PL180560B1 - Sposób i urzadzenie do termicznej obróbki surowców odpadowych PL PL PL - Google Patents
Sposób i urzadzenie do termicznej obróbki surowców odpadowych PL PL PLInfo
- Publication number
- PL180560B1 PL180560B1 PL96322890A PL32289096A PL180560B1 PL 180560 B1 PL180560 B1 PL 180560B1 PL 96322890 A PL96322890 A PL 96322890A PL 32289096 A PL32289096 A PL 32289096A PL 180560 B1 PL180560 B1 PL 180560B1
- Authority
- PL
- Poland
- Prior art keywords
- gas
- dust
- gases
- combustion chamber
- pyrolysis
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 239000002699 waste material Substances 0.000 title claims abstract description 35
- 239000007789 gas Substances 0.000 claims abstract description 122
- 238000000197 pyrolysis Methods 0.000 claims abstract description 57
- 239000000428 dust Substances 0.000 claims abstract description 41
- 239000003546 flue gas Substances 0.000 claims abstract description 36
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 24
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000002485 combustion reaction Methods 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 29
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 26
- 238000001556 precipitation Methods 0.000 claims description 20
- 238000007669 thermal treatment Methods 0.000 claims description 20
- 230000003197 catalytic effect Effects 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 18
- 238000004140 cleaning Methods 0.000 claims description 15
- 229910021529 ammonia Inorganic materials 0.000 claims description 13
- 239000000654 additive Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 238000000746 purification Methods 0.000 claims description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 239000004202 carbamide Substances 0.000 claims description 6
- 239000000571 coke Substances 0.000 claims description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 5
- 239000000920 calcium hydroxide Substances 0.000 claims description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 5
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 5
- 239000000292 calcium oxide Substances 0.000 claims description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000003344 environmental pollutant Substances 0.000 claims description 5
- 238000010304 firing Methods 0.000 claims description 5
- 231100000719 pollutant Toxicity 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 4
- 238000007872 degassing Methods 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims 1
- 239000003921 oil Substances 0.000 description 25
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 12
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 10
- 238000005406 washing Methods 0.000 description 8
- 150000002013 dioxins Chemical class 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 150000002240 furans Chemical class 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 description 1
- HIVLDXAAFGCOFU-UHFFFAOYSA-N ammonium hydrosulfide Chemical class [NH4+].[SH-] HIVLDXAAFGCOFU-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/28—Other processes
- C10B47/30—Other processes in rotary ovens or retorts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/02—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
- F23G5/0273—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/20—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2201/00—Pretreatment
- F23G2201/30—Pyrolysing
- F23G2201/301—Treating pyrogases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2201/00—Pretreatment
- F23G2201/70—Blending
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2206/00—Waste heat recuperation
- F23G2206/10—Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2217/00—Intercepting solids
- F23J2217/10—Intercepting solids by filters
- F23J2217/101—Baghouse type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Treating Waste Gases (AREA)
- Processing Of Solid Wastes (AREA)
- Chimneys And Flues (AREA)
- Gasification And Melting Of Waste (AREA)
- Treatment Of Sludge (AREA)
Abstract
1. Sposób termicznej obróbki surowców odpadowych, w którym surowce te poddaje sie pirolizie w piecu obrotowym, a otrzymane gazy spala sie w komorze spalania, chlodzi w wymienniku ciepla i oczyszcza od zanieczy- szczen stalych i od tlenków azotu, znamien- ny tym, ze pirolize surowców odpadowych przeprowadza sie w obecnosci dodatków rea- ktywnych, a gaz pirolizowy z pieca obroto- wego chlodzi sie i oczyszcza co najmniej w 90%, korzystnie co najmniej w 95%, po czym oczyszczony gaz pirolizowy spala sie w ko- morze spalania, a otrzymane gazy chlodzi sie w kotle grzewczym, odazotowuje, oczyszcza na filtrze od substancji szkodliwych i kieruje do komina. Fig . 1 PL PL PL
Description
Wynalazek dotyczy sposobu oraz urządzenia do termicznej obróbki surowców odpadowych, które pirolitycznie odgazowuje się w piecu obrotowym, a otrzymany gaz spala się pod kotłem grzewczym.
Według znanego z praktyki sposobu obróbki, surowce odpadowe w sposób ciągły spala się na ruszcie, pod kotłem grzewczym z którego spaliny są zanieczyszczone szkodliwymi związkami chemicznymi, a ponadto znacznymi ilościami pyłu i, muszą być z ogromnym nakładem oczyszczane przed wejściem do komina. Oczyszczanie gazów obejmuje takie procesy jednostkowe jak: odpylanie, dwuetapowe przemywanie z odparowaniem szkodliwych gazów z wód przemywających, adsorpcję dioksyn i odazotowanie.
Konieczność utrzymania ustawowo przewidzianych wartości granicznych zanieczyszczenia gazu powoduje wysokie nakłady techniczne, gdyż wymagana jest bardzo kosztowna obróbka odlotowych spalin.
180 560
Z EP-B-0 111 081 znany jest ponadto sposób termicznej obróbki surowców odpadowych, w którym: a) surowce odpadowe w pierwszej strefie obróbki termicznej poddaje się pirolizie, b) powstający przy tym gaz pirolizowy odpyla się w określonym stopniu w cyklonie, c) odpylony gaz pirolizowy spala się w drugiej strefie termicznej obróbki, d) spaliny powstające w drugiej strefie obróbki cieplnej chłodzi się przy odzyskiwaniu energii, i e) dodaje się zasadowe materiały i oczyszcza spaliny na filtrze od substancji szkodliwych. Spaliny wyemitowane przez komin na zewnątrz muszą być dodatkowo oczyszczane, zwłaszcza w odniesieniu do zawartości szkodliwych gazów NOX, i metali ciężkich w postaci gazowej, jak na przykład rtęci.
W tym celu w DE-A-3 629 817 zaproponowano umieszczenie na końcu instalacji dodatkowego urządzenia do odazotowania dla zmniejszania w spalinach zawartości NOX.
Katalityczne odazotowanie z reguły przeprowadza się w procesie obróbki termicznej odpadów w optymalnym zakresie temperatury około 300°C. Na końcu procesu temperatura spalin przeważnie wynosi jednak około 70°C do 130°C. Oznacza to, że stosowane dotąd urządzenia odazotujące muszą mieć dodatkowo wymiennik ciepła, względnie urządzenie grzewcze na gaz ziemny, w celu ogrzania spalin do temperatury wymaganej podczas odazotowania, po czym trzeba te gazy ponownie ochłodzić przed ich wejściem do komina.
Umieszczenie urządzenia do odazotowania w części instalacji w której gazy mają wyższą temperaturę tak, aby uniknęło się potrzeby podgrzewania spalin, w stosowanych dotąd procesach obróbki termicznej surowców odpadowych nie jest możliwe, ponieważ podczas spalania uwalniają się znajdujące się w odpadach śladowe pierwiastki takie jak na przykład arsen, selen i tym podobne, które po krótkim czasie zaburzyłyby pracę urządzenia do odazotowania.
Ponadto przy konwencjonalnej termicznej obróbce surowców odpadowych powstaje, dwutlenek siarki, który z nadmiarem tlenu z powietrza reaguje częściowo do trójtlenku siarki. Związek ten z kolei z niezbędnym do reakcji odazotowania dodanym amoniakiem względnie wodą amoniakalną lub mocznikiem, wchodzi w reakcję tworząc odpowiednie sole, zwłaszcza wodorosiarczan amonu. Sole te mają silnie klejące właściwości, co prowadzi do niepożądanego odkładania się ich w obszarze katalizatora względnie w znajdującym się za nim wymienniku ciepła, w przewodach rurowych, w kotle grzewczym i innych agregatach.
Z tego względu w konwencjonalnych instalacjach urządzenie do odazotowania SCR nie może być instalowane bezpośrednio za kotłem grzewczym, przed agregatami do oczyszczania spalin. Może być ono umieszczone na końcu instalacji, kiedy zawartość dwutlenku siarki względnie trójtlenku siarki dzięki oczyszczeniu spalin zostanie odpowiednio zmniejszona.
Innym procesem odazotowania, wprawdzie niezwykle rzadko stosowanym w technice utylizacji odpadów, jest tak zwany proces SNCR, który prowadzi się niekatalitycznie w temperaturach pomiędzy 850°C i 1000°C. Przy stosowaniu procesu SNCR w konwencjonalnych urządzeniach do obróbki termicznej, odazotowanie przeprowadza się w kotle grzewczym, ponieważ dla tej reakcji odazotowania skuteczny zakres temperatury mieści się w granicach od 850°C do 1000°C. Czas przebywania spalin w obszarze kotła, jest jednak bardzo krótki tak, że niezbędna szybkość odazotowania musi być osiągnięta przez ponad-stechiometryczny dodatek amoniaku. To z kolei powoduje, że produkty po oczyszczaniu spalin posiadają niepożądany zapach amoniaku i muszą być poddane dalszej kosztownej obróbce.
Te same problemy występująprzy zastosowaniu korzystnego pod względem kosztów procesu SNCR, w którym w wyniku reakcji dodanego amoniaku z zawartymi w pyle produktami powstają siarkowo amonowe sole i złogi w kotle grzewczym.
Z patentu US-A-4 206 186 znane jest ponadto chłodzenie gazu pirolizowego do temperatury 160°C przebiegające w strefie chłodzenia względnie wytrącania do której wtryskiwany jest olej.
Zadaniem wynalazku jest więc opracowanie procesu jak również urządzenia do termicznej obróbki surowców odpadowych, w których techniczny koszt instalacji do oczyszczania spalin byłby znacząco niższy.
Sposób termicznej obróbki surowców odpadowych według wynalazku, w którym surowce te poddaje się pirolizie w piecu obrotowym, a otrzymane gazy spala się w komorze spalania, chłodzi w wymienniku ciepła i oczyszcza od zanieczyszczeń stałych i od tlenków azotu
180 560 charakteryzuje się tym, że pirolizę surowców odpadowych przeprowadza się w obecności dodatków reaktywnych, a gaz pirolizowy z pieca obrotowego chłodzi się i oczyszcza co najmniej w 90 %, korzystnie co najmniej w 95%, po czym oczyszczony gaz pirolizowy spala się w komorze spalania, a otrzymane gazy chłodzi się w kotle grzewczym, odazotowuje, oczyszcza na filtrze od substancji szkodliwych i kieruje do komina.
Gazy z komory spalania korzystnie odazotowuje się katalitycznie lub bezkatalitycznie.
Gaz pirolizowy przed wejściem do komory spalania oczyszcza się od pyłu i korzystnie chłodzi olejem w kolumnie do temperatury nie większej niż 250°C, najkorzystniej do temperatury wyższej od temperatury rosy, to jest do temperatury pomiędzy 120°C i 180°C. Olej działający jako środek chłodzący i wytrącający pył, korzystnie doprowadza się do góry kolumny w przeciwprądzie do doprowadzanego od dołu gazu pirolizowego. Do płynącego od dołu do góry gazu pirolizowego korzystnie wtryskuje się olej o regulowanej temperaturze na szeregu leżących jeden nad drugim poziomach strefy chłodzenia i wytrącania pyłów w kolumnie, a zanieczyszczony pyłem olej odprowadza się z dolnej części kolumny i przez wirowanie rozdziela na silnie zanieczyszczoną pyłem pierwszą fazę i na fazę drugą w dużym stopniu odpyloną, po czym pierwszą fazę doprowadza się do strefy wypalania w piecu obrotowym, a fazę drugą, po ochłodzeniu, ponownie kieruje się do chłodzenia i oczyszczania gazu.
Gaz pirolizowy korzystnie przepuszcza się kolejno przez co najmniej dwa stopnie strefy chłodzenia i wytrącania pyłu, przy czym wychodzący z tych dwóch stopni gorący, zanieczyszczony pyłem olej łączy się razem i kieruje do wirówki.celem oczyszczenia i zawrócenia do przerobu. Jako dodatki reaktywne do surowców odpadowych doprowadzanych do pieca obrotowego korzystnie dodaje się drobnoziarniste, zasadowe materiały takie jak wodorotlenek wapnia, węglan wapnia i/lub tlenek wapnia.
Podczas rozruchu, przy wahaniach przepływu, jak również w celu uzupełnienia odprowadzonej z obiegu oleju fazy zanieczyszczonej pyłem, do obiegu oleju korzystnie doprowadza się dodatkowo odpowiednio dozowaną ilość wysokowrzącego oleju, korzystnie oleju dizlowskiego lub opałowego. Przez chłodzenie spalin odzyskuje się energię cieplną. Gaz pirolizowy korzystnie odpyla się na gorąco w filtrze suchym, a wytrącony pył odprowadza się w postaci suchej, przy czym do gazu pirolizowego przed jego odpylaniem w filtrze suchym korzystnie dodaje się drobnoziarniste materiały zasadowe.
Gaz pirolizowy przed odpylaniem korzystnie podgrzewa się do wyższej temperatury.
Spaliny po odazotowaniu, ale przed oczyszczaniem na filtrze, dalej chłodzi się do temperatury optymalnej dla wytrącenia zanieczyszczeń na filtrze, a część spalin z komory spalania ko-, rzystnie przesyła się do ogrzewania pieca obrotowego.
Do bezkatalitycznego odazotowania dodaje się amoniak, wodę amoniakalną lub mocznik. Amoniak, wodę amoniakalną lub mocznik korzystnie dodaje się do części spalin z komory spalania, które kieruje się do ogrzewania pieca obrotowego. Jako reaktywne dodatki do spalin korzystnie dodaje się mieszaninę aktywnego węgla, albo koksu i wodorowęglanu, przy czym ilość i/lub skład mieszaniny reaktywnych dodatków reguluje się w zależności od stopnia oczyszczania spalin.
Urządzenie do termicznej obróbki surowców odpadowych według wynalazku, mające piec obrotowy odpirolitycznego odgazowania, komorę spalania, wymiennik ciepła gazów spalinowych, filtry do odpylania gazów spalinowych i urządzenie do odazotowania, charakteryzuje się tym, że piec obrotowy do pirolizy surowców odpadowych jest połączony odprowadzeniem gazów z kolumną odpylania powstającego w piecu obrotowym gazu pirolizowego, która jest połączona odprowadzeniem gazów z komorą spalania odpylonego gazu pirolizowego mającą połączenie odprowadzenia gazów do kotła grzewczego, który odprowadzeniem gazów jest połączony z urządzeniem do odazotowania spalin od którego odprowadzenie gazów odchodzi do filtra do oczyszczania spalin od substancji szkodliwych.
Kolumną korzystnie ma urządzenia do zraszania, które są umieszczone jedno nad drugim na kolejnych poziomach.
Urządzenie w wykonaniu alternatywnym charakteryzuje się tym, że piec obrotowy do pirolizy surowców odpadowych jest połączony odprowadzeniem gazów z urządzeniem
180 560 odpylającym mającym ceramiczne świece filtracyjne, które ma odprowadzenie oczyszczonych gazów do komory spalania gazu pirolizowego połączonej odprowadzeniem gazów z kotłem grzewczym, który jest połączony odprowadzeniem gazów z urządzeniem do odazotowania spalin od którego odprowadzenie gazów odchodzi do filtra do oczyszczania spalin od substancji szkodliwych. W obydwu rozwiązaniach komora spalania korzystnie ma odgałęzienie odprowadzenia gazów połączone z urządzeniem do niekatalitycznego odazotowania.
Sposób według wynalazku okazał się szczególnie korzystny, jeśli, w celu związania uwalniających się podczas pirolizy kwaśnych, gazowych substancji szkodliwych, dodaje się do surowców odpadowych, drobnoziarniste, zasadowe materiały jak wodorotlenek wapnia, węglan wapnia i/lub tlenek wapnia. Dzięki temu silnie zmniejsza się w spalinach stężenie dwutlenku siarki, względnie trójtlenku siarki. Dodatek zasadowych materiałów działa też jako ochrona przed korozją dla urządzeń stykających się z gazem pirolizowym. Przede wszystkim zmniejsza się również bardzo tworzenie się klejących soli amonowych, dzięki czemu unika się szkodliwych spieków. Przy stężeniu dwutlenku siarki w spalinach poniżej 200 mg/m3 nie dochodzi do niepożądanego utleniania dwutlenku siarki do trójtlenku siarki.
Okazało się szczególnie korzystne, jeśli jako reaktywne dodatki, stosuje się mieszaninę węgla aktywnego, względnie koksu i wodorowęglanu.
Wynalazek został bliżej objaśniony w przykładach wykonania pokazanych na rysunku na którym fig. 1 przedstawia schemat pierwszego wykonania instalacji według wynalazku do termicznej obróbki odpadowych surowców; fig. 2 - przykład drugiego wykonania instalacji według wynalazku, i fig. 3 - przykład trzeciego wykonania instalacji według wynalazku.
Przedstawione na rysunkach fig. 1 do fig. 3 przykłady wykonania instalacji do termicznej obróbki surowców odpadowych według wynalazku mająprzede wszystkim piec obrotowy 1, stanowiący pierwszą strefę pirolitycznej obróbki termicznej, urządzenie odpylające 2, 2', komorę spalania 3 stanowiącą drugą strefę obróbki termicznej, strefę chłodzenia składającą się z kotła grzewczego 4, urządzeń 5, 5' do katalitycznego i niekatalitycznego odazotowania gazów oraz filtr 6 do oczyszczania gazu.
Pokazane na fig. 1 urządzenie odpylające 2 ma kolumnę chłodząco-myjącą 16, przez którą gaz pirolizowy (strzałka 7) płynie od dołu do góry i do której na różnych poziomach 8a, 8b, 8c i 8d wtryskuje się olej. Dolna część chłodząco-myjącej kolumny 16 połączona jest ze zbiornikiem 9, połączonym z wirówką 11 poprzez pompę 10. Jeden wylot wirówki 11 połączonyjest z chłodnicą kondensatu 12, podczas gdy drugi wylot wirówki 11 poprzez pompę 13 połączonyjest z wlotem pieca obrotowego 1.
Jak pokazano na fig. 1, instalacja ma piec obrotowy 1 z obudową wylotu 14 i z dołączonym urządzeniem alarmowym 15, kocioł grzewczy 4, z przyłączonym do niego turbogeneratorem 25, dmuchawę zwrotną 17 spalin, dmuchawę ssącą 18 i komin 19.
Przeznaczone do obróbki termicznej surowce odpadowe doprowadza się do wlotu pieca obrotowego 1 (strzałka 20). Można do surowców odpadowych dodawać drobnoziarniste materiały zasadowe, takie jak wodorotlenek wapnia, węglan wapnia i/lub tlenek wapnia (strzałka 21), służące do wiązania gazowych kwaśnych substancji szkodliwych, powstających w procesie pirolizy.
W piecu obrotowym 1, ogrzewanym pośrednio gazem spalinowym z komory spalania 3, surowce odpadowe ulegająodgazowaniu w temperaturze od 450°C do 550°C. Jeśli do surowców odpadowych dodaje się zasadowe materiały, to większa część uwalnianych gazowych substancji szkodliwych, jak chlorowodory i związki siarki zostaje związana w piecu obrotowym.
Neutralną, prawie całkowicie odgazowaną pozostałość wypalania, wyprowadza się przez obudowę wylotu pieca obrotowego 14 i po odżużlowaniu na mokro (strzałka 22) oraz po oddzieleniu metali, składuje się. Pozostałość po wypalaniu, zawierająca jeszcze około 5 do 30% węgla, może być odprowadzona, do odpowiedniej instalacji do obróbki termicznej, na przykład do elektrowni węglowej, urządzenia do odgazowania lub tym podobnych. Taka możliwość przerobu pozostałości po wypalaniu, zwłaszcza ze względu na jej dobre właściwości do transportu i składowania jest szczególnie korzystna.
180 560
Gaz pirolizowy (strzałka 7), posiadający temperaturę około 470°C do 500°C wchodzi do dolnej części kolumny chłodząco-myjącej 16, przepływa strefę chłodzenia i wytrącania pyłu 2 od dołu do góry w przeciwprądzie do oleju, który na różnych poziomach 8a, 8b, 8c i 8d jest wtrysku wany jako środek chłodzący i wytrącający pył.
W strefie chłodzenia i wytrącania pyłu 2 gaz pirolizowy schładza się do temperatury najwyżej 250°C, korzystnie do temperatury pomiędzy 80°C i 180°C. Gaz pirolizowy opuszcza kolumnę chłodząco-myjącą 16 mając temperaturę, na przykład 120°C.
W strefie chłodzenia i wytrącania pyłu 2 gaz pirolizowy ulega odpyleniu co najmniej w 90%, korzystnie powyżej 95%.
Olej wtryskiwany do strefy chłodzenia i wytrącania pyłu 2, wskutek rozpylania, tworzy drobne kropelki. Jednocześnie zawarte w gazie pirolizowym w strefie chłodzenia i wytrącania pyłu pary olejów, wskutek kondensacji, tworzą również kropelki oleju. Na tych, pochodzących częściowo z rozpylania i częściowo z kondensacji, kropelkach oleju skutecznie adsorbująsię pyliste materiały nieorganiczne, zawarte w gazie pirolizowym.
Ponieważ gaz pirolizowy opuszcza strefę chłodzenia i wytrącania pyłu 2 w temperaturze powyżej temperatury rosy, to w strefie chłodzenia i wytrącania pyłu jak też w przewodzie prowadzącym od tej strefy do komory spalania 3 woda jeszcze się nie kondensuje.
Gorący, napełniony pyłem olej jest odprowadzany z dolnej części strefy chłodzenia i wytrącania pyłu i poprzez zbiornik 9 i pompę 10 kieruje się go do wirówki 11. Gorący olej wypełniony pyłem drogą wirowania rozdziela się na silnie zapyloną pierwszą fazę i w dużej mierze odpyloną drugą fazę. Pierwszą, silnie zapyloną fazę, poprzez pompę 13 doprowadza się do strefy wypalania, to jest do pieca obrotowego 1 (strzałka 23). Drugą w dużej mierze odpyloną fazę oleju z wirówki 11 kieruje się do chłodnicy kondensującej 12 i tam schładza się ponownie do temperatury około 80°C i kieruje się na poziomy 8a, 8b, 8c i 8d strefy chłodzenia i wytrącania pyłu.
W strefie chłodzenia i wytrącania pyłu 2 może umieszczona być dodatkowo płuczka Venturi’ego albo podobne urządzenie polepszające oddzielanie pyłu.
Schłodzony w kolumnie 16 i w dużej mierze uwolniony od pyłu gaz pirolizowy spala się w komorze spalania 3, ewentualnie doprowadzany za pomocą palnika zasilanego powietrzem z małą zawartością Nox. Z powstających tu spalin doprowadza się pierwszą część strumienia (strzałka 24) do pośredniego ogrzewania pieca obrotowego 1. Tę część strumienia spalin, po ogrzaniu pieca obrotowego 1, poprzez dmuchawę zwrotną spalin 17, przed wlotem do kotła grzwczego 4 ponownie łączy się i miesza z drugą częścią strumienia spalin opuszczającego komorę spalania 3 (strzałka 26). Wytworzoną w kotle grzewczym 4 parę zmienia się w prąd elektryczny w turbogeneratorze 25. Po przejściu kotła grzewczego 4 spaliny kieruje się (strzałka 27) do urządzenia 5 do katalitycznego odazotowania. W kotle grzewczym 4 spaliny ulegają ochłodzeniu do temperatury optymalnej dla katalitycznego odazotowania od 250°C do 300°C. Ze względu na daleko idące odpylenie, większe niż 90%, korzystnie większe niż 95% w urządzeniu do odpylania 2, możliwe jest zainstalowanie bez problemu katalizatora odazotowania bezpośrednio po kotle grzewczym 4. Spaliny przed odazotowaniem wykazują zawartość pyłu najwyżej 500 mg pyłu/m3, korzystnie najwyżej 200 mg pyłu/m3. Podgrzewanie spalin przed doprowadzeniem nie jest konieczne.
Po urządzeniu 5 do katalitycznego odazotowania spaliny, przy dodaniu odpowiednich reaktywnych dodatków (strzałka 28), kieruje się do filtra 6, który korzystnie uformowany jest jako filtr tkaninowy. Ten filtr 6 korzystnie pracuje w temperaturach od 17O°C do 220°C, tak więc możliwe jest dalsze ochłodzenie spalin pomiędzy urządzeniem 5 do katalitycznego odazotowania i filtrem 6, na przykład przez dodanie wody (strzałka 29), lub przez pośrednie podgrzewanie wody zasilającej kocioł albo schłodzenie powietrzem. Ponieważ większa część pyłów została już oddzielona w kolumnie chłodząco-myjącej 16, filtr 6 może być tak ukształtowany, aby możliwe było optymalne wiązanie wszelkich gazowych substancji szkodliwych i resztek pyłów. Przez dodatek aktywnego koksu, względnie aktywnego węgla, możliwe jest ponadto łatwe usunięcie resztek dioksyn jak również zmniejszenie zawartości rtęci. Poza tym przez dodatek, na przykład siarki, może nastąpić dalsze bezproblemowe usunięcie rtęci.
180 560
W bliżej nie pokazanym na rysunku wariancie urządzenia odpylającego 2 stosowane są dwie strefy chłodzenia i wytrącania pyłu, utworzone przez dwie kolumny chłodząco-myjące, przez które kolejno przechodzi gaz pirolizowy, przy czym w obu tych kolumnach występujący olej wypełniony pyłem, korzystnie przerabia się razem przez oddzielenie pyłu i zawrócenie do obiegu.
Podczas rozruchu, przy wahaniach przepływu, jak również w celu uzupełnienia usuniętej z obiegu oleju fazy zawierającej pył, doprowadza się do obiegu oleju odpowiednio dozowanąilość wysokowrzącego oleju, korzystnie oleju dizlowskiego lub opałowego.
Na figurze 2 przedstawiono wariant instalacji z fig. 1.
Zasadnicza różnica polega na tym, że urządzenie odpylające 2', które tu służy jako urządzenie odpylające gorącego gazu, utworzone jest z ceramicznych świec filtrujących. Pył występuje tu w suchej postaci i daje się w prosty sposób przerabiać dalej.
Dodatkowo przez wtryśnięcie (strzałka 31) dalszych materiałów zasadowych przed urządzeniem odpylającym 2', bez większych nakładów można osiągnąć dalsze wyraźne obniżenie kwaśnych, szkodliwych gazów, ponieważ materiały te na filtrze tworzą rękaw, przez który gaz pirolizowy wraz z zawartymi substancjami musi przeniknąć.
Szczególnie korzystne okazało się ogrzanie gazu pirolizowego przed odpyleniem do wyższej temperatury, na przykład o 10°C do 50°C. Dzięki temu unika się łatwo kondensacji smół i olejów z gazu pirolizowego na świecach filtrujących.
Reaktywne dodatki doprowadza się w miejscu pokazanym strzałką 28, przy czym szczególnie stosuje się materiały zasadowe, jak wodorowęglan sodu, jak też potasu i dalsze związki sodu. Ułatwia to strącanie na filtrze substancji szkodliwych powstających jako produkty reakcji, jak na przykład chlorek sodu i siarczan sodu.
Do usuwania rtęci możliwy jest dodatek takich materiałów jak elementarna siarka, siarczek sodu lub tym podobne. Wyjątkowo skuteczne jest też dodawanie aktywnego koksu lub aktywnego węgla jako materiałów adsorbujących.
Na figurze 3 przedstawiono instalację według trzeciego przykładu wykonania, która głównie różni się od instalacji przedstawionych na fig. 1 i fig. 2, urządzeniem 5' do niekatalitycznego odazotowania. W tym przykładzie wykonania niekatalityczne odazotowanie prowadzi się w temperaturze od około 800°C do 1000°C, bezpośrednio po drugiej strefie termicznej obróbki, to znaczy po komorze spalania. Urządzenie 5' do niekatalitycznego odazotowania w przedstawionym przykładzie wykonania utworzone jest w postaci urządzenia do dodawania amoniaku, względnie wody amoniakalnej lub mocznika. Amoniak dodaje się szczególnie korzystnie do pierwszej części strumienia (strzałka 24), którą doprowadza się do pieca obrotowego 1. Zapewnia to możliwie długi czas przebywania dodawanych surowców, zwłaszcza amoniaku, ze spalinami w zakresie temperatury od około 850°C do 1000°C. W ten sposób można zminimalizować nadmiar amoniaku do prawie jego stechiometrycznej ilości. Dzięki temu nie stosuje się, lub stosuje się w minimalnym stopniu wytrącanie resztkowego amoniaku w następnych agregatach oczyszczania spalin. Poza tym nie unika się bardzo kosztownej obróbki oczyszczającej spalin w celu usunięcia chemikaliów o intensywnym zapachu.
Szczególnie korzystny w tym przykładzie wykonania jest też dodatek materiałów zasadowych, jak wodorotlenek wapnia, węglan wapnia i/lub tlenek wapnia, w obszarze pierwszej strefy obróbki termicznej, dzięki czemu dwutlenek siarki, względnie trójtlenek siarki mogą być związane jeszcze przed urządzeniem 5' do niekatalitycznego odazotowania i wskutek tego unika się powstawania silnie klejących soli amonowych.
Dalsze dozowanie zasadowych materiałów do gazu pirolizowego przed jego odpylaniem dodatkowo wiąże szkodliwe gazy i wzmaga wolny przepływ gazu, przy czym materiały te tworzą na filtrze rękawa, przez który gaz pirolizowy wraz z zawartymi substancjami musi przenikać, dzięki czemu następuje dalsza reakcja pomiędzy zasadąi szkodliwymi gazami, a przy tym następuje ich wytrącanie się powstałych związków.
Instalacja przedstawiona na fig. 3 może oczywiście pracować również z urządzeniem odpylającym 2, tak jak jest ono pokazana na fig. 1.
180 560
Sposób i urządzenie według wynalazku pokazane na fig. 1 do 3 cechują się szczególnie niskim nakładem technicznym dla obniżenia zawartości NOX w spalinach poniżej przewidzianych wartości granicznych, który to nakład w stosunku do znanych instalacji jest wyraźnie mniejszy.
Dalszym, szczególnie pozytywnym efektem jest możliwość dobrania budowy komory spalania zapewniającej zniszczenie zawartych w odpadach dioksyn i furanów. Przez homogenizację odpadów podczas pirolizy możliwe jest, w przeciwieństwie do konwencjonalnych sposobów, spalanie gazu pirolizowego przy niewielkim nadmiarze powietrza, a stąd w stosunkowo wysokich temperaturach, powyżej 1200°C. W przeciwieństwie do tego temperatura spalania w konwencjonalnych sposobach mieści się około 850°C do 1000°C. Dzięki wyższym temperaturom stopień zniszczenia wszelkich związków organicznych, szczególnie dioksyn i furanów jest odpowiednio wyższy.
Z tego względu wcześniejsze odpylanie gazu istotnie hamuje ponowne tworzenie się dioksyn i furanów na drodze ogrzewania tak, że nie jest potrzebny oddzielny agregat do niszczenia dioksyn i furanów.
Podczas badań leżących u podstaw wynalazku, szczególnie korzystne okazało się stosowanie jako reaktywnych dodatków (strzałka 28) mieszaniny aktywnego węgla względnie aktywnego koksu i wodorowęglanu. Ilość i/lub skład tej mieszaniny reguluje się zależnie od stopnia oczyszczania spalin po filtrze 6. Zwykle przeprowadza się przy tym ciągły pomiar wartości oczyszczania spalin.
W instalacji według wynalazku całkowity nakład na oczyszczanie spalin jest wydatnie zmniejszony, w stosunku do konwencjonalnych instalacji.
Obok zmniejszenia zawartości NOX dotrzymuje się wszelkich innych związanych wartości emisji, przy czym nakład, w stosunku do konwencjonalnych, co najmniej pięciostopniowych procesów, jest drastycznie mniejszy.
Claims (25)
- Zastrzeżenia patentowe1. Sposób termicznej obróbki surowców odpadowych, w którym surowce te poddaj e się pirolizie w piecu obrotowym, a otrzymane gazy spala się w komorze spalania, chłodzi w wymienniku ciepła i oczyszcza od zanieczyszczeń stałych i od tlenków azotu, znamienny tym, że pirolizę surowców odpadowych przeprowadza się w obecności dodatków reaktywnych, a gaz pirolizowy z pieca obrotowego chłodzi się i oczyszcza co najmniej w 90%, korzystnie co najmniej w 95%, po czym oczyszczony gaz pirolizowy spala się w komorze spalania, a otrzymane gazy chłodzi się w kotle grzewczym, odazotowuje, oczyszcza na filtrze od substancji szkodliwych i kieruje do komina.
- 2. Sposób według zastrz. 1, znamienny tym, że gazy z komory spalania odazotowuje się katalitycznie lub bezkatalitycznie.
- 3. Sposób według zastrz. 1, znamienny tym, że gaz pirolizowy przed wejściem do komory spalania oczyszcza się od pyłu i chłodzi olejem w kolumnie do temperatury najwyżej 250°C.
- 4. Sposób według zastrz. 3, znamienny tym, że gaz pirolizowy chłodzi się olejem do temperatury wyższej od temperatury rosy, korzystnie do temperatury pomiędzy 120°C i 180°C.
- 5. Sposób według zastrz. 3, znamienny tym, że olej chłodzący i wytrącający pył, doprowadza się do góry kolumny w przeciwprądzie do doprowadzanego od dołu gazu pirolizowego.
- 6. Sposób według zastrz. 3, znamienny tym, że do płynącego od dołu do góry gazu pirolizowego wtryskuje się olej o regulowanej temperaturze na szeregu leżących jeden nad drugim poziomach strefy chłodzenia i wytrącania pyłów w kolumnie.
- 7. Sposób według zastrz. 3, znamienny tym, że gorący, zanieczyszczony pyłem olej odprowadza się z dolnej części kolumny i przez odwirowanie rozdziela na silnie zanieczyszczoną pyłem pierwszą fazę i na fazę drugą w dużym stopniu nie zawierającą pyłu, po czym pierwszą fazę doprowadza się do strefy wypalania w piecu obrotowym, a fazę drugą po ochłodzeniu, ponownie kieruje się do chłodzenia i oczyszczania gazu.
- 8. Sposób według zastrz. 3, znamienny tym, że gaz pirolizowy przepuszcza się kolejno przez co najmniej dwa stopnie strefy chłodzenia i wytrącania pyłu, przy czym wychodzący z tych dwóch stopni gorący, zanieczyszczony pyłem olej łączy się razem i kieruje do wirówki celem oczyszczenia i zawrócenia do przerobu.
- 9. Sposób według zastrz. 1, znamienny tym, że jako dodatki reaktywne do surowców odpadowych doprowadzanych do pieca obrotowego dodaje się drobnoziarniste, zasadowe materiały takie jak wodorotlenek wapnia, węglan wapnia i/lub tlenek wapnia.
- 10. Sposób według zastrz. 7, znamienny tym, że podczas rozruchu, przy wahaniach przepływu, jak również w celu uzupełnienia odprowadzonej z obiegu oleju fazy zanieczyszczonej pyłem, do obiegu oleju doprowadza się dodatkowo odpowiednio dozowaną ilość wysokowrzącego oleju, korzystnie oleju dizlowskiego lub opałowego.
- 11. Sposób według zastrz. 1, znamienny tym, że przez ochłodzenie spalin odzyskuje się energię.
- 12. Sposób według zastrz. 1, znamienny tym, że gaz pirolizowy odpyla się na gorąco w filtrze suchym, a wytrącony pył odprowadza się w postaci suchej.
- 13. Sposób według zastrz. 12, znamienny tym, że do gazu pirolizowego przedjego odpylaniem w filtrze suchym dodaje się drobnoziarniste materiały zasadowe.
- 14. Sposób według zastrz. 1, znamienny tym, że gaz pirolizowy przed odpylaniem podgrzewa się do wyższej temperatury.180 5603'
- 15. Sposób według zastrz. 1, znamienny tym, że spaliny po odazotowaniu, ale przed oczyszczaniem na filtrze, dalej chłodzi się do temperatury optymalnej dla wytrącenia zanieczyszczeń na filtrze.
- 16. Sposób według zastrz. 1, znamienny tym, że część spalin z komory spalania przesyła się do ogrzewania pieca obrotowego.
- 17. Sposób według zastrz. 2, znamienny tym, że do bezkatalitycznego odazotowania dodaje się amoniak, wodę amoniakalną lub mocznik.
- 18. Sposób według zastrz. 17, znamienny tym, że amoniak, wodę amoniakalną lub mocznik dodaje się do części spalin z komory spalania, które kieruje się do ogrzewania pieca obrotowego.
- 19. Sposób według zastrz. 1, znamienny tym, że jako reaktywne dodatki do spalin dodaje się mieszaninę aktywnego węgla, albo koksu i wodorowęglanu.
- 20. Sposób według zastrz. 19, znamienny tym, że ilość i/lub skład mieszaniny reaktywnych dodatków reguluje się w zależności od stopnia oczyszczania spalin.
- 21. Urządzenie do termicznej obróbki surowców odpadowych, mające piec obrotowy od pirolitycznego odgazowania, komorę spalania, wymiennik ciepła gazów spalinowych, filtry do odpylania gazów spalinowych i urządzenie do odazotowania, znamienne tym, że piec obrotowy (1) do pirolizy surowców odpadowych jest połączony odprowadzeniem gazów z kolumną(2) odpylania powstającego w piecu obrotowym (1) gazu pirolizowego, która jest połączona odprowadzeniem gazów z komorą spalania (3) odpylonego gazu pirolizowego mającą połączenie odprowadzenia gazów do kotła grzewczego (4), który odprowadzeniem gazów jest połączony z urządzeniem (5) do katalitycznego odazotowania spalin od którego odprowadzenie gazów odchodzi do filtra (6) do oczyszczania spalin od substancji szkodliwych.
- 22. Urządzenie według zastrz. 21, znamienne tym, że kolumna (2) ma urządzenia do zraszania, które są umieszczone jedno nad drugim na poziomach (8a, 8b, 8c, 8d).
- 23. Urządzenie według zastrz. 21, że komora spalania (3) ma odgałęzienie odprowadzenia gazów połączone z urządzeniem (5') do niekatalitycznego odazotowania.
- 24. Urządzenie do termicznej obróbki surowców odpadowych, mające piec obrotowy do pirolitycznego odgazowania, komorę spalania, wymiennik ciepła gazów spalinowych, filtry do odpylania gazów spalinowych i urządzenia do odazotowania gazów, znamienne tym, że piec obrotowy (1) do pirolizy surowców odpadowych jest połączony odprowadzeniem gazów z urządzeniem odpylającym (2^ mającym ceramiczne świece filtracyjne, które ma odprowadzenie oczyszczonych gazów do komory spalania (3) gazu pirolizowego połączonej odprowadzeniem gazów z kotłem grzewczym (4), który jest połączony odprowadzeniem gazów z urządzeniem (5) do katalitycznego odazotowania spalin od którego odprowadzenie gazów odchodzi do filtra (6) do oczyszczania spalin od substancji szkodliwych.
- 25. Urządzenie według zastrz. 24, że komora spalania (3) ma odgałęzienie odprowadzenia gazów połączone z urządzeniem (5) do niekatalitycznego odazotowania.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19512785A DE19512785A1 (de) | 1995-04-05 | 1995-04-05 | Verfahren zur thermischen Behandlung von Abfallstoffen |
PCT/EP1996/001085 WO1996031735A1 (de) | 1995-04-05 | 1996-03-14 | Verfahren und vorrichtung zur thermischen behandlung von abfallstoffen |
Publications (2)
Publication Number | Publication Date |
---|---|
PL322890A1 PL322890A1 (en) | 1998-03-02 |
PL180560B1 true PL180560B1 (pl) | 2001-02-28 |
Family
ID=7758874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL96322890A PL180560B1 (pl) | 1995-04-05 | 1996-03-14 | Sposób i urzadzenie do termicznej obróbki surowców odpadowych PL PL PL |
Country Status (10)
Country | Link |
---|---|
US (1) | US6018090A (pl) |
EP (1) | EP0819233B1 (pl) |
JP (1) | JPH11503221A (pl) |
AT (1) | ATE174682T1 (pl) |
AU (1) | AU5108396A (pl) |
CA (1) | CA2217482A1 (pl) |
CZ (1) | CZ314897A3 (pl) |
DE (2) | DE19512785A1 (pl) |
PL (1) | PL180560B1 (pl) |
WO (1) | WO1996031735A1 (pl) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3031881A1 (en) | 2014-12-08 | 2016-06-15 | Innord sp. z o.o. S.K.A. | Method of pyrolytic processing of polymer waste from the recycling of food packaging and a system for carrying out such method |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2268359A1 (fr) * | 1996-10-22 | 1998-04-30 | Traidec S.A. | Installation pour le traitement par thermolyse et pour la valorisation energetique des dechets |
JP3413136B2 (ja) * | 1999-10-25 | 2003-06-03 | 汎洋興業株式会社 | 廃タイヤの再生処理方法および廃タイヤ再生処理装置 |
ES2199612B1 (es) * | 2000-03-02 | 2005-02-16 | Energia Natural De Mora, S.L. | Planta transformadora de residuos solidos y/o biomasa en un gas combustible. |
DE10054336B4 (de) * | 2000-11-02 | 2007-03-22 | Landkreis Günzburg | Verfahren und Vorrichtung zur Reinigung von kondenshaltigen Pyrolysegasen |
NL1017206C2 (nl) * | 2001-01-26 | 2002-07-29 | Cdem Holland Bv | Werkwijze voor het verwijderen van kwik uit een gasstroom. |
GB0411643D0 (en) * | 2004-05-25 | 2004-06-30 | Stein Peter | Improved gasifier |
EP1751469A1 (en) * | 2004-05-25 | 2007-02-14 | Peter Stein | Improved gasifier |
US20070210075A1 (en) * | 2006-03-02 | 2007-09-13 | John Self | Induction heater |
JP4294088B2 (ja) * | 2006-12-28 | 2009-07-08 | N・M・G環境開発株式会社 | 有機廃棄物の処理方法及びその装置 |
JP5520441B2 (ja) * | 2007-11-29 | 2014-06-11 | ヤンマー株式会社 | バイオマスガス化システム |
JP5021543B2 (ja) * | 2008-03-31 | 2012-09-12 | 三井造船株式会社 | 燃焼制御方法、及び廃棄物処理装置 |
US8690977B2 (en) * | 2009-06-25 | 2014-04-08 | Sustainable Waste Power Systems, Inc. | Garbage in power out (GIPO) thermal conversion process |
US8992639B2 (en) * | 2010-10-20 | 2015-03-31 | Peter Rugg | Process for purifying solid carboniferous fuels prior to combustion, liquefaction or gasification using a rotary chamber |
WO2012161876A1 (en) * | 2011-05-26 | 2012-11-29 | Exxonmobil Chemical Patents Inc. | Denox treatment for a regenerative pyrolysis reactor |
CN104975179B (zh) * | 2015-06-17 | 2018-07-13 | 山西八达镁业有限公司 | 一种金属镁冶炼白云石焙烧和垃圾焚烧联合运行的方法 |
CN107779232A (zh) * | 2016-08-25 | 2018-03-09 | 何巨堂 | 含碳氢元素的粉料的热解反应产物的深度气固分离方法 |
JP6865638B2 (ja) * | 2017-05-22 | 2021-04-28 | 川崎重工業株式会社 | ロータリーキルン及びその運転方法 |
FR3087353B1 (fr) * | 2018-10-18 | 2022-12-16 | Arkema France | Procede de traitement d'un effluent gazeux issu d'une decomposition pyrolytique d'un polymere |
CN110026046A (zh) * | 2019-05-22 | 2019-07-19 | 国核维科锆铪有限公司 | 一种处理煅烧废气的装置及方法 |
CN113048480B (zh) * | 2019-12-27 | 2022-12-06 | 四川伟程环保技术开发有限公司 | 一种高海拔低氧地区垃圾无害化处理方法 |
KR102635513B1 (ko) * | 2023-08-21 | 2024-02-13 | 주식회사 지스코 | 집진탈질설비 및 이를 포함하는 환경시스템 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4206186A (en) * | 1975-02-06 | 1980-06-03 | Holter Gesellschaft Fur Patentverwertungsverfahren Mbh | Refuse pyrolysis |
DE2701800A1 (de) * | 1977-01-01 | 1978-07-20 | Heinz Hoelter | Umweltschutzanlage fuer pyrolysegas |
DE2708919C2 (de) * | 1977-03-02 | 1982-05-27 | Dr. C. Otto & Comp. Gmbh, 4630 Bochum | Verfahren zur Reinigung von SO↓2↓-haltigen Industrieabgasen |
US4303477A (en) * | 1979-06-25 | 1981-12-01 | Babcock Krauss-Maffei Industrieanlagen Gmbh | Process for the pyrolysis of waste materials |
ATE21937T1 (de) * | 1981-05-27 | 1986-09-15 | Fridh Bengt Ind Teknik Ab | Verfahren und vorrichtung zur behandlung von abfallmaterial, das metall und/oder metalloxyde, organische stoffe und moeglicherweise auch wasser enthaelt. |
US4430303A (en) * | 1982-09-30 | 1984-02-07 | Linde Aktiengesellschaft | Removal of undesirable gaseous components from a hot waste gas |
DE3444073A1 (de) * | 1984-12-03 | 1986-06-05 | Dyckerhoff Engineering GmbH, 6200 Wiesbaden | Verfahren und anlage zum verbrennen von abfaellen wie haus-, industrie- und sondermuell |
DE3601378A1 (de) * | 1986-01-18 | 1987-07-23 | Degussa | Verfahren zur reinigung von oxide des stickstoffs und schwefels enthaltenden abgasen aus verbrennungsanlagen |
US5298162A (en) * | 1986-04-29 | 1994-03-29 | Kurt W. Niederer | Multi-stage fluid filter |
DE3629817A1 (de) * | 1986-09-02 | 1988-03-03 | Bergwerksverband Gmbh | Verfahren zur verringerung der schadstoffemisionen von kraftwerken mit kombinierten gas-/dampfturbinenprozessen mit vorgeschalteter kohlevergasung |
DE3733078C2 (de) * | 1987-09-30 | 1996-10-02 | Siemens Ag | Anlage zur thermischen Abfallbeseitigung |
US5376354A (en) * | 1987-10-16 | 1994-12-27 | Noell Abfall-Und Energietechnik Gmbh | Process for disposal of waste by combustion with oxygen |
ATE121311T1 (de) * | 1991-01-30 | 1995-05-15 | Stadt Landshut Vertreten Durch | Verfahren zur rauchgasreinigung von feuerungsanlagen, insbesondere müllverbrennungsanlagen. |
DE4217301A1 (de) * | 1992-02-17 | 1993-12-02 | Siemens Ag | Verfahren und Einrichtung zum Beheizen einer Schweltrommel |
-
1995
- 1995-04-05 DE DE19512785A patent/DE19512785A1/de not_active Withdrawn
-
1996
- 1996-03-14 AT AT96907463T patent/ATE174682T1/de not_active IP Right Cessation
- 1996-03-14 WO PCT/EP1996/001085 patent/WO1996031735A1/de not_active Application Discontinuation
- 1996-03-14 CZ CZ973148A patent/CZ314897A3/cs unknown
- 1996-03-14 AU AU51083/96A patent/AU5108396A/en not_active Abandoned
- 1996-03-14 US US08/913,910 patent/US6018090A/en not_active Expired - Fee Related
- 1996-03-14 PL PL96322890A patent/PL180560B1/pl not_active IP Right Cessation
- 1996-03-14 CA CA002217482A patent/CA2217482A1/en not_active Abandoned
- 1996-03-14 DE DE59601010T patent/DE59601010D1/de not_active Expired - Fee Related
- 1996-03-14 EP EP96907463A patent/EP0819233B1/de not_active Expired - Lifetime
- 1996-03-14 JP JP8529918A patent/JPH11503221A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3031881A1 (en) | 2014-12-08 | 2016-06-15 | Innord sp. z o.o. S.K.A. | Method of pyrolytic processing of polymer waste from the recycling of food packaging and a system for carrying out such method |
Also Published As
Publication number | Publication date |
---|---|
PL322890A1 (en) | 1998-03-02 |
EP0819233A1 (de) | 1998-01-21 |
US6018090A (en) | 2000-01-25 |
DE19512785A1 (de) | 1996-10-17 |
CA2217482A1 (en) | 1996-10-10 |
EP0819233B1 (de) | 1998-12-16 |
ATE174682T1 (de) | 1999-01-15 |
AU5108396A (en) | 1996-10-23 |
DE59601010D1 (de) | 1999-01-28 |
CZ314897A3 (cs) | 1998-02-18 |
WO1996031735A1 (de) | 1996-10-10 |
JPH11503221A (ja) | 1999-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PL180560B1 (pl) | Sposób i urzadzenie do termicznej obróbki surowców odpadowych PL PL PL | |
JP4242297B2 (ja) | 熱煙道ガスから水銀種を除去するための方法及び装置 | |
JP4594821B2 (ja) | ガス化ガスの精製方法 | |
KR100287634B1 (ko) | 배연처리설비 | |
KR100875519B1 (ko) | 활성탄을 이용한 소각로 배기가스의 유해물질 저감 플랜트 | |
CN112808746B (zh) | 一种焚烧炉渣及飞灰的资源化处置方法 | |
EP1399695B1 (en) | Flue gas purification device for an incinerator | |
JP4227676B2 (ja) | ガス精製装置 | |
CN210523360U (zh) | 一种废盐资源化处理用处理系统 | |
JP5161906B2 (ja) | ガス化設備におけるガス処理方法及びガス化設備 | |
JPH10132241A (ja) | 廃液または排ガスの処理方法 | |
JP2566746B2 (ja) | 煙道ガス流を浄化する方法 | |
JP5299600B2 (ja) | 排ガス処理方法及び排ガス処理装置 | |
KR820001196B1 (ko) | 배기가스내 이산화유황으로 부터 유화수소의 제조공정 | |
JP2003117520A (ja) | 焼却灰の処理方法 | |
JP2005195228A (ja) | 廃棄物溶融処理システム | |
JP3826714B2 (ja) | 廃棄物の処理方法 | |
CN114618282B (zh) | 危废焚烧烟气全流程超低排放净化方法 | |
BE1025689B1 (nl) | Systeem en werkwijze voor warmterecuperatie en reiniging van een uitlaatgas van een verbrandingsproces | |
CN210522218U (zh) | 一种废盐资源化处理用尾气处理系统 | |
KR820000687B1 (ko) | 배기가스내 이산화유황으로부터 유화수소의 회수방법 | |
JPH0849828A (ja) | 廃棄物処理装置及び方法 | |
JP2001191052A (ja) | 廃棄物ガス化溶融炉からの集じん灰の加熱処理方法および装置 | |
JP3459758B2 (ja) | 廃棄物の熱分解燃焼溶融装置 | |
SU1605089A2 (ru) | Способ термического обезвреживани различных по агрегатному состо нию отходов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Decisions on the lapse of the protection rights |
Effective date: 20060314 |