RU2015107009A - Определение устройства управления удаленного центра движения робота - Google Patents
Определение устройства управления удаленного центра движения робота Download PDFInfo
- Publication number
- RU2015107009A RU2015107009A RU2015107009A RU2015107009A RU2015107009A RU 2015107009 A RU2015107009 A RU 2015107009A RU 2015107009 A RU2015107009 A RU 2015107009A RU 2015107009 A RU2015107009 A RU 2015107009A RU 2015107009 A RU2015107009 A RU 2015107009A
- Authority
- RU
- Russia
- Prior art keywords
- robot
- surgical instrument
- coordinate system
- physical location
- inlet
- Prior art date
Links
- 210000003484 anatomy Anatomy 0.000 claims abstract 26
- 239000013307 optical fiber Substances 0.000 claims 6
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
- A61B1/0016—Holding or positioning arrangements using motor drive units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/061—Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
- A61B2090/065—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
- A61B2090/066—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45118—Endoscopic, laparoscopic manipulator
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
1. Роботизированная хирургическая система, содержащая:хирургический инструмент (20);робота (40), выполненного с возможностью навигации хирургического инструмента (20) относительно анатомической области (10) в пределах системы (42) координат робота (40); иустройство (43) управления роботом,причем устройство (43) управления роботом выполнено с возможностью определения удаленного центра движения для сферического поворота хирургического инструмента (20) в пределах системы (42) координат робота (40), на основе физического расположения отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота; ипричем устройство (43) управления роботом дополнительно выполнено с возможностью управления совмещением роботом (40) удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) для сферического поворота хирургического инструмента (20) относительно входного отверстия в анатомическую область (10).2. Роботизированная хирургическая система по п. 1, в которой хирургический инструмент (20) является эндоскопом.3. Роботизированная хирургическая система по п. 1, в которой:определение удаленного центра движения включает в себя вычисление расстояния от калиброванного расположения рабочего органа (41) робота (40) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40); исовмещение удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) включает в себя физическое расположение виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей
Claims (20)
1. Роботизированная хирургическая система, содержащая:
хирургический инструмент (20);
робота (40), выполненного с возможностью навигации хирургического инструмента (20) относительно анатомической области (10) в пределах системы (42) координат робота (40); и
устройство (43) управления роботом,
причем устройство (43) управления роботом выполнено с возможностью определения удаленного центра движения для сферического поворота хирургического инструмента (20) в пределах системы (42) координат робота (40), на основе физического расположения отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота; и
причем устройство (43) управления роботом дополнительно выполнено с возможностью управления совмещением роботом (40) удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) для сферического поворота хирургического инструмента (20) относительно входного отверстия в анатомическую область (10).
2. Роботизированная хирургическая система по п. 1, в которой хирургический инструмент (20) является эндоскопом.
3. Роботизированная хирургическая система по п. 1, в которой:
определение удаленного центра движения включает в себя вычисление расстояния от калиброванного расположения рабочего органа (41) робота (40) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40); и
совмещение удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) включает в себя физическое расположение виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в
анатомическую область (10) в пределах системы (42) координат робота (40).
4. Роботизированная хирургическая система по п. 1, в которой:
определение удаленного центра движения включает в себя вычисление расстояния от калиброванного расположения потенциометра (60) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), установленного посредством прикрепления потенциометра (60) к рабочему органу (41) робота (40) и к хирургическому инструменту (20); и
совмещение удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) включает в себя физическое расположение виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
5. Роботизированная хирургическая система по п. 4, в которой потенциометр (60) включает в себя трос (64), прикрепленный к хирургическому инструменту (20) смежно с виртуальной точкой (21) опоры перед определением физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающего с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
6. Роботизированная хирургическая система по п. 4, в которой потенциометр (60) включает в себя трос (64), прикрепленный к хирургическому инструменту (20) смежно с виртуальной точкой (21) опоры после определения физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающего с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
7. Роботизированная хирургическая система по п. 1, в которой:
определение удаленного центра движения включает в себя вычисление расстояния от калиброванного расположения дистального конца (22) хирургического инструмента (20) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40); и
совмещение удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) включает в себя физическое расположение виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
8. Роботизированная хирургическая система по п. 7, в которой определение удаленного центра движения дополнительно включает в себя калиброванное расположение дистального конца (22) хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
9. Роботизированная хирургическая система по п. 7, в которой совмещение удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) включает в себя навигацию хирургического инструмента (20) посредством робота (40) в пределах системы (42) координат робота (40), управляемую устройством (43) на основе вычисленного расстояния от калиброванного расположения дистального конца (22) хирургического инструмента (20) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры хирургического инструмента (20).
10. Роботизированная хирургическая система по п. 1, в которой:
определение удаленного центра движения включает в себя вычисление расстояния от калиброванного расположения оптического волокна (90) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры хирургического инструмента (20), установленного посредством прикрепления оптического волокна (90) к рабочему органу (41) робота (40) и к хирургическому инструменту (20); и
совмещение удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) включает в себя физическое расположение виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
11. Роботизированная хирургическая система по п. 10, в которой оптическое волокно (90) прикрепляется к хирургическому инструменту (20) смежно с виртуальной точкой (21) опоры перед определением физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающего с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
12. Роботизированная хирургическая система по п. 10, в которой оптическое волокно (90) прикрепляется к хирургическому инструменту (20) смежно с виртуальной точкой (21) опоры после определения физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающего с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
13. Роботизированная хирургическая система по п. 1, в которой:
определение удаленного центра движения включает в себя вычисление точки равноудаленности виртуальной точки (21) опоры хирургического инструмента (20) от множества калиброванных расположений дистального конца (22) хирургического инструмента (20) в пределах системы (42) координат робота (40) для определения физического расположения виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40); и
совмещение удаленного центра движения хирургического инструмента (20) с входным отверстием (12) в анатомическую область (10) включает в себя физическое расположение виртуальной точки (21) опоры хирургического инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40).
14. Роботизированная хирургическая система по п. 13, в которой определение удаленного центра движения дополнительно включает в себя:
поворот в ручном режиме хирургического инструмента (20) относительно физического расположения входного отверстия (12) в анатомическую область (10) в пределах системы (42) координат робота (40) для перемещения дистального конца (22) хирургического инструмента (20) к каждому из калиброванных расположений дистального конца (22) хирургического инструмента (20) в пределах системы (42) координат робота (40).
15. Роботизированная хирургическая система по п. 13, в которой определение удаленного центра движения дополнительно включает в себя:
выполнение минимизации ошибки калиброванных расположений дистального конца (22) хирургического инструмента (20) в пределах системы (42) координат робота (40) для определения виртуальной точки (21) опоры в качестве точки равноудаленности от калиброванных расположений дистального конца (22) хирургического инструмента (20).
16. Роботизированный способ, содержащий:
определение удаленного центра движения для сферического поворота инструмента (20) в пределах системы (42) координат робота (40) на основе физического расположения отверстия (12) в область (10) объекта в пределах системы (42) координат робота (40); и
совмещение удаленного центра движения инструмента (20) с входным отверстием (12) в область (10) для сферического поворота инструмента (20) относительно входного отверстия (12) в область (10).
17. Роботизированный способ по п. 16, в котором:
определение удаленного центра движения включает в себя вычисление расстояния от калиброванного расположения потенциометра (60) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры инструмента (20) в пределах системы (42) координат робота (40), установленного посредством прикрепления потенциометра (60) к рабочему органу (41) робота (40) и к инструменту (20); и
совмещение удаленного центра движения инструмента (20) с входным отверстием (12) в область (10) включает в себя физическое расположение виртуальной точки (21) опоры инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в область (10) в пределах системы (42) координат робота (40).
18. Роботизированный способ по п. 16, в котором:
определение удаленного центра движения включает в себя вычисление расстояния от калиброванного расположения дистального конца (22) инструмента (20) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры инструмента (20) в пределах системы (42) координат робота (40); и
совмещение удаленного центра движения инструмента (20) с входным отверстием (12) в область (10) включает в себя физическое расположение виртуальной точки (21) опоры инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в область (10) в пределах системы (42) координат робота (40).
19. Роботизированный способ по п. 16, в котором:
определение удаленного центра движения включает в себя вычисление расстояния от калиброванного расположения оптического волокна (90) в пределах системы (42) координат робота (40) до физического расположения виртуальной точки (21) опоры инструмента (20) в пределах системы (42) координат робота (40), установленного посредством прикрепления оптического волокна (90) к рабочему органу (41) робота (40) и к инструменту (20); и
совмещение удаленного центра движения инструмента (20) с входным отверстием (12) в область (10) включает в себя физическое расположение виртуальной точки (21) опоры инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в область (10) в пределах системы (42) координат робота (40).
20. Роботизированный способ по п. 16, в котором:
определение удаленного центра движения включает в себя вычисление точки равноудаленности виртуальной точки (21) опоры инструмента (20) от множества калиброванных расположений дистального конца (22) инструмента (20) в пределах системы (42) координат робота (40) для определения физического расположения виртуальной точки (21) опоры инструмента (20) в пределах системы (42) координат робота (40); и
совмещение удаленного центра движения инструмента (20) с входным отверстием (12) в область (10) включает в себя физическое расположение виртуальной точки (21) опоры инструмента (20) в пределах системы (42) координат робота (40), по меньшей мере частично совпадающее с физическим расположением входного отверстия (12) в область (10) в пределах системы (42) координат робота (40).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261678708P | 2012-08-02 | 2012-08-02 | |
US61/678,708 | 2012-08-02 | ||
PCT/IB2013/056336 WO2014020571A1 (en) | 2012-08-02 | 2013-08-02 | Controller definition of a robotic remote center of motion |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2015107009A true RU2015107009A (ru) | 2016-09-27 |
Family
ID=49261579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015107009A RU2015107009A (ru) | 2012-08-02 | 2013-08-02 | Определение устройства управления удаленного центра движения робота |
Country Status (7)
Country | Link |
---|---|
US (3) | US9603666B2 (ru) |
EP (1) | EP2879609B2 (ru) |
JP (1) | JP6310455B2 (ru) |
CN (1) | CN104519823B (ru) |
BR (1) | BR112015001895A2 (ru) |
RU (1) | RU2015107009A (ru) |
WO (1) | WO2014020571A1 (ru) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130303944A1 (en) | 2012-05-14 | 2013-11-14 | Intuitive Surgical Operations, Inc. | Off-axis electromagnetic sensor |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
BR112015001895A2 (pt) | 2012-08-02 | 2017-07-04 | Koninklijke Philips Nv | sistema cirúrgico robótico, e método robótico |
EP3789164B1 (en) | 2012-08-15 | 2024-07-31 | Intuitive Surgical Operations, Inc. | Movable surgical mounting platform controlled by manual motion of robotic arms |
EP2884935B1 (en) | 2012-08-15 | 2020-04-08 | Intuitive Surgical Operations, Inc. | Phantom degrees of freedom in joint estimation and control |
KR102186365B1 (ko) * | 2012-08-15 | 2020-12-03 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술 시스템의 운동을 조종하기 위한 가상 자유도 |
US20140148673A1 (en) | 2012-11-28 | 2014-05-29 | Hansen Medical, Inc. | Method of anchoring pullwire directly articulatable region in catheter |
GB2523224C2 (en) | 2014-03-07 | 2021-06-02 | Cambridge Medical Robotics Ltd | Surgical arm |
JP6660302B2 (ja) | 2014-03-17 | 2020-03-11 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 基準目標に合わせるシステム及び方法 |
EP2923669B1 (en) | 2014-03-24 | 2017-06-28 | Hansen Medical, Inc. | Systems and devices for catheter driving instinctiveness |
EP2959945B1 (en) * | 2014-06-23 | 2017-03-29 | Loren Godfrey Jr. | Minimally invasive applicators for robotic and non-robotic-assisted intraoperative radiotherapy |
EP3169264A1 (en) * | 2014-07-15 | 2017-05-24 | Koninklijke Philips N.V. | Image integration and robotic endoscope control in x-ray suite |
WO2016054256A1 (en) | 2014-09-30 | 2016-04-07 | Auris Surgical Robotics, Inc | Configurable robotic surgical system with virtual rail and flexible endoscope |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
GB201419645D0 (en) * | 2014-11-04 | 2014-12-17 | Cambridge Medical Robotics Ltd | Characterising motion constraints |
WO2016092354A1 (en) * | 2014-12-11 | 2016-06-16 | Sudhir Srivastava | Minimally invasive surgical cannula |
CN104434016A (zh) * | 2014-12-12 | 2015-03-25 | 上海市同济医院 | 一种腹腔镜下两维弯曲可控胆道镜夹持器 |
JP6657244B2 (ja) | 2015-02-26 | 2020-03-04 | コヴィディエン リミテッド パートナーシップ | ソフトウェア及び誘導管を備えたロボット制御の遠隔運動中心 |
JP2016187844A (ja) * | 2015-03-30 | 2016-11-04 | セイコーエプソン株式会社 | ロボット、ロボット制御装置およびロボットシステム |
GB2538497B (en) | 2015-05-14 | 2020-10-28 | Cmr Surgical Ltd | Torque sensing in a surgical robotic wrist |
US20200246085A1 (en) * | 2015-09-28 | 2020-08-06 | Koninklijke Philips N.V. | Optical registation of a remote center of motion robot |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
EP3397184A1 (en) | 2015-12-29 | 2018-11-07 | Koninklijke Philips N.V. | System, control unit and method for control of a surgical robot |
US20210212777A1 (en) | 2016-03-04 | 2021-07-15 | Covidien Lp | Inverse kinematic control systems for robotic surgical system |
WO2017158180A1 (en) | 2016-03-17 | 2017-09-21 | Koninklijke Philips N.V. | Control unit, system and method for controlling hybrid robot having rigid proximal portion and flexible distal portion |
EP3435906B1 (en) * | 2016-03-31 | 2024-05-08 | Koninklijke Philips N.V. | Image guided robotic system for tumor aspiration |
JP6831642B2 (ja) * | 2016-04-15 | 2021-02-17 | 川崎重工業株式会社 | 外科手術システム |
CN106236276B (zh) * | 2016-09-28 | 2019-09-17 | 微创(上海)医疗机器人有限公司 | 手术机器人系统 |
US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
US10582836B1 (en) * | 2017-03-13 | 2020-03-10 | The Trustees of Dartmouth College and Dartmouth-Hitchcock Clinic | System and method of laryngoscopy surgery and imaging |
KR102695556B1 (ko) | 2017-05-12 | 2024-08-20 | 아우리스 헬스, 인코포레이티드 | 생검 장치 및 시스템 |
EP4437999A3 (en) | 2017-06-28 | 2024-12-04 | Auris Health, Inc. | Instrument insertion compensation |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
US10464209B2 (en) * | 2017-10-05 | 2019-11-05 | Auris Health, Inc. | Robotic system with indication of boundary for robotic arm |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
US10016900B1 (en) | 2017-10-10 | 2018-07-10 | Auris Health, Inc. | Surgical robotic arm admittance control |
AU2018380139B2 (en) | 2017-12-06 | 2024-01-25 | Auris Health, Inc. | Systems and methods to correct for uncommanded instrument roll |
US11510736B2 (en) | 2017-12-14 | 2022-11-29 | Auris Health, Inc. | System and method for estimating instrument location |
US10765303B2 (en) | 2018-02-13 | 2020-09-08 | Auris Health, Inc. | System and method for driving medical instrument |
TWI695765B (zh) | 2018-07-31 | 2020-06-11 | 國立臺灣大學 | 機械手臂 |
JP6685052B2 (ja) * | 2018-08-30 | 2020-04-22 | リバーフィールド株式会社 | 推定装置、推定方法およびプログラム |
KR20210073542A (ko) | 2018-09-28 | 2021-06-18 | 아우리스 헬스, 인코포레이티드 | 의료 기구를 도킹시키기 위한 시스템 및 방법 |
EP3856065A4 (en) | 2018-09-28 | 2022-06-29 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
CA3111088A1 (en) * | 2018-10-30 | 2020-05-07 | Covidien Lp | Binding and non-binding articulation limits for robotic surgical systems |
WO2020197671A1 (en) | 2019-03-22 | 2020-10-01 | Auris Health, Inc. | Systems and methods for aligning inputs on medical instruments |
EP4076260B1 (en) * | 2019-12-19 | 2025-07-09 | Covidien LP | Systems and methods for mitigating collision of a robotic system |
CN119055360A (zh) | 2019-12-31 | 2024-12-03 | 奥瑞斯健康公司 | 解剖特征识别和瞄准 |
EP4084722A4 (en) | 2019-12-31 | 2024-01-10 | Auris Health, Inc. | ALIGNMENT INTERFACES FOR PERCUTANE ACCESS |
KR20220123076A (ko) | 2019-12-31 | 2022-09-05 | 아우리스 헬스, 인코포레이티드 | 경피 접근을 위한 정렬 기법 |
GB2593741B (en) * | 2020-03-31 | 2024-05-15 | Cmr Surgical Ltd | Configuring a surgical robotic system |
USD1022197S1 (en) | 2020-11-19 | 2024-04-09 | Auris Health, Inc. | Endoscope |
CN113520604A (zh) * | 2021-06-17 | 2021-10-22 | 清华大学 | 一种模拟医生操作的气管插管机器人 |
CN114952806B (zh) * | 2022-06-16 | 2023-10-03 | 法奥意威(苏州)机器人系统有限公司 | 约束运动控制方法、装置、系统和电子设备 |
CN116473486B (zh) * | 2023-04-19 | 2024-11-22 | 新光维医疗科技(苏州)股份有限公司 | 一种基于图像分析的内窥镜工作状态调节方法及系统 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5279309A (en) * | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US6406472B1 (en) | 1993-05-14 | 2002-06-18 | Sri International, Inc. | Remote center positioner |
JPH08215205A (ja) † | 1995-02-13 | 1996-08-27 | Olympus Optical Co Ltd | 医療用マニピュレータ |
US5855583A (en) † | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5807377A (en) * | 1996-05-20 | 1998-09-15 | Intuitive Surgical, Inc. | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6493608B1 (en) * | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
JP3646163B2 (ja) * | 2001-07-31 | 2005-05-11 | 国立大学法人 東京大学 | 能動鉗子 |
JP2005516786A (ja) | 2002-02-06 | 2005-06-09 | ザ ジョンズ ホプキンズ ユニバーシティ | 遠隔動心ロボットシステムおよび方法 |
US20070018958A1 (en) * | 2003-10-24 | 2007-01-25 | Tavakoli Seyed M | Force reflective robotic control system and minimally invasive surgical device |
JP2005329476A (ja) † | 2004-05-18 | 2005-12-02 | Keio Gijuku | 操作部材の制御方法および装置 |
US8167872B2 (en) * | 2006-01-25 | 2012-05-01 | Intuitive Surgical Operations, Inc. | Center robotic arm with five-bar spherical linkage for endoscopic camera |
US8469945B2 (en) * | 2006-01-25 | 2013-06-25 | Intuitive Surgical Operations, Inc. | Center robotic arm with five-bar spherical linkage for endoscopic camera |
US9549663B2 (en) | 2006-06-13 | 2017-01-24 | Intuitive Surgical Operations, Inc. | Teleoperated surgical retractor system |
EP2077785B1 (de) * | 2006-10-05 | 2012-02-08 | Erbe Elektromedizin GmbH | Rohrschaftinstrument |
WO2009086505A2 (en) | 2007-12-27 | 2009-07-09 | University Of South Florida | Multichannel trocar |
DE102008016146B4 (de) * | 2008-03-28 | 2010-01-28 | Aktormed Gmbh | Operations-Assistenz-System zur Führung eines chirurgischen Hilfsinstrumentes |
KR100944412B1 (ko) * | 2008-10-13 | 2010-02-25 | (주)미래컴퍼니 | 수술용 슬레이브 로봇 |
CN102292041A (zh) * | 2009-01-20 | 2011-12-21 | 伊顿株式会社 | 吸脂手术机器人 |
GB0908368D0 (en) | 2009-05-15 | 2009-06-24 | Univ Leuven Kath | Adjustable remote center of motion positioner |
US8282636B2 (en) * | 2009-08-10 | 2012-10-09 | Imds Corporation | Orthopedic external fixator and method of use |
US9066757B2 (en) * | 2009-08-10 | 2015-06-30 | Virak Orthopedic Research Llc | Orthopedic external fixator and method of use |
CN101773401B (zh) * | 2010-01-06 | 2013-05-08 | 哈尔滨工程大学 | 外科手术机器人多自由度手指 |
WO2011088400A2 (en) | 2010-01-14 | 2011-07-21 | The Regents Of The University Of California | Apparatus, system, and method for robotic microsurgery |
CN102711586B (zh) * | 2010-02-11 | 2015-06-17 | 直观外科手术操作公司 | 在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向的方法和系统 |
DE112012000752A5 (de) * | 2011-02-11 | 2013-11-21 | Olaf Christiansen | Endoskopisches Bildverarbeitungssystem mit Mitteln, welche im Erfassungsbereich einer optischen Digitalkamera eine geometrische Vermessungsinformation erzeugen |
BR112015001895A2 (pt) | 2012-08-02 | 2017-07-04 | Koninklijke Philips Nv | sistema cirúrgico robótico, e método robótico |
-
2013
- 2013-08-02 BR BR112015001895A patent/BR112015001895A2/pt not_active IP Right Cessation
- 2013-08-02 WO PCT/IB2013/056336 patent/WO2014020571A1/en active Application Filing
- 2013-08-02 EP EP13770511.7A patent/EP2879609B2/en active Active
- 2013-08-02 JP JP2015524898A patent/JP6310455B2/ja active Active
- 2013-08-02 US US14/418,593 patent/US9603666B2/en active Active
- 2013-08-02 RU RU2015107009A patent/RU2015107009A/ru not_active Application Discontinuation
- 2013-08-02 CN CN201380041022.6A patent/CN104519823B/zh active Active
-
2017
- 2017-03-27 US US15/470,523 patent/US9913696B2/en active Active
-
2018
- 2018-03-12 US US15/918,648 patent/US10675105B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2014020571A1 (en) | 2014-02-06 |
BR112015001895A2 (pt) | 2017-07-04 |
JP2015524309A (ja) | 2015-08-24 |
CN104519823A (zh) | 2015-04-15 |
US9603666B2 (en) | 2017-03-28 |
EP2879609B2 (en) | 2022-12-21 |
US20180200013A1 (en) | 2018-07-19 |
EP2879609B1 (en) | 2020-03-25 |
US20150202015A1 (en) | 2015-07-23 |
EP2879609A1 (en) | 2015-06-10 |
US9913696B2 (en) | 2018-03-13 |
US10675105B2 (en) | 2020-06-09 |
US20170196644A1 (en) | 2017-07-13 |
JP6310455B2 (ja) | 2018-04-11 |
CN104519823B (zh) | 2018-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2015107009A (ru) | Определение устройства управления удаленного центра движения робота | |
CN104758066B (zh) | 用于手术导航的设备及手术机器人 | |
EP3766450B1 (en) | Surgical robot system for stereotactic surgery | |
WO2014121262A3 (en) | Hybrid control surgical robotic system | |
EP3777749A3 (en) | System and method for preparing surgery on a patient at a target site defined by a virtual object | |
IN2014CN04516A (ru) | ||
KR20180113512A (ko) | 로봇의 사용자 위치설정을 안내하는 방법 및 시스템 | |
RU2014146310A (ru) | Инструменты наведения для ручного управления эндоскопом с помощью 3-d изображений, полученных до операции и во время операции | |
CN104688351B (zh) | 一种基于两个双目视觉系统的手术器械无遮挡定位方法 | |
WO2012168904A3 (en) | Sensor positioning for 3d scanning | |
BR112013024018A2 (pt) | sistema de posicionamento de ferramenta de trabalho | |
CN103705307A (zh) | 手术导航系统及医疗机器人 | |
ATE417711T1 (de) | Roboter und verfahren zur registrierung eines roboters | |
JP2016514493A5 (ru) | ||
JP2015502807A5 (ru) | ||
EP2246763A3 (en) | System and method for simultaneous localization and map building | |
WO2012115360A3 (ko) | 사용자 지정에 따라 결정되는 변위 정보에 기초하여 수술을 수행하는 수술용 로봇 시스템과 그 제어 방법 | |
JP2010525838A5 (ru) | ||
CN109620408B (zh) | 一种基于电磁定位的增强现实手术导航系统标定方法 | |
WO2012100270A3 (en) | Tracking of tumor location for targeted radiation treatment | |
WO2015031877A3 (en) | Endo-navigation systems and methods for surgical procedures and cpr | |
NZ725015A (en) | A method for localizing a robot in a localization plane | |
FR2972012B1 (fr) | Procede d'assistance au placement d'elements de construction d'un ouvrage de genie civil | |
RU2014127125A (ru) | Определение местоположения точки введения хирургического инструмента | |
WO2012060586A3 (ko) | 수술 로봇 시스템 및 그 복강경 조작 방법 및 체감형 수술용 영상 처리 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FA93 | Acknowledgement of application withdrawn (no request for examination) |
Effective date: 20160803 |