[go: up one dir, main page]

RU2016261C1 - Способ сжатия сред в струйном аппарате и устройство для его осуществления - Google Patents

Способ сжатия сред в струйном аппарате и устройство для его осуществления Download PDF

Info

Publication number
RU2016261C1
RU2016261C1 SU5001768A RU2016261C1 RU 2016261 C1 RU2016261 C1 RU 2016261C1 SU 5001768 A SU5001768 A SU 5001768A RU 2016261 C1 RU2016261 C1 RU 2016261C1
Authority
RU
Russia
Prior art keywords
media
mixture
mixing chamber
shock wave
expansion chamber
Prior art date
Application number
Other languages
English (en)
Inventor
В.В. Фисенко
Original Assignee
Транссоник Юбершалль-Анлаген ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Транссоник Юбершалль-Анлаген ГмбХ filed Critical Транссоник Юбершалль-Анлаген ГмбХ
Application granted granted Critical
Publication of RU2016261C1 publication Critical patent/RU2016261C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/311Injector mixers in conduits or tubes through which the main component flows for mixing more than two components; Devices specially adapted for generating foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3122Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof the material flowing at a supersonic velocity thereby creating shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0329Mixing of plural fluids of diverse characteristics or conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Surgical Instruments (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processing Of Solid Wastes (AREA)
  • Nozzles (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

Использование: в устройствах приготовления гомогенных смесей, транспортировки различных сред и перекачки сред. Сущность: подают в струйный аппарат в активное и пассивное сопла с дозвуковой скоростью активную и пассивную среды, смешивают среды в конической камере смешения с формированием двухфазной смеси, с разгоном смеси до звуковой скорости, а потом в камере расширения - до сверхзвуковой скорости, организуют скачок уплотнения на входе горловины для торможения смеси с соответствующим ростом статического давления после скачка уплотнения и преобразованием потока в однофазный, статическое давление в скачке уплотнения должно быть меньше полусуммы давления торможения после скачка уплотнения и статического давления перед скачком уплотнения, а диаметр горловины равен от 1 до 3 гидравлических диаметров выходного сечения камеры смешения. 2 с.п., 8 з.п., 4 ил.

Description

Изобретение относится к области струйной техники, преимущественно к струйным аппаратам для приготовления гомогенных смесей, транспортировки различных сред, перекачки сред или дегазации жидкостных сред.
Известен способ сжатия сред в струйном аппарате, заключающийся в том, что в аппарат подают с дозвуковой скоростью активную и пассивную среды, смешивают среды в камере смешения с формированием дозвуковой двухфазной смеси и тормозят поток смеси сред в диффузоре с соответствующим ростом статического давления [1].
Из этого же патента известно устройство для реализации способа сжатия сред, содержащее камеру смешения, коаксиально ей установленные сопла для подвода газообразной и жидкостной сред, диффузор и патрубки подвода активной и пассивной сред.
Однако данный способ сжатия сред в струйном аппарате имеет сравнительно низкий КПД вследствие диссипативных потерь в процессе обмена количеством движения между средами.
Наиболее близким к описываемому является способ сжатия сред в струйном аппарате, заключающийся в том, что подают в аппарат с дозвуковой скоростью активную и пассивную среды, смешивают среды в камере смешения с формированием двухфазной смеси, с разгоном смеси сначала до звуковой скорости, а потом в камере расширения - до сверхзвуковой скорости, организуют скачок уплотнения для торможения смеси с соответствующим ростом статического давления после скачка уплотнения и преобразованием потока в однофазный, после чего подают его потребителю [2].
В этом же патенте описано устройство для осуществления способа сжатия сред в струйном аппарате, содержащее камеру смешения, коаксиально ей установленные сопла для подвода газообразной и жидкой сред, камеру расширения, размещенную на выходе камеры смешения и диффузор с горловиной, установленный на выходе камеры расширения, при этом горловина выполнена в виде цилиндрического патрубка.
Однако в известном способе сжатия сред в камере расширения поддерживается атмосферное давление, что снижает эффективность работы струйного аппарата, затрудняет его надежную работу, а в ряде случаев делает аппарат неработоспособным. Кроме того, конструкция аппарата довольно сложная. Для увеличения эффективности торможения сверхзвукового двухфазного потока диффузор выполняют со сложным профилем и снабжают его центральным телом, установленным на демпфирующей пружине, что значительно усложняет конструкцию.
Технической задачей, на решение которой направлено изобретение, является повышение надежности работы струйного аппарата, упрощение его конструкции и расширение диапазона использования способа сжатия сред в струйном аппарате.
Указанная техническая задача решается тем, что в способе сжатия сред в струйном аппарате, заключающемся в том, что подаю в аппарат с дозвуковой скоростью активную и пассивную среды, смешивают среды в камере смешения с формированием двухфазной смеси, с разгоном смеси сначала до звуковой скорости, а потом в камере расширения - до сверхзвуковой скорости, организуют скачок уплотнения для торможения смеси с соответствующим ростом статического давления после скачка уплотнения и преобразованием потока в однофазный, после чего подают его потребителю, при этом статическое давление после скачка уплотнения должно быть меньше полусуммы давления торможения после скачка и статического давления перед скачком.
Кроме того, в зоне истечения в камере расширения статическое давление перед скачком уплотнения устанавливают меньшим давления окружающей среды, а статическое давление после скачка уплотнения устанавливают большим или равным давлению окружающей среды.
В камеру смешения может быть подведен дополнительный поток, после чего смесь сред разгоняют до ее собственной скорости звука. Кроме того, к смеси сред до достижения ею собственной скорости звука может быть подведено тепло и/или масса и от сверхзвукового потока смеси сред может быть отведено тепло и/или масса.
В части устройства струйный аппарат для реализации способа сжатия сред содержит камеру смешения, коаксиально ей установленные сопла для подвода газообразной и жидкой сред, камеру расширения, размещенную на выходе камеры смешения и диффузор с горловиной, установленный на выходе камеры расширения, при этом горловина выполнена в виде цилиндрического патрубка, камера смешения выполнена конической, сужающейся по ходу потока смеси сред, камера расширения сообщена непосредственно с горловиной диффузора и снабжена выпускным патрубком с разгрузочным клапаном, причем диаметр горловины равен от 1 до 3 гидравлических диаметров выходного сечения камеры смешения.
Кроме того, устройство может быть снабжено устройством подвода дополнительной среды в направлении движения потока смеси сред, расположенным до выходного сечения камеры смешения по ходу потока, горловина диффузора расположена соосно камере смешения, выходное сечение камеры смешения может быть выполнено в виде диафрагмы, а разгрузочный клапан может быть снабжен средством регулировки давления его открытия.
Как технический результат использования описанного способа сжатия сред и струйного аппарата для реализации способа сжатия сред является возможность оптимизировать энергетические затраты, достигнуть стабильного воздействия на среды без нарушения режима работы, практически независимо от изменения давления окружающей среды и конечного давления. С помощью организованного в проточной части аппарата воздействия скачка уплотнения на среды можно получить гомогенные мелкодиспергированные смеси из нескольких компонентов с требуемыми концентрациями отдельных компонентов, а также получить мелкодиспергированные и гомогенные структуры с высокоразвитой активирующей поверхностью и трудносмесимые структуры при автоматической дозировке с высокой точностью.
На фиг. 1 представлен продольный разрез струйного аппарата для реализации способа сжатия сред; на фиг. 2 - вариант выполнения струйного аппарата с выходным сечением камеры смешения выполненным в виде диафрагмы, на фиг. 3 - схема изменения скорости потока и статического давления смеси в осевом направлении устройства по фиг. 2 в начальной стадии с открытым разгрузочным клапаном, на фиг. 4 - схема изменения скорости потока и статического давления смеси в осевом направлении устройства по фиг. 2 в стабильном режиме с закрытым разгрузочным клапаном.
Устройство для осуществления способа сжатия сред содержит камеру 1 смешения, коаксиально ей установленные сопла 2, 3 для подвода газообразной и жидкой сред, камеру 4 расширения, размещенную на выходе камеры 1 смешения и диффузор 5 с горловиной 6, установленный на выходе камеры 4 расширения, при этом горловина 6 выполнена в виде цилиндрического патрубка. Камера 1 смешения выполнена конической, сужающейся по ходу потока смеси сред, камера 4 расширения сообщена непосредственно с горловиной 6 диффузора 5 и снабжена выпускным патрубком 7 с разгрузочным клапаном 8, причем диаметр D горловины 6 равен от 1 до 3 гидравлических диаметров выходного сечения камеры 1 смешения.
Устройство для осуществления способа сжатия сред снабжено устройством 9 подвода дополнительной среды в направлении движения потока смеси сред, расположенным до выходного сечения камеры 1 смешения по ходу потока. Горловина 6 диффузора 5 расположена соосно камере 1 смешения. Выходное сечение камеры 1 смешения выполнено в виде диафрагмы 11. Разгрузочный клапан 8 снабжен средством 10 регулировки давления его открытия.
Способ сжатия сред в струйном аппарате заключается в том, что подают в аппарат через сопла 2, 3 с дозвуковой скоростью соответственно активную и пассивную среды, смешивают среды в камере 1 смешения с формированием двухфазной смеси, с разгоном смеси сначала до звуковой скорости, а потом в камере 4 расширения - до сверхвуковой скорости, организуют скачок уплотнения для торможения смеси с соответствующим ростом статического давления после скачка уплотнения и преобразованием потока в однофазный, после чего подают его потребителю. При этом статическое давление после скачка уплотнения должно быть меньше полусуммы давления торможения (полное давление) после скачка уплотнения и статического давления перед скачком уплотнения.
В зоне истечения в камере 4 расширения статическое давление перед скачком уплотнения устанавливают меньшим давления окружающей среды, а статическое давление после скачка уплотнения устанавливают большим или равным давлению окружающей среды. При этом под давлением окружающей среды понимается давление среды, окружающей поток в камере 4 расширения.
В камеру 1 смешения может быть подведен через устройство 9 дополнительный поток, после чего смесь сред разгоняют до ее собственной скорости звука.
К смеси сред до достижения ею собственной скорости звука можно подводить тепло и/или массу и от сверхзвукового потока смеси можно отводить тепло и/или массу.
На фиг. 3 и 4 кривой W представлено изменение скорости потока и кривой р представлено изменение статического давления в осевом направлении устройства по фиг. 2. В качестве контрольных сечений выбраны: сечение 1 - впускное сечение активного сопла 2, сечение II - самое узкое сечение сопла 2, сечение III - входное кольцевое сечение подвода пассивной среды, сечение IV - выходное сечение пассивного сопла 3, сечение V - сечение камеры I смешения в месте подвода дополнительного потока, сечение VI - самое узкое, выходное сечение камеры 1 смешения - сечение диафрагмы II, сечение VII - входное сечение горловины 6, сечение VIII - выходное сечение горловины 6, сечение IX - выходное сечение диффузора 5.
На фиг. 3 показано состояние во время пуска, когда открыта подача активной, пассивной и дополнительной сред, а под давлением смеси сред в камере 4 расширения открывается разгрузочный клапан 8.
В период пуска подают пассивную среду в камеру 1 смешения и через устройство 9 подвода обеспечивают поступление дополнительного потока. Из камеры 1 смешения смесь сред через самое узкое сечение камеры 1 смешения - диафрагму 11 поступает в камеру 4 расширения и далее в диффузор 5, после чего смесь сред истекает из аппарата. Затем в сопло 2 подается активная среда или смесь сред. Активная среда, истекая из сопла 2, смешивается с пассивной и дополнительной средами в камере 1 смешения. Подача дополнительного потока через устройство 9 приводит к повышению давления в камере 4 расширения, что в свою очередь приводит к открытию разгрузочного клапана 8 и истечению через выпускной патрубок избытка смеси сред.
В ходе проведения пуска происходит понижение давления в камере 4 расширения и в горловине 6 до сечения VIII, а после этого - небольшое повышение давления в диффузоре 5. Скорость потока в самом узком сечении VI в виде диафрагмы II увеличивается, одновременно давление в самом узком сечении VI понижается, а давление насыщения превышает парообразные или газообразные компоненты сред, что приводит к образованию двухфазной смеси (если перед этим не была образована двухфазная смесь за счет добавления жидкой среды к газообразной), скорость звука в которой намного ниже скорости звука в однофазной смеси сред. Скорость потока в камере 1 смешения увеличивается за счет сужения ее поперечного сечения по ходу потока таким образом, что в самом узком сечении VI диафрагмы II в конечном итоге достигается скорость звука для двухфазной смеси. Это значит, что в камере 4 расширения двухфазная смесь сред ускоряется больше собственной скорости звука при определенном соотношении объемов фаз. В результате в сечении VII, т.е. в начале горловины 6 образуется скачок давления, мощность которого тем больше, чем меньше статическое давление "р" в камере 4 расширения. Падение давления в камере 4 расширения имеет место за счет отвода смеси сред из нее через выпускной патрубок 7, потому что разгрузочный клапан 8 еще не закрыт, и за счет отвода смеси сред через горловину 6. В конечном итоге в камере 4 расширения достигается давление, при котором разгрузочный клапан 8 закрывается, и устройство переходит в режим непрерывного стабильного смешения, как показано на фиг. 4.

Claims (10)

1. Способ сжатия сред в струйном аппарате, заключающийся в том, что подают в аппарат с дозвуковой скоростью активную и пассивную среды, смешивают среды в камере смешения с формированием двухфазной смеси, с разгоном смеси сначала до звуковой скорости, а потом в камере расширения - до сверхзвуковой скорости, организуют скачок уплотнения для торможения смеси с соответствующим ростом статического давления после скачка уплотнения и преобразованием потока в однофазный, после чего подают потребителю, отличающийся тем, что статистическое давление после скачка уплотнения должно быть меньше полусуммы давления торможения после скачка уплотнения и статического давления перед скачком.
2. Способ по п.1, отличающийся тем, что в зоне истечения в камере расширения статическое давление перед скачком уплотнения устанавливают меньшим давления окружающей среды, а статическое давление после скачка уплотнения устанавливают большим или равным давлению окружающей среды.
3. Способ по п.1, отличающийся тем, что в камеру смешения подводят дополнительный поток и после чего смесь сред разгоняют до ее собственной скорости звука.
4. Способ по пп.1 и 3, отличающийся тем, что к смеси сред до достижения ею собственной скорости звука подводят тепло и/или массу.
5. Способ по пп. 1,3, отличающийся тем, что от сверхзвукового потока смеси сред отводят тепло и/или массу.
6. Устройство для сжатия сред в струйном аппарате, содержащее камеру смешения, коаксиально ей установленные сопла для подвода газообразной и жидкой сред, камеру расширения, размещенную на выходе камеры смешения и диффузор с горловиной, установленный на выходе камеры расширения, при этом горловина выполнена в виде цилиндрического патрубка, отличающееся тем, что камера смешения выполнена конической, сужающейся по ходу потока смеси сред, камера расширения сообщена непосредственно с горловиной диффузора и снабжена выпускным патрубком с разгрузочным клапаном, причем диаметр горловины равен 1 - 3 гидравлических диаметров выходного сечения камеры смешения.
7. Устройство по п.6, отличающееся тем, что оно снабжено устройством подвода дополнительной среды в направлении движения потока смеси сред, расположенным до выходного сечения камеры смешения по ходу потока.
8. Устройство по п.6, отличающееся тем, что горловина диффузора расположена соосно с камерой смешения.
9. Устройство по п. 6, отличающееся тем, что выходное сечение камеры смешения выполнено в виде диафрагмы.
10. Устройство по п.6, отличающееся тем, что разгрузочный клапан снабжен средством регулировки давления его открытия.
SU5001768 1990-09-06 1991-09-06 Способ сжатия сред в струйном аппарате и устройство для его осуществления RU2016261C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BG9279590 1990-09-06
BG92795 1990-09-06

Publications (1)

Publication Number Publication Date
RU2016261C1 true RU2016261C1 (ru) 1994-07-15

Family

ID=3923238

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5001768 RU2016261C1 (ru) 1990-09-06 1991-09-06 Способ сжатия сред в струйном аппарате и устройство для его осуществления

Country Status (11)

Country Link
US (2) US5205648A (ru)
EP (1) EP0475284B1 (ru)
JP (1) JPH078330B2 (ru)
KR (1) KR950000002B1 (ru)
AT (1) ATE108089T1 (ru)
CA (1) CA2050624C (ru)
DE (1) DE59102114D1 (ru)
DK (1) DK0475284T3 (ru)
ES (1) ES2056542T3 (ru)
RU (1) RU2016261C1 (ru)
YU (1) YU26292A (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061948A1 (fr) * 1999-04-08 2000-10-19 Innovatsionnaya Kompaniya Fisonic Appareil a jets de gaz et de liquides
US7559212B2 (en) 2005-11-08 2009-07-14 Mark Bergander Refrigerant pressurization system with a two-phase condensing ejector

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555498A1 (en) * 1992-02-11 1993-08-18 April Dynamics Industries 1990 Ltd. A two-phase supersonic flow system
US5544961A (en) * 1992-02-11 1996-08-13 April Dynamics Industries Ltd. Two-phase supersonic flow system
US5785258A (en) * 1993-10-08 1998-07-28 Vortexx Group Incorporated Method and apparatus for conditioning fluid flow
EP0737340A4 (en) * 1993-12-30 1998-09-02 Maisotsenko Valery METHOD FOR PRODUCING A CLOSED ROOM FOR WORKING MEDIA IN MOTION
GB9407504D0 (en) * 1994-04-15 1994-06-08 Crown Chemtech Ltd Stripping of volatile substances from less volatile fluids
US5495893A (en) * 1994-05-10 1996-03-05 Ada Technologies, Inc. Apparatus and method to control deflagration of gases
EP0752211B1 (fr) * 1995-07-07 2001-10-17 Societe Des Produits Nestle S.A. Gel de protéines de lactoserum et polysaccharide obtenu par traitement haute pressions
US5957760A (en) * 1996-03-14 1999-09-28 Kreativ, Inc Supersonic converging-diverging nozzle for use on biological organisms
EP0800775B1 (en) * 1996-04-12 2000-03-15 Societe Des Produits Nestle S.A. Apparatus and method for treating a fluid product by injection of steam and the fluid product
RU2110701C1 (ru) * 1997-06-09 1998-05-10 Владимир Владимирович Фисенко Способ работы тепловыделяющего струйного аппарата (варианты)
US5954452A (en) * 1997-07-11 1999-09-21 Ga Technologies, Inc. In situ remediation of underground organic pollution
TR200000774T2 (tr) * 1997-09-25 2001-07-23 Ge Bayer Silicones Gmbh & Co. Kg Silikon emülsiyonların hazırlanması için proses ve donanım.
US7128278B2 (en) * 1997-10-24 2006-10-31 Microdiffusion, Inc. System and method for irritating with aerated water
US6386751B1 (en) * 1997-10-24 2002-05-14 Diffusion Dynamics, Inc. Diffuser/emulsifier
US7654728B2 (en) * 1997-10-24 2010-02-02 Revalesio Corporation System and method for therapeutic application of dissolved oxygen
US6702949B2 (en) 1997-10-24 2004-03-09 Microdiffusion, Inc. Diffuser/emulsifier for aquaculture applications
IL122396A0 (en) 1997-12-02 1998-06-15 Pekerman Oleg Method of heating and/or homogenizing of liquid products in a steam-liquid injector
US6523991B1 (en) 1998-07-08 2003-02-25 Jaber Maklad Method and device for increasing the pressure or enthalpy of a fluid flowing at supersonic speed
US6095675A (en) * 1999-11-02 2000-08-01 Paul Ling Tai Multi-port venturi mixer
US6623154B1 (en) * 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector
AU2001294742A1 (en) * 2000-09-25 2002-04-02 Evit Laboratories, Inc. Shock wave aerosolization apparatus and method
DE10343748B4 (de) * 2003-08-29 2005-11-10 BIONIK GmbH - Innovative Technik für die Umwelt Verfahren zum Zerkleinern partikulärer organischer Substanzen in Suspensionen von Mikroorganismen
CA2556673C (en) * 2004-02-26 2013-02-05 Pursuit Dynamics Plc Method and apparatus for generating a mist
EP1720660B1 (en) * 2004-02-26 2009-11-18 Pursuit Dynamics PLC. Improvements in or relating to a method and apparatus for generating a mist
US20080103217A1 (en) * 2006-10-31 2008-05-01 Hari Babu Sunkara Polyether ester elastomer composition
US8419378B2 (en) * 2004-07-29 2013-04-16 Pursuit Dynamics Plc Jet pump
TW200821125A (en) * 2006-08-23 2008-05-16 Sulzer Chemtech Ag A metering device
GB0618196D0 (en) * 2006-09-15 2006-10-25 Pursuit Dynamics Plc An improved mist generating apparatus and method
WO2008100348A2 (en) 2006-10-20 2008-08-21 Ada Technologies, Inc. Fine water mist multiple orientation discharge fire extinguisher
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
EP2086668B1 (en) 2006-10-25 2016-11-16 Revalesio Corporation Mixing device and method
US8784897B2 (en) * 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8609148B2 (en) * 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
EP2097107B1 (en) 2006-10-25 2016-05-04 Revalesio Corporation Therapeutic treatment of eyes using an oxygen-enriched solution
JP5491185B2 (ja) * 2006-10-25 2014-05-14 リバルシオ コーポレイション 傷のケアおよび処置の方法
ATE523597T1 (de) * 2007-05-02 2011-09-15 Pursuit Dynamics Plc Verflüssigung von stärkehaltiger biomasse
RU2348871C1 (ru) * 2007-08-22 2009-03-10 Вадим Иванович Алферов Устройство для сжижения и сепарации газов
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) * 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US20090227018A1 (en) * 2007-10-25 2009-09-10 Revalesio Corporation Compositions and methods for modulating cellular membrane-mediated intracellular signal transduction
US10125359B2 (en) * 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
US20100015235A1 (en) * 2008-04-28 2010-01-21 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US20100009008A1 (en) * 2007-10-25 2010-01-14 Revalesio Corporation Bacteriostatic or bacteriocidal compositions and methods
US20100303918A1 (en) * 2007-10-25 2010-12-02 Revalesio Corporation Compositions and methods for treating asthma and other lung disorders
US20100303917A1 (en) * 2007-10-25 2010-12-02 Revalesio Corporation Compositions and methods for treating cystic fibrosis
US20100029764A1 (en) * 2007-10-25 2010-02-04 Revalesio Corporation Compositions and methods for modulating cellular membrane-mediated intracellular signal transduction
CN103919804A (zh) * 2008-05-01 2014-07-16 利发利希奥公司 治疗消化功能紊乱的组合物和方法
JP4945511B2 (ja) * 2008-05-28 2012-06-06 日立Geニュークリア・エナジー株式会社 分岐部を有する配管を備えたプラント及び沸騰水型原子力プラント
EP2145912A1 (en) 2008-07-19 2010-01-20 Momentive Performance Materials GmbH Method of coating substrates
JP5017203B2 (ja) * 2008-07-25 2012-09-05 日本碍子株式会社 セラミックスラリー組成物の製造方法
US8322910B2 (en) * 2008-07-25 2012-12-04 The Procter & Gamble Company Apparatus and method for mixing by producing shear and/or cavitation, and components for apparatus
US8292990B2 (en) * 2008-09-05 2012-10-23 Tsi, Incorporated Nebulizer waste pressure reducer for HPLC systems
US20100098659A1 (en) * 2008-10-22 2010-04-22 Revalesio Corporation Compositions and methods for treating matrix metalloproteinase 9 (mmp9)-mediated conditions
US8333080B2 (en) 2009-03-25 2012-12-18 Pax Scientific, Inc. Supersonic cooling system
US8505322B2 (en) * 2009-03-25 2013-08-13 Pax Scientific, Inc. Battery cooling
US8820114B2 (en) 2009-03-25 2014-09-02 Pax Scientific, Inc. Cooling of heat intensive systems
US20110048062A1 (en) * 2009-03-25 2011-03-03 Thomas Gielda Portable Cooling Unit
US20110030390A1 (en) * 2009-04-02 2011-02-10 Serguei Charamko Vortex Tube
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US7784999B1 (en) * 2009-07-01 2010-08-31 Vortex Systems (International) Ci Eductor apparatus with lobes for optimizing flow patterns
US20110051549A1 (en) * 2009-07-25 2011-03-03 Kristian Debus Nucleation Ring for a Central Insert
US8365540B2 (en) 2009-09-04 2013-02-05 Pax Scientific, Inc. System and method for heat transfer
RU2422193C2 (ru) * 2009-09-30 2011-06-27 Фисоник Холдинг Лимитед Устройство для приготовления водотопливной эмульсии
GB201002666D0 (en) * 2010-02-17 2010-04-07 Pursuit Dynamics Plc Apparatus and method for entraining fluids
CA2798690A1 (en) 2010-05-07 2011-11-10 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
WO2012015742A2 (en) 2010-07-30 2012-02-02 Hudson Fisonic Corporation An apparatus and method for utilizing thermal energy
US8936202B2 (en) 2010-07-30 2015-01-20 Consolidated Edison Company Of New York, Inc. Hyper-condensate recycler
US10184229B2 (en) 2010-07-30 2019-01-22 Robert Kremer Apparatus, system and method for utilizing thermal energy
KR20130091759A (ko) 2010-08-12 2013-08-19 레발레시오 코퍼레이션 타우병증의 치료를 위한 조성물 및 방법
US8104745B1 (en) * 2010-11-20 2012-01-31 Vladimir Vladimirovich Fisenko Heat-generating jet injection
DE102011012504A1 (de) * 2011-02-25 2012-08-30 Rwe Power Ag Verfahren und Vorrichtung zum Homogenisieren einer Mischung von Festbrennstoff in einer Flüssigkeit
DE102011082862A1 (de) * 2011-09-16 2013-03-21 Siemens Aktiengesellschaft Mischeinrichtung zum Mischen von agglomerierendem Pulver in einer Suspension
DE102012209342A1 (de) * 2012-06-04 2013-12-05 Siemens Aktiengesellschaft Verfahren zum Anpassen der Geometrie einer Dispergierdüse
EP2732852A1 (en) * 2012-11-14 2014-05-21 Total Raffinage Marketing Mitigation of vapor cloud explosion by chemical inhibition
CN103016425B (zh) * 2012-12-11 2015-07-22 中国航天空气动力技术研究院 一种三级多喷管中心引射器
WO2016094641A1 (en) * 2014-12-10 2016-06-16 Robert Kremer Multiphase device and system for heating, condensing, mixing, deaerating and pumping
JP2018178781A (ja) * 2017-04-05 2018-11-15 株式会社デンソー エジェクタ及びこれを用いた燃料電池システム並びに冷凍サイクルシステム
CN112316762B (zh) * 2020-10-28 2024-10-15 国电铜陵发电有限公司 一种基于拉法尔喷管的双级旋流氨气空气混合装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB898171A (en) * 1959-09-07 1962-06-06 Sellers Injector Corp Jet cleaner
US3200764A (en) * 1962-09-10 1965-08-17 Jr Robert C Saunders Fluid injector
GB1111723A (en) * 1964-10-28 1968-05-01 Millard Fillmore Smith Process and apparatus for producing fluid-mixing
BE764407A (fr) * 1971-03-17 1971-08-16 Four Industriel Belge Dispositif pour le dosage d'un melange de deux gaz.
US3937445A (en) * 1974-02-11 1976-02-10 Vito Agosta Process and apparatus for obtaining the emulsification of nonmiscible liquids
SU503113A1 (ru) * 1975-01-23 1976-02-15 Государственный Научно-Исследовательский Энергетический Институт Им.Кржижановского Струйный конденсатор
US4344752A (en) * 1980-03-14 1982-08-17 The Trane Company Water-in-oil emulsifier and oil-burner boiler system incorporating such emulsifier
US4430251A (en) * 1981-09-29 1984-02-07 Hoffert Manufacturing Co., Inc. High energy emulsifier
SU1105698A1 (ru) * 1983-05-23 1984-07-30 Калининский Ордена Трудового Красного Знамени Политехнический Институт Водогазовый эжектор
US4569635A (en) * 1983-07-27 1986-02-11 Helios Research Corp. Hydrokinetic amplifier
US4634559A (en) * 1984-02-29 1987-01-06 Aluminum Company Of America Fluid flow control process
SU1281761A1 (ru) * 1985-06-03 1987-01-07 Одесский Политехнический Институт Инжектор
FR2617736A1 (fr) * 1987-07-08 1989-01-13 Sampson Cat Dispositif de production d'emulsion, en vue du nettoyage et de la desinfection
JPH02504600A (ja) * 1988-04-25 1990-12-27 インゼネルヌイ、ツェントル、“トランズブク” 乳濁液を製造するための方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Патент Великобритании N 898171, кл. 71B, 1962. *
2. Патент США N 3200764, кл. 417-185, 1965. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061948A1 (fr) * 1999-04-08 2000-10-19 Innovatsionnaya Kompaniya Fisonic Appareil a jets de gaz et de liquides
US7559212B2 (en) 2005-11-08 2009-07-14 Mark Bergander Refrigerant pressurization system with a two-phase condensing ejector

Also Published As

Publication number Publication date
KR950000002B1 (en) 1995-01-07
CA2050624C (en) 1996-06-04
DK0475284T3 (da) 1994-08-01
YU26292A (sh) 1995-10-24
US5275486A (en) 1994-01-04
ATE108089T1 (de) 1994-07-15
EP0475284A1 (de) 1992-03-18
DE59102114D1 (de) 1994-08-11
US5205648A (en) 1993-04-27
JPH04256428A (ja) 1992-09-11
ES2056542T3 (es) 1994-10-01
EP0475284B1 (de) 1994-07-06
CA2050624A1 (en) 1992-03-07
JPH078330B2 (ja) 1995-02-01

Similar Documents

Publication Publication Date Title
RU2016261C1 (ru) Способ сжатия сред в струйном аппарате и устройство для его осуществления
US6523991B1 (en) Method and device for increasing the pressure or enthalpy of a fluid flowing at supersonic speed
US5343711A (en) Method of reducing flow metastability in an ejector nozzle
US5044552A (en) Supersonic coal water slurry fuel atomizer
US8387956B2 (en) Heat-generating jet injection
WO1993016791A3 (en) A two-phase supersonic flow system
US3200764A (en) Fluid injector
EP0257834A1 (en) Jet pump
MXPA02009404A (es) Aspersores.
JPH01267400A (ja) 蒸気補助式ジェットポンプ
RU2155280C1 (ru) Газожидкостной струйный аппарат
RU2005132597A (ru) Форсунка для распыления находящейся под давлением жидкости
US5045245A (en) Device for atomizing liquid or for comminuting gas into small bubbles
US3968931A (en) Pressure jet atomizer
US5009589A (en) Stored energy combustor fuel injection system
US20070029408A1 (en) Throttleable swirling injector for combustion chambers
Nicholas et al. Mixing pressure-rise parameter for effect of nozzle geometry in diffuser-ejectors
RU8429U1 (ru) Струйный аппарат
RU2152542C1 (ru) Пароводяной насос-подогреватель
RU2225541C2 (ru) Способ сжатия сред в струйном аппарате и устройство для его осуществления
RU2072454C1 (ru) Жидкостно-газовый эжектор
RU2043584C1 (ru) Вихревая труба
RU2028518C1 (ru) Струйный насос
RU2079727C1 (ru) Инжектор
SU1166835A1 (ru) Способ диспергировани жидкости и устройство дл его осуществлени