определяющей характеристикой истираемых материалов) у материала, изготовленного по предлагаемому способу, в 3,4.4,5 раза ниже, чем у материала, полученного по известному способу. Таким образом, предлагаемый способ позволяет обеспечить высокую истираемость сотового уплотнения.
Данные таблицы также показывают, что материал, полученный по примеру 4, обладая низкой твердостью и хорошей истираемостью, имеет худшие термо- и эрозионную стойкости. Материал, полученный по примеру 5, при достаточной эрозионной стойкости имеет неудовлетворительную истираемость и относительно невысокую термостойкость.
Таким образом, предлагаемый способ изготовления истираемого материала технологически относительно прост, не требует нестандартного оборудования и значительных затрат. Способ позволяет заполнять соты с различными размерами ячеек и глубиной, отличается экологической чистотой и отсутствием вредных выбросов в окружающую среду. Применение предлагаемого способа изготовления истираемого материала для уплотнения радиальных зазоров газовых турбин позволит снизить удельный расход топлива и повысить КПД на 1.1,5%

Claims (1)

  1. СПОСОБ ИЗГОТОВЛЕНИЯ ИСТИРАЕМОГО МАТЕРИАЛА для уплотнения радиальных зазоров газовых турбин, включающий смешивание компонентов и заполнение сотовых ячеек, отличающийся тем, что смесь компонентов перед заполнением сотов подвергают гранулированию на связующем, никелированию до получения гранул размерами 0,25 0,8 мкм со следующим химическим составом, мас.
    Хром 1,5 4,5
    Железо 0,01 2,5
    Нитрид бора 7,0 10,5
    Углерод 0,01 0,1
    Никель Остальное
    с последующим спеканием в вакууме или защитной среде.
RU93042915/02A 1993-08-27 1993-08-27 Способ изготовления истираемого материала RU2039631C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93042915/02A RU2039631C1 (ru) 1993-08-27 1993-08-27 Способ изготовления истираемого материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93042915/02A RU2039631C1 (ru) 1993-08-27 1993-08-27 Способ изготовления истираемого материала

Publications (2)

Publication Number Publication Date
RU2039631C1 true RU2039631C1 (ru) 1995-07-20
RU93042915A RU93042915A (ru) 1996-09-27

Family

ID=20146990

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93042915/02A RU2039631C1 (ru) 1993-08-27 1993-08-27 Способ изготовления истираемого материала

Country Status (1)

Country Link
RU (1) RU2039631C1 (ru)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287489B1 (en) 1999-04-07 2001-09-11 Sandvik Ab Method for making a sintered composite body
US6676893B2 (en) 1999-04-07 2004-01-13 Sandvik Ab Porous cubic boron nitride based material suitable for subsequent production of cutting tools and method for its production
RU2454473C1 (ru) * 2010-12-03 2012-06-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Истираемое уплотнение турбомашины
RU2455116C1 (ru) * 2010-12-03 2012-07-10 Общество с Ограниченной Ответственностью "Научно-производственное предприятие "Вакууммаш" Элемент истираемого уплотнения турбины
RU2457071C1 (ru) * 2011-05-31 2012-07-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления прирабатываемого уплотнения турбины с ориентированной структурой
RU2457066C1 (ru) * 2011-05-10 2012-07-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления элемента прирабатываемого уплотнения турбины с сотовой структурой
RU2461448C1 (ru) * 2011-05-27 2012-09-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления прирабатываемого уплотнения турбины со столбчатой структурой
RU2461449C1 (ru) * 2011-06-27 2012-09-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления прирабатываемого уплотнения турбины с многослойной оболочкой
RU2464128C1 (ru) * 2011-04-07 2012-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Элемент прирабатываемого уплотнения турбины
RU2478454C1 (ru) * 2011-07-28 2013-04-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления прирабатываемого уплотнения турбомашины
RU2483837C2 (ru) * 2011-04-07 2013-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления элемента прирабатываемого уплотнения турбины
RU2483839C2 (ru) * 2011-04-07 2013-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Армированный элемент прирабатываемого уплотнения турбины
RU2483838C2 (ru) * 2011-04-07 2013-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Композиционный элемент прирабатываемого уплотнения турбины
RU2484924C2 (ru) * 2011-05-03 2013-06-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Элемент прирабатываемого уплотнения турбины
RU2507033C2 (ru) * 2011-07-28 2014-02-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления армированного прирабатываемого уплотнения турбомашины
RU2662003C2 (ru) * 2014-02-25 2018-07-23 Сименс Акциенгезелльшафт Компонент газовой турбины, газотурбинный двигатель, способ изготовления компонента газотурбинного двигателя
US10196920B2 (en) 2014-02-25 2019-02-05 Siemens Aktiengesellschaft Turbine component thermal barrier coating with crack isolating engineered groove features
RU2696985C1 (ru) * 2018-10-16 2019-08-08 Общество с ограниченной ответственностью Научно-технический центр "Уралавиаспецтехнология" Материал прирабатываемого уплотнения турбомашины
RU2699340C2 (ru) * 2017-12-18 2019-09-04 Акционерное общество "Завод "Композит" (АО "Завод "Композит") Спеченный уплотнительный материал для газотурбинных двигателей
RU2700848C2 (ru) * 2014-05-15 2019-09-23 Нуово Пиньоне СРЛ Способ изготовления компонента турбомашины, компонент турбомашины и турбомашина
RU2754943C1 (ru) * 2020-12-03 2021-09-08 ООО НПП "Уралавиаспецтехнология" Способ изготовления элемента прирабатываемого уплотнения турбомашины

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Европейский патент N 0067746, кл. C 23C 7/00, 1982. *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676893B2 (en) 1999-04-07 2004-01-13 Sandvik Ab Porous cubic boron nitride based material suitable for subsequent production of cutting tools and method for its production
US6287489B1 (en) 1999-04-07 2001-09-11 Sandvik Ab Method for making a sintered composite body
RU2454473C1 (ru) * 2010-12-03 2012-06-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Истираемое уплотнение турбомашины
RU2455116C1 (ru) * 2010-12-03 2012-07-10 Общество с Ограниченной Ответственностью "Научно-производственное предприятие "Вакууммаш" Элемент истираемого уплотнения турбины
RU2483837C2 (ru) * 2011-04-07 2013-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления элемента прирабатываемого уплотнения турбины
RU2483838C2 (ru) * 2011-04-07 2013-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Композиционный элемент прирабатываемого уплотнения турбины
RU2483839C2 (ru) * 2011-04-07 2013-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Армированный элемент прирабатываемого уплотнения турбины
RU2464128C1 (ru) * 2011-04-07 2012-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Элемент прирабатываемого уплотнения турбины
RU2484924C2 (ru) * 2011-05-03 2013-06-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Элемент прирабатываемого уплотнения турбины
RU2457066C1 (ru) * 2011-05-10 2012-07-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления элемента прирабатываемого уплотнения турбины с сотовой структурой
RU2461448C1 (ru) * 2011-05-27 2012-09-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления прирабатываемого уплотнения турбины со столбчатой структурой
RU2457071C1 (ru) * 2011-05-31 2012-07-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления прирабатываемого уплотнения турбины с ориентированной структурой
RU2461449C1 (ru) * 2011-06-27 2012-09-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления прирабатываемого уплотнения турбины с многослойной оболочкой
RU2478454C1 (ru) * 2011-07-28 2013-04-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления прирабатываемого уплотнения турбомашины
RU2507033C2 (ru) * 2011-07-28 2014-02-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ изготовления армированного прирабатываемого уплотнения турбомашины
US10196920B2 (en) 2014-02-25 2019-02-05 Siemens Aktiengesellschaft Turbine component thermal barrier coating with crack isolating engineered groove features
RU2662003C2 (ru) * 2014-02-25 2018-07-23 Сименс Акциенгезелльшафт Компонент газовой турбины, газотурбинный двигатель, способ изготовления компонента газотурбинного двигателя
US10323533B2 (en) 2014-02-25 2019-06-18 Siemens Aktiengesellschaft Turbine component thermal barrier coating with depth-varying material properties
RU2700848C2 (ru) * 2014-05-15 2019-09-23 Нуово Пиньоне СРЛ Способ изготовления компонента турбомашины, компонент турбомашины и турбомашина
US11105216B2 (en) 2014-05-15 2021-08-31 Nuovo Pignone Srl Method of manufacturing a component of a turbomachine, component of a turbomachine and turbomachine
RU2699340C2 (ru) * 2017-12-18 2019-09-04 Акционерное общество "Завод "Композит" (АО "Завод "Композит") Спеченный уплотнительный материал для газотурбинных двигателей
RU2696985C1 (ru) * 2018-10-16 2019-08-08 Общество с ограниченной ответственностью Научно-технический центр "Уралавиаспецтехнология" Материал прирабатываемого уплотнения турбомашины
RU2754943C1 (ru) * 2020-12-03 2021-09-08 ООО НПП "Уралавиаспецтехнология" Способ изготовления элемента прирабатываемого уплотнения турбомашины

Similar Documents

Publication Publication Date Title
RU2039631C1 (ru) Способ изготовления истираемого материала
US3975165A (en) Graded metal-to-ceramic structure for high temperature abradable seal applications and a method of producing said
US3817719A (en) High temperature abradable material and method of preparing the same
US5677060A (en) Method for protecting products made of a refractory material against oxidation, and resulting protected products
EP0725842B1 (en) Plasma sprayed abradable seals for gas turbine engines
US3879831A (en) Nickle base high temperature abradable material
US5104293A (en) Method for applying abrasive layers to blade surfaces
JP5124468B2 (ja) ストロンチウムチタン酸化物及びそれから製造された被削性コーティング
CA1143508A (en) Coating material
CA1174082A (en) Coating material
US3061482A (en) Ceramic coated metal bodies
US5141821A (en) High temperature mcral(y) composite material containing carbide particle inclusions
WO1985004428A1 (en) Process for preparing high temperature materials
CN110872677B (zh) 一种低烧损可磨耗涂层材料及其应用
GB2152079A (en) Porous metal structures made by thermal spraying fugitive material and metal
CN108396278B (zh) 长寿命MCrAlY涂层、制备方法和在热端部件的应用
US3746352A (en) Rubbing seal for high temperature ceramics
GB2130244A (en) Forming coatings by hot isostatic compaction
CN112662978B (zh) 一种钨铜合金材料用涂层及其制备方法
JP2001515961A (ja) 耐食性超硬合金
EP0605417A1 (en) WATERPROOF, ABRASIVE WATERPROOFING, AND PROCESS FOR PRODUCING THE SAME.
US4550063A (en) Silicon nitride reinforced nickel alloy composite materials
JP2022522642A (ja) アブレイダブル材料を含むハニカム構造体
CN101759436A (zh) 一种基于新型纳米四组份烧结助剂的碳化硅陶瓷制造方法
JPS563672A (en) Forming method of corrosion-resistant protective coating

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050828