[go: up one dir, main page]

RU2020117640A - WELDING BATH STABILITY CONTROL METHOD - Google Patents

WELDING BATH STABILITY CONTROL METHOD Download PDF

Info

Publication number
RU2020117640A
RU2020117640A RU2020117640A RU2020117640A RU2020117640A RU 2020117640 A RU2020117640 A RU 2020117640A RU 2020117640 A RU2020117640 A RU 2020117640A RU 2020117640 A RU2020117640 A RU 2020117640A RU 2020117640 A RU2020117640 A RU 2020117640A
Authority
RU
Russia
Prior art keywords
weld pool
laser
heat input
orbital
welding
Prior art date
Application number
RU2020117640A
Other languages
Russian (ru)
Other versions
RU2763068C2 (en
RU2020117640A3 (en
Inventor
Ольга Павловна Морозова
Original Assignee
Ольга Павловна Морозова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ольга Павловна Морозова filed Critical Ольга Павловна Морозова
Priority to RU2020117640A priority Critical patent/RU2763068C2/en
Priority to PCT/RU2021/050093 priority patent/WO2021230769A1/en
Publication of RU2020117640A publication Critical patent/RU2020117640A/en
Publication of RU2020117640A3 publication Critical patent/RU2020117640A3/ru
Application granted granted Critical
Publication of RU2763068C2 publication Critical patent/RU2763068C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Claims (17)

1. Способ управления устойчивостью сварочной ванны при орбитальной многопроходной лазерной сварке с одновалковым заполнением разделки свариваемых кромок неповоротных стыковых кольцевых соединений, включающий подачу присадочной проволоки и воздействие на нее непрерывным лазерным излучением, отличающийся тем, что лазерная сварка производится в узкощелевую разделку.1. A method for controlling the stability of the weld pool in orbital multi-pass laser welding with single-roll filling of the groove of the welded edges of fixed butt ring joints, including feeding the filler wire and exposing it to continuous laser radiation, characterized in that laser welding is performed in a narrow gap groove. 2. Способ по п. 1, отличающийся тем, что дефокусировка луча лазера выбирается из условия получения диаметра пятна сфокусированного лазерного излучения на свариваемой поверхности, не превышающей образования объема жидкой фазы сварочной ванны металла с массой больше критического значения (1)2. The method according to claim 1, characterized in that the defocusing of the laser beam is selected from the condition of obtaining the spot diameter of the focused laser radiation on the surface to be welded, which does not exceed the formation of the volume of the liquid phase of the weld pool of metal with a mass greater than the critical value (1)
Figure 00000001
.
Figure 00000001
...
3. Способ по п. 1, отличается тем, что скорость подачи присадочной проволоки заданного диаметра определяется из условия формирования массы жидкой фазы сварочной ванны меньше критического значения (2)3. The method according to claim 1, characterized in that the feed rate of the filler wire of a given diameter is determined from the condition of the formation of the mass of the liquid phase of the weld pool less than the critical value (2)
Figure 00000002
.
Figure 00000002
...
4. Способ по п. 1, отличающийся тем, что мощность луча лазера определяется из условия расплавления металла, образующего сварочную ванну, не превышающего массу критического значения при заданной скорости сварки (3)4. The method according to claim 1, characterized in that the power of the laser beam is determined from the condition of melting of the metal forming the weld pool, which does not exceed the critical mass at a given welding speed (3)
Figure 00000003
.
Figure 00000003
...
5. Способ по п. 1, отличающийся тем, что погонная энергия при лазерной сварке выберется из условий оптимального тепловложения в сварное соединение (4)5. The method according to claim 1, characterized in that the heat input during laser welding is selected from the conditions of optimal heat input into the welded joint (4)
Figure 00000004
,
Figure 00000004
,
где q - погонная энергия сварки, Дж/см;where q is the heat input of welding, J / cm; qmin - минимальное значение погонной энергии, обеспечивающей заданную глубину проплавления, Дж/см;q min is the minimum value of the heat input providing the specified penetration depth, J / cm; qmax - погонная энергия, обеспечивающая минимальное теплосодержание сварочной ванны, Дж/см.q max - heat input providing the minimum heat content of the weld pool, J / cm. 6. Способ по п. 1, отличающийся тем, что значение скорости орбитальной лазерной сварки выбираются из условия времени существования сварочной ванны, минимизирующий ее перегрев и обеспечивающей необходимую глубину проплавления при заданной мощности лазерного излучения (5)6. The method according to claim 1, characterized in that the value of the orbital laser welding speed is selected from the condition of the weld pool lifetime, minimizing its overheating and providing the required penetration depth at a given laser power (5)
Figure 00000005
,
Figure 00000005
,
где Vc - орбитальная скорость сварки;where V c - orbital welding speed; Vcmin - наименьшая орбитальная скорость сварки, минимизирующая перегрев сварочной ванны;V cmin - the lowest orbital welding speed, minimizing overheating of the weld pool; Vcmax - наибольшая орбитальная скорость сварки, обеспечивающая необходимую глубину проплавления.V cmax is the highest orbital welding speed providing the required penetration depth.
RU2020117640A 2020-05-15 2020-05-15 Method for controlling the stability of the welding bath RU2763068C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020117640A RU2763068C2 (en) 2020-05-15 2020-05-15 Method for controlling the stability of the welding bath
PCT/RU2021/050093 WO2021230769A1 (en) 2020-05-15 2021-04-08 Method for controlling stability of a weld puddle during orbital multilayer laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020117640A RU2763068C2 (en) 2020-05-15 2020-05-15 Method for controlling the stability of the welding bath

Publications (3)

Publication Number Publication Date
RU2020117640A true RU2020117640A (en) 2021-11-15
RU2020117640A3 RU2020117640A3 (en) 2021-11-15
RU2763068C2 RU2763068C2 (en) 2021-12-27

Family

ID=78524685

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020117640A RU2763068C2 (en) 2020-05-15 2020-05-15 Method for controlling the stability of the welding bath

Country Status (2)

Country Link
RU (1) RU2763068C2 (en)
WO (1) WO2021230769A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118162740B (en) * 2024-03-15 2024-11-19 华中科技大学 Pore inhibition process parameter optimization method and system in high-power laser shaping welding

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU17464U1 (en) * 2000-12-27 2001-04-10 Государственное унитарное предприятие "Научно-исследовательский и конструкторский институт энерготехники" SLOT CUT FOR MELTING WELDING
RU2175906C1 (en) * 2000-12-27 2001-11-20 Государственное унитарное предприятие "Научно-исследовательский и конструкторский институт энерготехники" Method for fusion welding along slit dressing
RU2233211C1 (en) * 2003-05-27 2004-07-27 Томский политехнический университет Welding method
DE10334446A1 (en) * 2003-07-29 2005-02-17 Orbitalservice Gmbh Orbital welding device for welding processes comprises welding heads which move along a workpiece by means of a drive and guiding unit
CA2546586C (en) * 2003-12-10 2010-03-02 Vietz Gmbh Orbital welding device for pipeline construction
DE102008029724B4 (en) * 2007-06-26 2010-09-30 V&M Deutschland Gmbh Method for joining thick-walled metallic pieces by means of welding
RU2502588C2 (en) * 2011-04-05 2013-12-27 Общество с ограниченной ответственностью Вятское машиностроительное предприятие "Лазерная техника и технологии" Method of pulse laser building up of metals
DE102012007563B3 (en) * 2012-04-10 2013-05-29 Salzgitter Mannesmann Line Pipe Gmbh Apparatus for joining the ends of steel pipes by orbital welding
RU2630327C1 (en) * 2016-07-27 2017-09-07 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Method for connection and disconnection of pipes for bituminous oil extraction and device for laser welding and cutting when implementing method
RU2637035C1 (en) * 2017-02-06 2017-11-29 Публичное акционерное общество "Челябинский трубопрокатный завод" (ПАО "ЧТПЗ") Method of hybrid arc augmented laser welding of pipe longitudinal seam
RU2679858C1 (en) * 2018-02-19 2019-02-13 Публичное акционерное общество "Челябинский трубопрокатный завод" (ПАО "ЧТПЗ") Method of hybrid laser-arc welding of steel thick-walled structures

Also Published As

Publication number Publication date
RU2763068C2 (en) 2021-12-27
WO2021230769A1 (en) 2021-11-18
RU2020117640A3 (en) 2021-11-15

Similar Documents

Publication Publication Date Title
US7154064B2 (en) Method of improving weld quality
JP5827454B2 (en) Laser / arc combined welding method and welded member manufacturing method using the welding method
US7154065B2 (en) Laser-hybrid welding with beam oscillation
CN104384717B (en) Swing laser-heated filament the welding method of butt welding is implemented in the narrow gap of a kind of slab
RU2660791C1 (en) LASER-ARC WELDING METHOD OF THE WORKPIECES BUTT JOINT OF CARBON STEEL WITH THE WALLS THICKNESS OF 10-45 mm
KR20150027834A (en) Hot-wire consumable incapable of sustaining an arc
JP2005527383A (en) Laser welding by beam oscillation
US20180021888A1 (en) Laser welding systems for aluminum alloys and methods of laser welding aluminum alloys
KR20210089680A (en) Splash-free welding method, especially with solid-state lasers
JP5812527B2 (en) Hot wire laser welding method and apparatus
KR101756762B1 (en) Method for manufacturing laser welded steel pipe
RU2679858C1 (en) Method of hybrid laser-arc welding of steel thick-walled structures
JP4848921B2 (en) Composite welding method and composite welding equipment
RU2020117640A (en) WELDING BATH STABILITY CONTROL METHOD
CN110695532A (en) A low-power large-spot laser-MAG arc composite surfacing method
CN111515539B (en) Circumferential weld laser-TIG (tungsten inert gas) hybrid welding device and using method
RU2668625C1 (en) Formulated pipe stock butt joint laser-arc welding with consumable electrode method in an atmosphere of shielding gas
JPH0919778A (en) Laser welding method for aluminum alloy in which molten metal is not exposed on the back surface
CN112207443B (en) Laser arc hybrid welding device
CN115815798B (en) Laser welding method, laser welding device and laser welding assembly
JPH10225782A (en) Combined welding method with laser and arc
RU2085347C1 (en) Method of electron-beam welding of pipes
JP2010227951A (en) Laser beam welding method and laser beam welding apparatus
EP3012057B1 (en) Method of welding in deep joints
JP3867164B2 (en) Welding method