RU190945U1 - Сорбционно-емкостной чувствительный элемент влажности газа - Google Patents
Сорбционно-емкостной чувствительный элемент влажности газа Download PDFInfo
- Publication number
- RU190945U1 RU190945U1 RU2018142157U RU2018142157U RU190945U1 RU 190945 U1 RU190945 U1 RU 190945U1 RU 2018142157 U RU2018142157 U RU 2018142157U RU 2018142157 U RU2018142157 U RU 2018142157U RU 190945 U1 RU190945 U1 RU 190945U1
- Authority
- RU
- Russia
- Prior art keywords
- humidity
- sorption
- dielectric
- moisture
- electrodes
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims abstract description 8
- 239000002594 sorbent Substances 0.000 claims abstract description 7
- 239000003990 capacitor Substances 0.000 claims abstract description 5
- 238000005260 corrosion Methods 0.000 claims abstract description 5
- 230000007797 corrosion Effects 0.000 claims abstract description 5
- 230000008018 melting Effects 0.000 claims abstract description 3
- 238000002844 melting Methods 0.000 claims abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920005575 poly(amic acid) Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Использование: для измерений влажности и температуры точки росы по воде. Сущность изобретения заключается в том, что сорбционно-емкостной чувствительный элемент влажности газа характеризуется тем, что представляет собой конденсатор переменной емкости, состоящий из диэлектрического сорбирующего слоя и электродов, пропускающих влагу, где диэлектрический сорбирующий слой выполнен из пористой керамики и заключен между двумя перфорированными электродами, выполненными из коррозионностойкого металла, нанесенными при температурах, близких к температурам плавления металла. Технический результат: обеспечение возможности производить измерения в агрессивных средах в широком диапазоне температур и давлений. 1 ил.
Description
Полезная модель относится к устройствам, применяемым в системе магистрального транспорта газа, а также предприятиях добычи и переработки газа и может быть применено для определения концентрации влаги в природном газе, находящемся под избыточным давлением до 15 МПа.
Устройство представляет собой сорбционно-емкостной чувствительный элемент (далее - ЧЭ) выполненный как конденсатор переменной емкости, состоящий из диэлектрического слоя из пористой керамики и двух обкладок из платины (для агрессивных сред) или серебра (для слабоагрессивных сред).
На сегодняшний день науке известны следующие технические решения, сводная информация о которых приведена в таблице 1:
1. Известен емкостный датчик диэлектрических свойств газообразных и жидких сред [1]. Емкостный датчик диэлектрических свойств газообразных и жидких сред выполнен из обкладок металлических одножильных или многожильных проволок, покрытых изоляцией и произвольно уложенных в клубок, который помещен в корпус с измеряемой средой, представляющий собой измерительную камеру.
Недостаток известного решения заключается в невозможности работы под избыточным давлением свыше 1 МПа и отсутствием стабильной чувствительности в диапазоне от 0 до 5% относительной влажности. Также к недостаткам данного технического решения относиться необходимость применения измерительной камеры, ограничивающей области, в которых может применяться преобразователь:
- измерительная камера имеет геометрические размеры, которые могут не удовлетворять требованиям по монтажу на оборудовании в следствии отсутствия свободного места;
- для монтажа на технологическом оборудовании в уличных условиях, требуется обеспечивать для измерительной камеры нормальные условия в части температуры, воздействия осадков, а также защищать камеру от воздействия других негативных факторов, влияющих на качество измерения.
2. Известен емкостной сорбционный датчик влажности газов [2].
Датчик состоит из двух обкладок, выполненных из многожильной проволоки, изолированные или не изолированные лаком, покрытые шелковой изоляцией и уложенные бифилярно на ребристый каркас, а также клеммы для подключения измерительного устройства к обкладкам датчика, соответственно первой и второй.
Минусом датчика является то что при выборе конструкции с более высокой чувствительностью и значительной удельной начальной емкостью, его инерционность, как правило, будет выше инерционности датчика с более низкими чувствительностью и удельной начальной емкостью.
Также к минусам относится невозможность работы устройства на высоких давлениях и неустойчивость к агрессивным средам, в виду использования в конструкции органических материалов.
3. Известен емкостный сенсор влажности газообразной среды [3], емкостной сенсор влажности которого содержит чувствительный элемент конденсаторного типа, состоящий из диэлектрического субстрата, нижнего электрода из коррозионно-стойкого металла или сплава, верхнего наноструктурированного электрода из коррозионно-стойкого металла или сплава, проницаемого для паров влаги, и влагочувствительного слоя, имеющего диэлектрическую постоянную, меняющуюся в зависимости от количества паров воды в окружающей среде.
Минусом устройства является возможность применения при температурах в диапазонах:
- от 0°С до 400°С для измерений окружающего воздуха;
- от 0°С до 450°С в инертной атмосфере.
4. Известен датчик влажности воздуха емкостной [4].
Его минусами является сложная технология изготовления в которой формирование емкостного сенсора влажности осуществляется следующим образом: Si субстрат пассивируется SiO2, затем на нем формируют металлическую разводку Аи и адгезионный слой Cr В качестве влагочувствительного слоя используют полиамидокислоту - продукт поликонденсации тримеллитового ангидрида и м-фенилендиамина, который наносится центрифугированием. Условия формирования слоя: сушка при 50°С - 4 ч в вакууме, 200°С - 1 ч, 300°С - 1 ч для полной и постепенной циклизации. Получают пленку 1-1.2 мкм, рельеф формируют с помощью кислородной плазмы: О2 RIE при давлении 100 мм рт.ст. Далее проводят осаждение верхнего электрода А1 и затем формирование рельефа стандартным фотолитографическим процессом с получением 50%, 60%, 70% эффективных площадок.
Также к недостаткам указанного сенсора относятся свойства материала, используемого в данной разработке, а именно нестабильность свойств полиамидокислоты во времени за счет гидролиза амидной связи в присутствии следов влаги и невозможность получить микрорельеф обычными фотолитографическими приемами, требуется дополнительная обработка кислородной плазмой.
5. Наиболее близким к предлагаемому техническому решению является емкостный сенсор влажности газообразной среды [5], содержащий чувствительный элемент конденсаторного типа, состоящий из диэлектрического сорбционного слоя из субстрата, двух электродов, выполненных из паро-пропускаемого металла.
Минусами данного решения является сложность технологии изготовления, связанной с необходимостью:
- использования в качестве влагочувствительного слоя светочувствительной полимерной композиции на основе поли(о-гидроксиамида);
- формирования пленок на субстрате методом центрифугирования;
- термообработки сформированных пленок;
- фотоэкспонирования;
- нанесения верхнего электрода путем напыления в сверхвысоком вакууме лазерным распылением в режиме формирования наноструктурированной пленки материала;
- создания процесса искусственного старения влагочувствительного слоя для исключения гистерезиса при высоких значениях влажности.
Технической задачей и положительным результатом заявляемого изобретения является разработка нового емкостного сенсора для определения относительной влажности газообразной агрессивной (кислотной, щелочной, а также сероводородсодержащей) среде с надежными параметрами, работающего в широком диапазоне (2-98%) измерения влажности газов в диапазоне абсолютного давления от близкого к 0 до 16 МПа при температуре от -50 до 650°С, обладающего чувствительностью не менее 0,1% относительной влажности, и временем реакции не более 5 секунд при увеличении относительной влажности на 10%. Также технической задачей является изготовление вышеуказанного сенсора по максимально простой технологии.
Технический результат достигается за счет того, что емкостный сенсор влажности газообразной среды (фиг. 1), состоит из сорбционного слоя (фиг. 1, поз. 1), выполненного из пористой керамики, заключенного между двумя перфорированными электродами (фиг. 1, поз. 2), выполненными из коррозионностойкого металла. Подключение сенсора к измерительной плате производиться с помощью выводов-контактов (фиг. 1, поз. 3). Опытный образец емкостного сенсора влажности имеет габаритные размеры в соответствии с таблицей 1.
Сенсор имеет диэлектрическую характеристику, меняющуюся в зависимости от сорбированного влагочувстсвительным слоем количества влаги из измеряемого газа.
Составные части емкостного сенсора (сорбционный слой и электроды) устойчивы к воздействию кислот и щелочей, воздействию давления и температуры в указанных диапазонах (0 до 16 МПа абсолютного давления при температуре от -50 до 650°С).
Основными отличительными признаками заявляемого изобретения являются:
- использование в качестве влагочувствительного слоя стойкой к воздействию агрессивных сред в широком диапазоне температур и давлений пористой керамики, отожженной из порошка Т-150;
- нанесение электродов при температуре 960°С что обеспечивает их стабильный контакт с подложкой из керамики при высоких температурах;
- возможность применения сенсора непосредственно в потоке измеряемой среды под воздействием высоких давления и температур;
- технологически простая процедура изготовления сенсора.
Чувствительный элемент предназначен для измерения влагосодержания в природном газе в технологических трубопроводах и установках объектов магистрального транспорта газа. В качестве технологии определения температуры точки росы природного газа выбрана сорбционно-емкостная технология. Сорбционно-емкостной принцип измерения влажности заключается в поглощении чувствительным элементом влаги из измеряемой среды, что приводит к изменению его электрических параметров - емкости или сопротивления.
Конструктивно чувствительный элемент представляет собой пористый конденсатор, диэлектрический адсорбирующий слой и электроды которого свободно пропускают частицы влаги (фиг. 1)
Чувствительный элемент устроен таким образом, что при повышении влажности измеряемой среды влага свободно сорбировалась диэлектрическим слоем, а при понижении влажности также свободно отдавалась ЧЭ обратно в измеряемою среду, тем самым приводя его влажность в баланс с влажностью окружающей среды.
Сорбирующий слой - выполнен из химически однородного диэлектрика, пористой керамики с равномерным распределением пор образующих капиллярную структуру.
Электроды - выполнены из серебра или платины, стойких к химическим компонентам, содержащихся в природном газе в малых концентрациях. Электроды имеют сетчатую (перфорированную) структуру для обеспечения беспрепятственного проникновения влаги в сорбирующий слой и обратно. Структурная схема сорбционно-емкостного чувствительного элемента представлена на фигуре 1.
Пример 1: изготовление сорбирующего слоя.
Сорбирующий слой изготавливается из смеси керамического порошка марки Т-150, модифицированного алюминиевой пудрой в соотношении 1/3 по объему и виниловым спиртом. Смесь прессуется под давлением 70 МПа после чего проходит цикл ступенчатого обжига в кислородной среде в температурном диапазоне от 860 до 1240°С. После обжига образцы подвергаются обработке в соляной кислоте в ультразвуковой ванной, где происходит вымывание модифицирующей алюминиевой пыли в результате чего формируются сквозная пористость. Результаты испытаний в газовом поромере для различных пропорций модифицирующего порошка приведены в таблице 3.
Пример 2: нанесение электродов.
После обжига и вымывания модифицирующей примеси производится шлифовка заготовок сорбирующего слоя. После шлифовки на образцы наноситься раствор серебра или платины и производиться ступенчатый обжиг при соответствующих температурам плавления металлов значениях температуры (960 и 1760°С).
Нанесение раствора и обжиг проходит в 3 стадии. В результате формирования электродов их общая толщина составляет 50 мкм.
Пример 3: перфорирование электродов
После нанесения электроды проходят процедуру лазерной абляции. Через полученные отверстия в электродах обеспечивается взаимодействие капилляров сорбирующего слоя с измеряемой средой.
Фрагмент результатов испытания образцов приведен в таблице 3.
Список источников:
1. SU 1125530 А1 (230,541.11.1984) ЕМКОСТНЫЙ ДАТЧИК ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ ГАЗООБРАЗНЫХ И ЖИДКИХ СРЕД
2. 94030042 (20.06.1996) ЕМКОСТНОЙ СОРБЦИОННЫЙ ДАТЧИК ВЛАЖНОСТИ ГАЗОВ
3. 2167414 (20.05.2001) ЕМКОСТНОЙ ДАТЧИК ВЛАЖНОСТИ
4. 121079 (10.10.2012) ДАТЧИК ВЛАЖНОСТИ ВОЗДУХА ЕМКОСТНОЙ
5. RU 2602489 С1 (15.07.2015) ЕМКОСТНЫЙ СЕНСОР ВЛАЖНОСТИ ГАЗООБРАЗНОЙ СРЕДЫ
Claims (1)
- Сорбционно-емкостной чувствительный элемент влажности газа, характеризующийся тем, что представляет собой конденсатор переменной емкости, состоящий из диэлектрического сорбирующего слоя и электродов, пропускающих влагу, отличающийся тем, что диэлектрический сорбирующий слой выполнен из пористой керамики и заключен между двумя перфорированными электродами, выполненными из коррозионностойкого металла, нанесенными при температурах, близких к температурам плавления металла.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018142157U RU190945U1 (ru) | 2018-11-29 | 2018-11-29 | Сорбционно-емкостной чувствительный элемент влажности газа |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018142157U RU190945U1 (ru) | 2018-11-29 | 2018-11-29 | Сорбционно-емкостной чувствительный элемент влажности газа |
Publications (1)
Publication Number | Publication Date |
---|---|
RU190945U1 true RU190945U1 (ru) | 2019-07-16 |
Family
ID=67309641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018142157U RU190945U1 (ru) | 2018-11-29 | 2018-11-29 | Сорбционно-емкостной чувствительный элемент влажности газа |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU190945U1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU207499U1 (ru) * | 2021-06-03 | 2021-10-29 | Общество с ограниченной ответственностью "Газпром трансгаз Казань" | Сорбционно-емкостной чувствительный элемент влажности газа |
RU222946U1 (ru) * | 2023-10-06 | 2024-01-24 | Сергей Олегович Михин | Тонкопленочный сорбционно-емкостной сенсор влажности |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283711A (en) * | 1988-12-30 | 1994-02-01 | Flucon B.V. | Capacitive humidity sensor |
RU94030042A (ru) * | 1994-08-09 | 1996-06-20 | Ставропольская Государственная Сельскохозяйственная Академия | Емкостной сорбционный датчик влажности газов |
RU2602489C1 (ru) * | 2015-07-15 | 2016-11-20 | Открытое акционерное общество "Научно-производственное предприятие "Радар ммс" | Емкостный сенсор влажности газообразной среды |
-
2018
- 2018-11-29 RU RU2018142157U patent/RU190945U1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283711A (en) * | 1988-12-30 | 1994-02-01 | Flucon B.V. | Capacitive humidity sensor |
RU94030042A (ru) * | 1994-08-09 | 1996-06-20 | Ставропольская Государственная Сельскохозяйственная Академия | Емкостной сорбционный датчик влажности газов |
RU2602489C1 (ru) * | 2015-07-15 | 2016-11-20 | Открытое акционерное общество "Научно-производственное предприятие "Радар ммс" | Емкостный сенсор влажности газообразной среды |
Non-Patent Citations (1)
Title |
---|
Tarikul Islam, Lokesh Kumar, Shakeb A. Khan, A novel sol-gel thin film porous alumina based capacitive sensor for measuring trace moisture in the range of 2.5-25 ppm, Sensors and Actuators B: Chemical, 173, 377-384, 2012. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU207499U1 (ru) * | 2021-06-03 | 2021-10-29 | Общество с ограниченной ответственностью "Газпром трансгаз Казань" | Сорбционно-емкостной чувствительный элемент влажности газа |
RU222946U1 (ru) * | 2023-10-06 | 2024-01-24 | Сергей Олегович Михин | Тонкопленочный сорбционно-емкостной сенсор влажности |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chou et al. | Sensing mechanism of a porous ceramic as humidity sensor | |
Yamazoe et al. | Humidity sensors: principles and applications | |
US3523244A (en) | Device for measurement of absolute humidity | |
TWI242639B (en) | Humidity sensor element, device and method for manufacturing thereof | |
Wan et al. | Rapid measurement of room temperature ionic liquid electrochemical gas sensor using transient double potential amperometry | |
JPH10507529A (ja) | ソリッドステート化学センサー | |
US3703696A (en) | Humidity sensor | |
JPH10506186A (ja) | 化学的検出器 | |
US20140326615A1 (en) | Hydrogen sensor | |
Assunção da Silva et al. | Humidity sensor based on PEO/PEDOT: PSS blends for breath monitoring | |
RU190945U1 (ru) | Сорбционно-емкостной чувствительный элемент влажности газа | |
RU2602489C1 (ru) | Емкостный сенсор влажности газообразной среды | |
US3058079A (en) | Hygrometer elements | |
JPS60228949A (ja) | 被検混合ガス中の還元ガスを検知する方法及びそのための装置 | |
Kalkan et al. | A rapid-response, high-sensitivity nanophase humidity sensor for respiratory monitoring | |
Kuroiwa et al. | A thin-film polysulfone-based capacitive-type relative-humidity sensor | |
US4280115A (en) | Humidity sensor | |
Islam et al. | Measurement of gas moisture in the ppm range using porous silicon and porous alumina sensors | |
CN118032873A (zh) | 一种硫化氢气体传感器及其制备工艺 | |
US3522732A (en) | Sensing element for hygrometers | |
TWI415143B (zh) | 用於偵測氣體之可導電的高分子複合材料元件的製造方法 | |
Hübert | Humidity-sensing materials | |
Mahboob et al. | A low cost polyimide based metal oxide film RH sensor | |
WO2006136641A1 (es) | Dispositivo sensor de humedad basado en nanopartículas de óxido de hierro soportadas en sepiolita, su procedimiento de fabricación y sus aplicaciones. | |
RU2242752C1 (ru) | Датчик влажности |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TC9K | Change in the [utility model] inventorship |
Effective date: 20200908 |