[go: up one dir, main page]

RU2005803C1 - Способ получения ферромарганца для сварочного производства - Google Patents

Способ получения ферромарганца для сварочного производства Download PDF

Info

Publication number
RU2005803C1
RU2005803C1 SU5034207A RU2005803C1 RU 2005803 C1 RU2005803 C1 RU 2005803C1 SU 5034207 A SU5034207 A SU 5034207A RU 2005803 C1 RU2005803 C1 RU 2005803C1
Authority
RU
Russia
Prior art keywords
alloy
ferromanganese
ratio
salt
naoh
Prior art date
Application number
Other languages
English (en)
Inventor
Николай Васильевич Толстогузов
Ирина Дмитриевна Рожихина
Ольга Ивановна Нохрина
Виталий Федорович Гуменный
Original Assignee
Николай Васильевич Толстогузов
Ирина Дмитриевна Рожихина
Ольга Ивановна Нохрина
Виталий Федорович Гуменный
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Васильевич Толстогузов, Ирина Дмитриевна Рожихина, Ольга Ивановна Нохрина, Виталий Федорович Гуменный filed Critical Николай Васильевич Толстогузов
Priority to SU5034207 priority Critical patent/RU2005803C1/ru
Application granted granted Critical
Publication of RU2005803C1 publication Critical patent/RU2005803C1/ru

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Использование: изобретение относится к черной металлургии, а именно к способам получения ферромарганца для сварочного производства. Сущность изобретения: сплав смешивают в соотношении, равном /4 - 2/ : 1, с порошком солевого расплава NaCl и NaОH, предварительно сплавленного в солеплавильной печи при 700 - 900С в течение 60 - 120 мин, брикеты отмывают от соли и просушивают. 2 з. п. ф-лы, 1 табл.

Description

Изобретение относится к черной металлургии и может быть использовано при производстве ферросплавов.
Среднеуглеродистый ферромарганец является обязательной составляющей обмазки сварочных электродов. Поэтому сварка как углеродистой, так и легированной стали без среднеуглеродистого ферромарганца невозможна.
Качество среднеуглеродистого ферромарганца оказывает значительное влияние на качество и надежность сварки. Особенно большое влияние на качество и надежность сварки оказывает фосфор. Фосфор является основной причиной, вызывающей сварочные трещины. Повышение содержания фосфора и в сварочных электродах (в т. ч. особенно в среднеуглеродистом ферромарганце, входящем в состав их обмазки), и в свариваемой стали понижает свариваемость любого металла. Поэтому для производства среднеуглеродистого ферромарганца используются только высококачественные малофосфористые руды (обычно P/Mn ≅0,0031), а для производства восстановителя - передельного силикомарганца специально выплавленный малофосфористый передельный шлак. По этим причинам плавка этого сплава осуществляется трехстадийным процессом, извлечение марганца из богатых концентратов на последней стадии плавки составляет лишь 13-23% , а сквозное извлечение не превышает 40% . В результате среднеуглеродистый ферромарганец для сварочного производства становится все более дорогим и дефицитным. Несмотря на огромные запасы марганца в стране для производства средне- и малоуглеродистого ферромарганца приходится около 0,3 млн. т руды приобретать за валюту.
Наиболее близким к заявляемому является способ кислородного рафинирования углеродистого ферромарганца, включающий выплавку сплава карботермическим процессом, и последующее рафинирование сплава от углерода путем его продувки газообразным кислородом в кислородном конвертере. При этом способе производства сквозное извлечение марганца в готовый сплав повышается до 55-60% , а суммарный расход электроэнергии сокращается практически в два раза (на 2500-3000 кВтч/т). Однако при этом способе производства уносится с газами 15-20% марганца. Последнее связано с тем, что марганец отличается аномально низкой температурой кипения. Дo 10% марганца, окисляясь, переходит в шлак. Поэтому окислительное рафинирование углеродистого ферромарганца возможно только при наличии надежно работающих установок для улавливания пыли (пыль и конденсаты марганца могут быть причиной очень серьезных, в т. ч. смертельных отравлений организма. Поэтому ПДК для марганца аэрозоль конденсации не превышает 0,03 мг/м3). Другим недостатком этого способа производства является то, что вследствие значительного угара марганца при кислородном рафинировании содержание фосфора в сплаве значительно повышается. Поэтому для плавки таким способом ферромарганца с содержанием фосфора ≅ 0,30% , пригодного для сварочного производства, нужны еще более чистые, чем для силикотермической плавки малофосфористые руды (P/Mn ≅ 0,0026% ). Между тем в нашей стране богатые малофосфористые руды выработаны. В стране все больше добывается карбонатных и бедных окисных руд, удельное содержание фосфора в которых в 3-4 раза выше допустимого для плавки среднеуглеродистого ферромарганца для сварочного производства.
Задачей изобретения является повышение извлечения марганца при производстве среднеуглеродистого ферромарганца. Другой задачей изобретения является понижение в сплаве содержания фосфора. Наконец, не менее важной задачей изобретения является возможность выплавки ферромарганца, пригодного для сварочного производства непосредственно из фосфористых (P/Mn≈ 0.008 -0.010) карбонатных или бедных окисных руд, т. е. уменьшения затрат дефицитной богатой малофосфористой руды.
Поставленная задача достигается тем, что сначала выплавляется из карбонатной руды с отношением Mn/Fe≈22÷25 ферромарганец ( Mn-85-86 % ; Fe ≅ 5 % ; P≈ 0,7 % ; Si= 4-5 % ), который разливается в слитки толщиной 250-300 мм. Слитки после остывания дробятся до крупности 30-100 мм и выдерживаются на воздухе в течение 4-14 сут. При этом сплав рассыпается в порошок. При рассыпании сплава содержание углерода в нем понижается до 1,5-2,0% , а фосфора до 0,4-0,5% . Затем рассыпавшийся сплав смешивают с порошком сплава (NaCl-NaOH) в соотношении (2-4): 1 и брикетируют, а брикеты затем нагревают до 700-900оС и выдерживают в течение 60-120 мин, после чего сплав отмывают горячей водой от соли, сушат, додрабливают до крупности 100-200 микрон и используют для изготовления сварочных электродов.
При таком способе плавки благодаря повышенному содержанию кремния в металл извлекается 80-85% марганца, а сплав самопроизвольно рассыпается на воздухе. При этом из металла удаляется значительная часть углерода. При выдержке рассыпавшегося сплава со смесью NaCl-NaOH из металла окисляется фосфор по реакции
Mn3P + 5NaOH = Na3PO4 +
+ Na2O + 3Mn + 5/2H2 , (I) после чего растворяется в солевом расплаве. При этом содержание фосфора понижается до 0,05-0,20% . Соль, остатки щелочи и фосфат натрия затем легко отмываются горячей водой, а порошок ферромарганца сушится, додрабливается до крупности 100-200 микрон и используется для изготовления сварочных электродов. Извлечение марганца в среднеуглеродистый ферромарганец при таком способе его производства составляет 80-85% , а расход электроэнергии даже при использовании бедной карбонатной руды по сравнению с силикотермической плавкой понижается на 2500-3000 кВтч/т.
Для реализации подобной технологии плавки наиболее важными являются состав сплава, условия его охлаждения после разливки, соотношение между металлом и смесью NaCl-NaOH, температура и время выдержки брикетов. Самопроизвольное рассыпание сплава происходит по границам зерна, обогащенных ликватами, что ускоряет и делает более полным удаление фосфора во время выдержки порошка металла при 700-900оС. Ускорению рассыпания способствует повышение содержания кремния до 4-5% и понижение в сплаве концентрации железа (ниже 5% ), а также медленное охлаждение после разливки, чему способствует значительная толщина слитка (250-300 мм). При соотношении между NaCl-NaOH, равном 2: 1, и расходе смеси 25-50% от массы дефосфорируемого сплава (отношение металл: смесь (NaCl-NaOH) (4-2): 1 можно в соответствии со стехиометрией реакции (I) удалить в 2,5-5 раз больше фосфора чем содержится в сплаве перед дефосфорацией (≈ 0,4-0,5% ). Однако уменьшение концентрации NaOH понижает ее активность и делает необходимым очень большие выдержки порошка металла в расплаве NaCl-NaOH. При меньшем расходе дефосфоратора (смеси NaCl-NaOH) (отношение больше 4: 1) уменьшается степень дефосфорации и растет ее продолжительность при большем, чем 2: 1 отношении степень дефосфорации не повышается, а расход смеси NaCl-NaOH растет.
При 700-900оС NaCl-NaOH плавится и активно реагирует с поверхностью порошка металла. Наилучшие результаты получаются при t≈ 700-500°C 700-750оС. Последнее связано с тем, что смесь при этом находится в жидком состоянии, а концентрация NaOH максимальна. При повышении температуры излишне растет жидкоподвижность, и расплав вытекает из брикета, что уменьшает время соприкосновения расплава с дефосфорируемым металлом. Кроме этого особенно при t > 900оС уменьшается и концентрация (OH), что связано с развитием термической диссоциации NaOH.
П р и м е р 1. В промышленных условиях способ реализуется следующим образом.
Ферромарганец выплавляется из агломерата или обожженного карбонатного концентрата (Mn - 40-42% ; Fe ≈ 1,6% ; P - 0,3-0,4% ). Если концентрация железа в агломерате высокая, в шихту добавляется небольшое количество МФШ или маложелезистого концентрата. Шихта рассчитывается на получение в сплаве 4-5% Si, что повышает извлечение марганца и склонность сплава к рассыпанию. Сплав выпускается в ковш и после отделения от шлака разливается в плоские изложницы с высокими бортами. Затвердевший металл поплавочно грузится в металлические короба и вывозится в остывочно-разделочный пролет, после остывания дробится из куски весом до 20 кг и выдерживается в коробках на протяжении 4-14 сут до полного рассыпания. Рассыпавшийся сплав затем смешивают с порошком NaCl + NaOH (2: 1), предварительно сплавленным в солеплавильных печах при 800оС, в соотношении (4-2): 1. Соотношение принимается в зависимости от содержания в сплаве фосфора (при высокой концентрации 0.5-0.7 % P≈2÷1; при пониженной (3-4): 1 и без добавки связующего брикетируется. Брикетs затем засыпаются в коробки и нагреваются до 700-900оС сначала за счет тепла вновь разлитых новых порций металла, затем в печи, после чего металл отмывается от соли, подсушиваетcя и в мягких контейнерах отгружается потребителю.
П р и м е р 2. В лабораторной печи 100 кВт на шихте из агломерата, доломитизированного известняка и кокса выплавили ферромарганец (Mn - 84.0% ; Si - 5,2% ; P - 0,77% ; Fe - 4,2% ; С - 5,8% ). Металл затем выдержали до полного рассыпания, смешали с порошком, полученным из сплава NaCl-NaOH (мас. отношение 2: 1), сбрикетировали и выдержали при 700-900оС в течение 60-120 мин. После чего сплав отмыли от соли, просушили и проанализировали. Полученные результаты приведены в таблице.
Как видно из приведенных данных при обработке при 700-900оС и соотношении в брикетах сплав - солевой расплав (4-2): 1 возможно получение порошка ферромарганца, пригодного для сварочного производства. Содержание кремния в нем составляет ≈5,2-5,5% , что не препятствует использованию порошка для приготовления высококачественых электродов.
Изобретение позволяет получить следующие преимущества.
Для производства ферромарганца использовать дешевые карбонатные руды, в т. ч. с удельным содержанием фосфора 0,008-0,010% /% Mn.
Повысить извлечение марганца в сплав по сравнению с аналогом (силикотермической плавкой) практически в два раза и на 20-25% по сравнению с окислительным рафинированием газообразным кислородом.
Значительно снизить затраты на производство сплава. (56) Гасик М. И. Электротермия марганца, Киев: Техника, 1979, с. 151-152.
Мизин В. Г. , Хобот В. И. , Данилевич Ю. А. и др. Рафинирование ферромарганца продувкой газообразным кислородом, Сталь, 1983, N 5, с. 12-15.

Claims (3)

1. СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАРГАНЦА ДЛЯ СВАРОЧНОГО ПРОИЗВОДСТВА, включающий плавку сплава непрерывным карботермическим процессом в руднотермической электропечи, отличающийся тем, что после выплавки сплав выдерживают до полного рассыпания, затем сплав смешивают в соотношении 4 - 2 : 1 с порошком солевого расплава NaCl и NaOH, предварительно сплавленного в солеплавильной печи при 800oC в соотношении 2 : 1, брикетируют, выдерживают при 700 - 900oC в течение 60 - 120 мин, брикеты отмывают от соли и просушивают.
2. Способ по п. 1, отличающийся тем, что в шихте для выплавки ферромарганца используют рядовую фосфористую руду или агломерат с отношением в нем Р/Мn = 0,008 - 0,010 и Мn/Fe = 22 - 25.
3. Способ по пп. 1 и 2, отличающийся тем, что шихту рассчитывают на получение кремния в сплаве 4 - 5% , а сплав после выпуска разливают в плоские слитки толщиной 250 - 300 мм.
SU5034207 1992-03-26 1992-03-26 Способ получения ферромарганца для сварочного производства RU2005803C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5034207 RU2005803C1 (ru) 1992-03-26 1992-03-26 Способ получения ферромарганца для сварочного производства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5034207 RU2005803C1 (ru) 1992-03-26 1992-03-26 Способ получения ферромарганца для сварочного производства

Publications (1)

Publication Number Publication Date
RU2005803C1 true RU2005803C1 (ru) 1994-01-15

Family

ID=21600283

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5034207 RU2005803C1 (ru) 1992-03-26 1992-03-26 Способ получения ферромарганца для сварочного производства

Country Status (1)

Country Link
RU (1) RU2005803C1 (ru)

Similar Documents

Publication Publication Date Title
Dippenaar Industrial uses of slag (the use and re-use of iron and steelmaking slags)
RU2226220C2 (ru) Способ переработки шлаков от производства стали
US20070283785A1 (en) Process for recovery of iron from copper slag
CN101838718A (zh) 中频电炉炉内脱磷脱硫的冶炼工艺
CN100357470C (zh) 用钒钛铁精矿制取钛铁、钢及钒铁的方法
US5279644A (en) Fire refining precious metals asay method
JPH06145836A (ja) アルミニウム滓を利用した合金の製法
Matinde et al. Metallurgical overview and production of slags
US4521245A (en) Method of processing sulphide copper- and/or sulphide copper-zinc concentrates
CN116479214B (zh) 一种合成渣及其制备方法和应用
RU2005803C1 (ru) Способ получения ферромарганца для сварочного производства
CN111235349A (zh) 富钒渣冶炼生产硅钒合金方法及硅钒合金
US6478840B1 (en) Reduction of chromium content in slag during melting of stainless steel in electric arc furnaces
KR100226897B1 (ko) 용철제조용 고온 예비환원 분철광석의 괴성화방법
RU2566230C2 (ru) Способ переработки в кислородном конвертере низкокремнистого ванадийсодержащего металлического расплава
Kokal et al. Metallurgical Uses—Fluxes for Metallurgy
AU606420B2 (en) Non-ferrous metal recovery
EP0235291A4 (de) Verfahren zur herstellung von vanadiumschlacke.
US3942977A (en) Process for making iron or steel utilizing lithium containing material as auxiliary slag formers
US3556774A (en) Process for the reduction of molten iron ore
SU996488A1 (ru) Способ переработки отработанных аккумул торных батарей
RU2082785C1 (ru) Способ извлечения металла из шлака производства передельного ферросиликохрома
US2227287A (en) Chromium metallurgy
RU2791998C1 (ru) Способ прямого получения чугуна из фосфорсодержащей железной руды или концентрата с одновременным удалением фосфора в шлак
US210020A (en) Improvement in working nickel ores and manufacture of nickel