[go: up one dir, main page]

RU2003114753A - Способ и система для обмена земной энергией между земными телами и энергообменником, использующим природную тепловую энергию, прежде всего для получения электрического тока - Google Patents

Способ и система для обмена земной энергией между земными телами и энергообменником, использующим природную тепловую энергию, прежде всего для получения электрического тока

Info

Publication number
RU2003114753A
RU2003114753A RU2003114753/06A RU2003114753A RU2003114753A RU 2003114753 A RU2003114753 A RU 2003114753A RU 2003114753/06 A RU2003114753/06 A RU 2003114753/06A RU 2003114753 A RU2003114753 A RU 2003114753A RU 2003114753 A RU2003114753 A RU 2003114753A
Authority
RU
Russia
Prior art keywords
pipe
direct flow
well
earth
water
Prior art date
Application number
RU2003114753/06A
Other languages
English (en)
Other versions
RU2269728C2 (ru
Inventor
Ханс ХИЛЬДЕБРАНД
Original Assignee
Хита Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хита Аг filed Critical Хита Аг
Publication of RU2003114753A publication Critical patent/RU2003114753A/ru
Application granted granted Critical
Publication of RU2269728C2 publication Critical patent/RU2269728C2/ru

Links

Claims (35)

1. Способ обмена энергией между земными телами и энергообменником (2, 2а), который используется прежде всего для выработки электроэнергии и соединен в контуре циркуляции теплоносителя линией (10) прямого потока, по которой в него поступает водяной пар, и линией (14) обратного потока, по которой из него выходит оборотная вода, с использующим земную тепловую энергию теплообменником (18), который расположен под земной поверхностью и доходит до глубины, на которой в нем за счет тепловой энергии земного тела образуется водяной пар, отличающийся тем, что линии прямого и обратного потока ведут в одну общую скважину (22), в которой имеется по меньшей мере одна теплоизолированная труба (20, 20а, 20b) прямого потока, окруженная разделительной трубой (24), с внешней стороны которой в радиальном направлении находится область (28) обратного потока для оборотной воды, в которой находится по меньшей мере одна труба (30) обратного потока, соединенная с линией (14) обратного потока, при этом по меньшей мере нижняя область скважины заполнена пористым наполнителем (38) и соединена с нижним входным отверстием (46, 46а) трубы (20, 20а, 20b) прямого потока по меньшей мере у дна скважины (22) через одно или несколько сквозных отверстий (44, 44а), выполненных в разделительной трубе (24).
2. Способ по п.1, отличающийся тем, что для запуска процесса циркуляции оборотной воды и образования пара используют по меньшей мере один циркуляционный насос (92, 94).
3. Способ по п.3, отличающийся тем, что для запуска процесса циркуляции оборотной воды находящийся в трубе (20, 20а, 20b) прямого потока столб воды вытесняют из нее средой, создающей в трубе повышенное давление, до тех пор, пока образующийся в скважине водяной пар с определенными параметрами не попадет в энергообменник (2, 2а).
4. Способ по п.3, отличающийся тем, что среду, создающую повышенное давление, подают в верхнюю область трубы (20, 20b) прямого потока.
5. Способ по п.3, отличающийся тем, что среду, создающую повышенное давление, подают в верхнюю область трубы (30) обратного потока.
6. Способ по любому из пп.1-5, отличающийся тем, что среду, создающую повышенное давление, предварительно нагревают.
7. Способ по любому из пп.3-6, отличающийся тем, что в качестве среды, создающей повышенное давление, используют сжатый воздух.
8. Способ по любому из пп.3-6, отличающийся тем, что в качестве среды, создающей повышенное давление, используют водяной пар, который получают предпочтительно путем непрерывного испарения столба воды, находящейся в трубе (20b) прямого потока, с помощью погружного нагревателя (68).
9. Способ по любому из пп.1-5, отличающийся тем, что в качестве среды, создающей повышенное давление, используют напорную воду.
10. Способ по любому из пп.3-6, отличающийся тем, что оборотную воду (64), которую при запуске процесса циркуляции вытесняют из трубы (20, 20а, 20b) прямого потока, собирают в отдельной емкости (62), предпочтительно обрабатывают и используют для пополнения контура циркуляции оборотной воды.
11. Способ по любому из пп.1-10, отличающийся тем, что в трубу (30) обратного потока оборотную воду подают с температурой меньше 100°С, предпочтительно с температурой 20-30°С.
12. Способ по любому из пп.1-11, отличающийся тем, что в теплообменник (2, 2а) водяной пар подают с температурой больше 100°С, предпочтительно с температурой 350-370°С.
13. Способ по любому из пп.1-12, отличающийся тем, что давление образующегося водяного пара уравновешивают путем вытеснения вниз и увеличения температуры и давления расположенного выше пара в области (28) обратного потока столба воды, из которой в области (20, 20а, 20b, 24) прямого потока, например на глубине 7500-12000 м, образуется водяной пар с давлением, например, 50-60 бар, который проходит к энергообменнику (2, 2а) предпочтительно через теплоизолированную область (20, 20а, 20b, 24) прямого потока.
14. Система для осуществления способа по любому из пп.1-13, в которой энергообменник (2, 2а) соединен линией (10) прямого потока и линией (14) обратного потока контура циркуляции оборотной воды с использующим земную тепловую энергию теплообменником (18), который имеет по меньшей мере одну расположенную в скважине (22) теплоизолированную трубу (20, 20а, 20b) прямого потока, окруженную в скважине (22) разделительной трубой (24), с внешней стороны которой в радиальном направлении находится область (28) обратного потока для оборотной воды, в которой находится по меньшей мере одна труба (30) обратного потока, соединенная с линией (14) обратного потока, при этом по меньшей мере нижняя область скважины заполнена пористым наполнителем (38) и соединена с нижним входным отверстием (46, 46а) трубы (20, 20а, 20b) прямого потока по меньшей мере у дна скважины (22) через одно или несколько сквозных отверстий (44, 44а), выполненных в разделительной трубе (24).
15. Система по п.14, отличающаяся тем, что в линии (14) обратного потока и/или в линии (10) прямого потока установлен циркуляционный насос (92, 94).
16. Система по п.14, отличающаяся наличием регулируемых запорных клапанов (12, 16), установленных на линии (10) прямого потока и на линии (14) обратного потока, и соединяемого с ней устройства (50а, 50b, 50с), которое предназначено для заполнения системы средой повышенного давления, под действием которого из трубы (20, 20а, 20b) прямого потока вытесняется оборотная вода, и для запуска процесса образования пара и его перемещения по системе, при этом такое устройство соединено либо с линией (10) прямого потока в точке, расположенной между запорным клапаном (12) и использующим тепловую земную энергию теплообменником (18), либо с линией (14) обратного потока в точке, расположенной между запорным клапаном (16) и использующим тепловую земную энергию теплообменником (18).
17. Система по п.16, отличающаяся тем, что устройство, которое предназначено для заполнения системы средой повышенного давления, представляет собой нагнетательный насос (50а, 50b).
18. Система по п.16, отличающаяся тем, что устройство, которое предназначено для заполнения системы средой, создающей в ней повышенное давление, представляет собой погружной нагреватель (50с), который можно опустить в трубу прямого потока.
19. Система по любому из пп.14-18, отличающаяся наличием расположенного на земной поверхности устройства для слива оборотной воды из трубы (20, 20а, 20b) прямого потока.
20. Система по п.19, отличающаяся тем, что устройство для слива оборотной воды содержит сливной клапан (56а), установленный в линии (14) обратного потока между использующим земную тепловую энергию теплообменником (18) и запорным клапаном (16).
21. Система по п.19, отличающаяся тем, что устройство для слива оборотной воды имеет сливной клапан (56b), установленный в линии (10) прямого потока между использующим земную тепловую энергию теплообменником (18) и запорным клапаном (12).
22. Система по любому из пп.19-21, отличающаяся тем, что устройство для слива оборотной воды содержит емкость (62) для сбора сливаемой из системы оборотной воды, соединенную подводящим трубопроводом с линией (14) обратного потока.
23. Система по любому из пп.14-22, отличающаяся наличием подводящего трубопровода (41) с запорным клапаном (43), через который вода подается в линию (14) обратного потока.
24. Система по любому из пп.14-23, отличающаяся тем, что в разделительной трубе (24) расположена по меньшей мере еще одна труба (20а) прямого потока, которая сообщается с расположенным в земле концом первой трубы (20) прямого потока и соединяется на земной поверхности (34) с другим концом первой трубы (20) прямого потока через запорный клапан (48) и которая имеет сливной клапан (56), предназначенный для слива оборотной воды, вытесняемой из первой трубы (20) прямого потока через вторую трубу (20а) прямого потока устройством (50), предназначенным для заполнения системы средой, создающей в ней повышенное давление.
25. Система по любому из пп.14-24, отличающаяся тем, что пространство между трубами (20, 20а, 20b) прямого потока и разделительной трубой (24) заполнено теплоизолирующим материалом (42).
26. Система по любому из пп.14-25, отличающаяся тем, что по меньшей мере две, предпочтительно несколько, труб (30) обратного потока расположены вокруг разделительной трубы (24) в кольцевой области (60) между разделительной трубой (24) и стенкой (26) скважины.
27. Система по любому из пп.14-26, отличающаяся тем, что верхняя, расположенная от земной поверхности (34) на глубине предпочтительно от 1000 до 2500 м область (32) скважины, в которой расположена труба (30) обратного потока, выполнена герметичной, а нижняя область скважины заполнена насыпанным на дно (36) скважины пористым наполнителем (38), при этом в стенке трубы (30) обратного потока выполнены сквозные отверстия (40), расположенные в заполненной пористым наполнителем нижней области скважины.
28. Система по любому из пп.14-27, отличающаяся тем, что труба (20, 20а, 20b) прямого потока заканчивается на расстоянии, предпочтительно равном 400 м от дна (36) скважины, а разделительная труба (24) имеет расположенные в этой зоне сквозные отверстия (44).
29. Система по любому из пп.14-28, отличающаяся тем, что скважина (22) имеет глубину Т 2500-12000 м.
30. Система по любому из пп.14-29, отличающаяся тем, что скважина (22) имеет по меньшей мере один боковой отвод (58, 58а, 58b), конец которого сообщается со скважиной (22) предпочтительно в зоне расположения сквозных отверстий (44, 44а) разделительной трубы (24).
31. Система по п.30, отличающаяся тем, что боковой отвод (58а) проходит по существу вдоль скважины (22).
32. Система по п.30, отличающаяся тем, что боковой отвод (58b) проходит по существу в радиальном направлении скважины (22).
33. Система по любому из пп.14-32, отличающаяся тем, что энергообменник (2) имеет предпочтительно многоступенчатую турбину (4), соединенную с электрическим генератором (6), за которой предпочтительно расположено устройство (8), потребляющее тепловую энергию.
34. Система по любому из пп.14-32, отличающаяся тем, что энергообменник (2а) соединяет проходящий под землей контур циркуляции оборотной воды с другим контуром (96) циркуляции, в котором предпочтительно установлена многоступенчатая турбина с электрическим генератором.
35. Система по п.33 или 24, отличающаяся тем, что турбина (4) работает по циклу Ренкина на органическом рабочем теле.
RU2003114753/06A 2000-10-20 2001-10-17 Способ и система для обмена земной энергией между земными телами и энергообменником, использующим природную тепловую энергию, прежде всего для получения электрического тока RU2269728C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2058/00 2000-10-20
CH20582000 2000-10-20

Publications (2)

Publication Number Publication Date
RU2003114753A true RU2003114753A (ru) 2004-11-10
RU2269728C2 RU2269728C2 (ru) 2006-02-10

Family

ID=4567335

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003114753/06A RU2269728C2 (ru) 2000-10-20 2001-10-17 Способ и система для обмена земной энергией между земными телами и энергообменником, использующим природную тепловую энергию, прежде всего для получения электрического тока

Country Status (29)

Country Link
US (1) US7059131B2 (ru)
EP (1) EP1327111B1 (ru)
JP (2) JP2004510920A (ru)
KR (1) KR100823361B1 (ru)
CN (1) CN1321297C (ru)
AT (1) ATE264486T1 (ru)
AU (2) AU9360601A (ru)
BG (1) BG65072B1 (ru)
BR (1) BR0114761B1 (ru)
CA (1) CA2424753A1 (ru)
CZ (1) CZ20031092A3 (ru)
DE (1) DE50102013D1 (ru)
DK (1) DK1327111T3 (ru)
ES (1) ES2219564T3 (ru)
HR (1) HRP20030401B1 (ru)
HU (1) HUP0301960A3 (ru)
IL (1) IL155280A (ru)
MX (1) MXPA03003436A (ru)
NO (1) NO20031749L (ru)
NZ (1) NZ525285A (ru)
PL (1) PL204947B1 (ru)
PT (1) PT1327111E (ru)
RS (1) RS49844B (ru)
RU (1) RU2269728C2 (ru)
SI (1) SI21148A (ru)
SK (1) SK286380B6 (ru)
TR (1) TR200401708T4 (ru)
WO (1) WO2002033332A1 (ru)
ZA (1) ZA200302769B (ru)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1586831A1 (de) * 2004-04-14 2005-10-19 ENRO GeothermieEntwicklung GmbH Verfahren zur Nutzung von Erdwärme
US20080223041A1 (en) * 2007-03-17 2008-09-18 Reynolds J David Geothermal canal with hydrostatic system for use in a geothermal power plant
US7845384B2 (en) 2007-08-16 2010-12-07 Won-Door Corporation Partition systems and methods of operating partition systems
US7984613B2 (en) * 2007-11-08 2011-07-26 Mine-Rg, Inc. Geothermal power generation system and method for adapting to mine shafts
JP4927136B2 (ja) * 2009-09-03 2012-05-09 株式会社九州パワーサービス 地熱発電装置
BG1296U1 (bg) * 2009-10-08 2010-03-31 Иван СТОЯНОВ Инсталация за извличане на топлинна енергия от земните недра
CH702359A2 (fr) * 2009-12-04 2011-06-15 Cla Val Europ Sarl Vanne tubulaire de régulation.
JP2012013004A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd 地熱発電システム
CH703613A1 (de) * 2010-08-17 2012-02-29 Vyacheslav Trushkin Verfahren zur Gewinnung von Energie aus geothermischen Quellen und Anlage hierzu.
US9121393B2 (en) 2010-12-10 2015-09-01 Schwarck Structure, Llc Passive heat extraction and electricity generation
CN102269534B (zh) * 2011-07-25 2012-11-28 天津空中代码工程应用软件开发有限公司 一种旋流式热导管
US9435569B2 (en) * 2011-07-25 2016-09-06 Nazli Yesiller Systems and methods for temperature control and heat extraction from waste landfills
WO2013060340A1 (ru) * 2011-10-25 2013-05-02 Uglovsky Sergey Evgenievich Устройство и способ преобразования геотермальной энергии скважин в электрическую
CN102445028B (zh) * 2011-11-17 2013-07-31 西安交通大学 一种地源热泵地埋管换热器管群的布置方法
CH706507A1 (de) * 2012-05-14 2013-11-15 Broder Ag Koaxial-Erdwärmesonde und Verfahren zur Montage einer solchen Erdwärmesonde im Untergrund.
RU2511993C2 (ru) * 2012-06-04 2014-04-10 Роберт Александрович Болотов Геотермальная установка
US20140116643A1 (en) * 2012-10-31 2014-05-01 Heng Sheng Investment Holdings Limited, LLC Heat Exchanging and Accumulating Single Well for Ground Energy Collection
RU2534917C2 (ru) * 2013-03-05 2014-12-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Турбина для геотермальной электростанции
WO2015066764A1 (en) * 2013-11-06 2015-05-14 Controlled Thermal Technologies Pty Ltd Geothermal loop in-ground heat exchanger for energy extraction
US20170016201A1 (en) * 2014-02-28 2017-01-19 The Chugoku Electric Power Co., Inc. Heat exchange structure of power generation facility
WO2015134974A1 (en) 2014-03-07 2015-09-11 Greenfire Energy Inc Process and method of producing geothermal power
JP5731051B1 (ja) 2014-06-05 2015-06-10 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置
US9691351B2 (en) 2014-09-23 2017-06-27 X Development Llc Simulation of diffusive surfaces using directionally-biased displays
JP5791836B1 (ja) 2015-02-16 2015-10-07 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置
JP5839531B1 (ja) * 2015-05-12 2016-01-06 株式会社エスト 地熱交換器および地熱発電装置
FR3038369B1 (fr) * 2015-07-03 2019-12-20 Brgm Systeme de stockage et de production d'energie thermique
RU2621440C1 (ru) * 2015-12-15 2017-06-06 Левон Мурадович Мурадян Устройство для превращения геотермальной энергии в электрическую энергию
US10527026B2 (en) 2016-02-25 2020-01-07 Greenfire Energy Inc. Geothermal heat recovery from high-temperature, low-permeability geologic formations for power generation using closed loop systems
WO2018056921A2 (en) * 2016-06-24 2018-03-29 Aldogan Umut Earth electricity energy generation plant
US10132299B2 (en) * 2016-10-11 2018-11-20 Wolfhart Hans Willimczik Ultra deep hydroelectric/geothermal power plant
WO2019229517A1 (ru) * 2018-05-31 2019-12-05 Ishankuliyev Rejepmurad Шахтное геотермальное устройство
CN119170024A (zh) 2019-01-03 2024-12-20 杜比国际公司 用于混合语音合成的方法、设备及系统
CN110057121B (zh) * 2019-04-24 2020-01-14 中国矿业大学 利用废弃井工煤矿地热进行高效压气储能的方法及装置
US11029062B2 (en) * 2019-07-25 2021-06-08 Strabo Engineering, LLC Geothermal heat mining system
CN112556218B (zh) * 2020-12-14 2024-03-15 陈嘉祺 一种井下微型地热发电系统
CN115013220B (zh) * 2022-06-30 2023-10-13 中国电建集团华东勘测设计研究院有限公司 基于中深层干热岩的紧凑型地热能压缩空气储能系统、方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274769A (en) * 1964-05-05 1966-09-27 J B Reynolds Inc Ground heat steam generator
SU322084A1 (ru) * 1970-03-23 1973-10-26 Устройство для извлечения геотермальнойэнергии
US3805885A (en) * 1970-06-18 1974-04-23 Huisen A Van Earth heat energy displacement and recovery system
US3782468A (en) * 1971-09-20 1974-01-01 Rogers Eng Co Inc Geothermal hot water recovery process and system
DE2631522A1 (de) * 1976-07-14 1978-01-19 Bayer Ag Oximcarbamate fluorierter ketone, verfahren zu ihrer herstellung und ihre verwendung als insektizide, akarizide und nematizide
DE2631552A1 (de) * 1976-07-14 1978-01-19 Barth Kg Gottfried Methode zur erdwaermenutzung fuer den betrieb von gebaeudeheizung und warmwasserversorgungsanlagen
US4059959A (en) * 1976-11-05 1977-11-29 Sperry Rand Corporation Geothermal energy processing system with improved heat rejection
US4201060A (en) * 1978-08-24 1980-05-06 Union Oil Company Of California Geothermal power plant
US4429535A (en) * 1980-08-13 1984-02-07 Magma Power Company Geothermal plant silica control system
US4370858A (en) * 1981-07-31 1983-02-01 Bechtel International Corporation Apparatus and method for energy production and mineral recovery from geothermal and geopressured fluids
GB2160306B (en) * 1984-06-14 1987-12-09 Total Energy Conservation And Method of geothermal energy recovery
DE3627680A1 (de) * 1986-08-14 1988-02-18 Franz Johann Stellet Verfahren zur gewinnung von erdwaerme
SU1453126A1 (ru) * 1987-05-18 1989-01-23 И.Г. Сафонов Устройство дл нагрева жидкости
US5188090A (en) * 1991-04-08 1993-02-23 Hydro Dynamics, Inc. Apparatus for heating fluids
US5937934A (en) * 1996-11-15 1999-08-17 Geohil Ag Soil heat exchanger
CN1206097A (zh) * 1997-07-23 1999-01-27 余新河 提取地热能量的方法和装置
EP1194723B1 (de) * 1999-07-09 2002-12-04 Klett-Ingenieur-GmbH Vorrichtung zur nutzung von erdwärme und verfahren zu deren betreibung

Similar Documents

Publication Publication Date Title
RU2003114753A (ru) Способ и система для обмена земной энергией между земными телами и энергообменником, использующим природную тепловую энергию, прежде всего для получения электрического тока
RU2269728C2 (ru) Способ и система для обмена земной энергией между земными телами и энергообменником, использующим природную тепловую энергию, прежде всего для получения электрического тока
JPS595793B2 (ja) 地熱エネルギ−変換システム
SU1353739A1 (ru) Дегазационна установка
CN203700098U (zh) 用火力发电厂蒸汽余热处理电厂废水装置
CN217785115U (zh) 锅炉乏汽回收系统
CN205937009U (zh) 一种温差发电装置
CN208166713U (zh) 一种地热水用的除砂装置
RU55766U1 (ru) Дистиллятор
CN207159697U (zh) 一种用于超薄离型原纸的纸机蒸汽冷凝系统
CN206669703U (zh) 除盐装置及油田过热注汽锅炉蒸汽除盐装置
CN104761012A (zh) 一种减压蒸馏的海水淡化装置
CN206751450U (zh) 一种基于水和大气自然温差的海水淡化自动循环系统
KR101970637B1 (ko) 부력을 이용한 에너지 회수장치
CN206055601U (zh) 一种除氧器排汽回收装置
CN111302421B (zh) 一种海水淡化装置及其工作方法
RU2234354C1 (ru) Опреснитель
CN216240824U (zh) 一种凝汽器间接地冷汽轮发电装置
CN110606521B (zh) 锥形防堵结晶器
CN108105752A (zh) 把火电厂的供电标煤耗降至200g/kw.h以下且减排
CN205299474U (zh) 一种用于蒸汽锅炉的排污除氧水箱
CN106321376A (zh) 利用高温地热能进行发电的方法
SU1650925A1 (ru) Паротурбинна установка
SU684005A1 (ru) Деаэратор
RU2197431C1 (ru) Способ вакуумной деаэрации воды