NZ727587B2 - Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity - Google Patents
Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity Download PDFInfo
- Publication number
- NZ727587B2 NZ727587B2 NZ727587A NZ72758715A NZ727587B2 NZ 727587 B2 NZ727587 B2 NZ 727587B2 NZ 727587 A NZ727587 A NZ 727587A NZ 72758715 A NZ72758715 A NZ 72758715A NZ 727587 B2 NZ727587 B2 NZ 727587B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- outlet
- inlet
- check valve
- dual
- fluid
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/02—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/025—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
- F04B43/026—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel each plate-like pumping flexible member working in its own pumping chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/10—Valves; Arrangement of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/10—Valves; Arrangement of valves
- F04B53/1037—Flap valves
- F04B53/1047—Flap valves the valve being formed by one or more flexible elements
- F04B53/1057—Flap valves the valve being formed by one or more flexible elements the valve being a tube, e.g. normally closed at one end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
Abstract
Diaphragm pump features upper/lower diaphragm pumping assemblies (U/LDPAs) for pumping fluid and a manifold assembly arranged therebetween. The manifold assembly include a manifold body having an inlet with dual inlet ports and an inlet chamber to receive the fluid from a source; an inlet check valve assembly channel having an inlet duckbill check valve assembly (DCVA) arranged therein to receive the fluid from the dual inlet ports; U/LDPAs orifices having the U/LDPA arranged therein to receive the fluid from the inlet DCVA via first upper/lower manifold conduits and provide the fluid from the U/LDPAs via second upper/lower manifold conduits; an outlet check valve assembly channel having an outlet DCVA arranged therein to receive the fluid from the U/LDPAs; and an outlet having dual outlet ports and an outlet chamber to receive the fluid from the U/LDPAs and provide the fluid from the pump to a outlet source. e assembly channel having an inlet duckbill check valve assembly (DCVA) arranged therein to receive the fluid from the dual inlet ports; U/LDPAs orifices having the U/LDPA arranged therein to receive the fluid from the inlet DCVA via first upper/lower manifold conduits and provide the fluid from the U/LDPAs via second upper/lower manifold conduits; an outlet check valve assembly channel having an outlet DCVA arranged therein to receive the fluid from the U/LDPAs; and an outlet having dual outlet ports and an outlet chamber to receive the fluid from the U/LDPAs and provide the fluid from the pump to a outlet source.
Description
DIAPHRAGM PUMP UTILIZING LL VALVES,
MULTI-DIRECTIONAL PORTS AND FLEXIBLE ELECTRICAL CONNECTIVITY
CROSS-REFERENCE TO RELATED APPLICATIONS
This ation claims benefit to provisional patent application serial no.
62/012,526, filed 16 June 2014, which is hereby incorporated by reference in its
entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a pump for providing fluid and particulate;
and more particularly relates to a diaphragm pump having a manifold assembly for
pumping viscous fluid having solids and particulates.
2. Brief Description of Related Art
Figure 1 shows a diaphragm pump having a pump manifold with springloaded
or 'umbrella' valves, which is known in the art. In Figure 1, the spring is
arranged between upper and lower umbrella valves. Pumps are also known in the
art having fixed wiring. Shortcomings of the known agm pump urations
may include one or more of the ing:
a. Valve Types - Spring loaded and umbrella style valves are limited to
pumping low viscosity and "debris free" fluids. Liquids with high viscosity and/or
particulates cause priming and mance issues on existing valve types.
i. Umbrella type valves - tent with that shown in Figure 1, these
umbrella type valves typically easily clog due to particulates in the fluid.
When the umbrella type valves are clogged/fouled, they will not seal properly
and this prevents the pump from priming and building pressure.
ii. Spring loaded valves - Consistent with that shown in Figure 1, the
solids in the liquid being pumped typically become entangled in the spring
mechanism and prevent the valve from opening and closing.
b. Pumps having fixed wiring do not have the flexibility to quick
connect/disconnect for ing. Typical pumps have fixed wiring extending from
the motor. If the user requires a connector that must be attached to the existing
wires.
c. Most pumps in the marketplace today usually have 1 inlet and 1 discharge
ports from the left and right side of pump head. Therefore, they are d to only 1
way of connecting the inlet/outlet fittings.
In view of this, there is a need in the industry for a pump that solves these
omings in the pumps that are known in art.
SUMMARY OF THE INVENTION
According to some embodiments, the present invention may include, or take
the form of, a pump featuring a new and unique combination of upper and lower
diaphragm pumping assemblies together with a manifold ly.
The upper and lower diaphragm g assemblies may be configured for
pumping fluid through the pump.
The manifold assembly may be configured or arranged between the upper
and lower diaphragm pumping assemblies.
The ld assembly may include or be configured with a combination of a
ld body, an inlet check valve assembly channel, upper and lower diaphragm
pumping assembly orifices, an outlet check valve assembly channel and an outlet.
The manifold body may be configured with an inlet having at least one inlet
port and an inlet chamber to receive the fluid from at least one fluid source.
The inlet check valve assembly channel may include an inlet duckbill check
valve ly arranged therein to receive the fluid from the at least one inlet port.
The upper and lower diaphragm pumping assembly orifices may include the
upper and lower diaphragm pumping assemblies arranged therein to e the
fluid from the inlet duckbill check valve assembly via first upper and lower manifold
conduits and provide the fluid from the upper and lower diaphragm pumping
assemblies via second upper and lower manifold ts.
The outlet check valve assembly channel may include an outlet duckbill
check valve assembly arranged therein to receive the fluid from the upper and lower
agm pumping assemblies.
The outlet may include at least one outlet port and an outlet chamber to
receive the fluid from the upper and lower diaphragm pumping assemblies and
provide the fluid from the pump to at least one fluid outlet source.
The present invention may e one or more of the following features:
The at least one inlet port may include dual inlet ports configured to receive
inlet port fitting connections, and the at least one outlet port may include dual outlet
ports configured to e outlet port fitting connections.
The inlet duckbill check valve assembly may include two duckbill check
valves, and the outlet duckbill check valve assembly comprises two duckbill check
valves.
The manifold assembly may include two manifold assembly covers or plates
attached to upper and lower surfaces of the manifold body and configured with the
first and second upper and lower manifold conduits for ing fluid from the inlet
check valve assembly channel to the outlet check valve assembly channel.
The manifold body may include, or take the form of, a c injection
molded integral structure.
The dual inlet ports may be configured or oriented orthogonal to one another;
and the dual outlet ports are configured or oriented orthogonal to one another.
The dual inlet ports and the inlet chamber may be configured to receive the
fluid from two fluid sources for mixing together in the inlet chamber; and the dual
outlet ports and the outlet chamber may be configured to provide a mixed fluid to
the at least one fluid outlet source, including where the at least one fluid outlet
source es two fluid outlet s.
The inlet ll check valve assembly and the outlet duckbill check valve
assembly may be ured to s a particle medium having up to 4
millimeters (mm) in diameter.
Either the dual inlet ports, or the dual outlet ports, or both the dual inlet ports
and the dual outlet ports, may be configured to receive different port fitting
connections, ing where the different port fitting connections include a port
fitting connection that allows the passage of the fluid either to or from the tive
port, and a corresponding port fitting connection that does not allow the passage of
the fluid either to or from the respective port.
According to a first aspect of the present invention, there is provided a pump,
comprising:
upper and lower diaphragm g assemblies for pumping fluid through
the pump; and
a manifold assembly arranged between the upper and lower diaphragm
pumping assemblies, comprising:
a manifold body configured with an inlet having at least one inlet port
and an inlet chamber to receive the fluid from at least one fluid source,
configured with an inlet check valve assembly channel having an inlet
duckbill check valve assembly arranged therein to receive the fluid from the
at least one inlet port, configured with upper and lower diaphragm pumping
assembly orifices having the upper and lower diaphragm pumping
assemblies ed therein to receive the fluid from the inlet duckbill check
valve assembly via first upper and lower manifold conduits and provide the
fluid from the upper and lower diaphragm pumping assemblies via second
upper and lower manifold ts, configured with an outlet check valve
assembly channel having an outlet duckbill check valve assembly arranged
therein to e the fluid from the upper and lower diaphragm pumping
assemblies, and an outlet having at least one outlet port and an outlet
chamber to e the fluid from the upper and lower diaphragm pumping
assemblies and provide the fluid from the pump to at least one fluid outlet
source.
According to a second aspect of the present invention, there is provided a
pump, comprising:
upper and lower diaphragm pumping lies for pumping fluid through
the pump; and
a manifold assembly ed between the upper and lower diaphragm
pumping assemblies, comprising:
a manifold body configured with an inlet having dual inlet ports and an
inlet chamber to receive the fluid from one or more fluid sources, configured
with an inlet check valve assembly channel having an inlet duckbill check
valve assembly arranged therein to receive the fluid from the dual inlet ports,
configured with upper and lower diaphragm g assembly orifices
having the upper and lower agm pumping assemblies arranged therein
to e the fluid from the inlet duckbill check valve assembly via first upper
and lower manifold conduits and provide the fluid from the upper and lower
diaphragm pumping assemblies via second upper and lower manifold
conduits, configured with an outlet check valve assembly channel having an
outlet duckbill check valve assembly arranged therein to e the fluid
from the upper and lower agm pumping assemblies, and an outlet
having dual outlet ports and an outlet chamber to receive the fluid from the
upper and lower diaphragm pumping assemblies and provide the fluid from
the pump to one or more fluid outlet sources.
According to another aspect of the present invention, there is provided a dual
diaphragm pump, comprising:
upper and lower diaphragm pumping assemblies; and
a manifold ly arranged between the upper and lower diaphragm
g assemblies, the upper and lower diaphragm pumping assemblies
configured to pump a particle medium having solids and particulates with up to four
millimeters in diameter through the manifold assembly without fouling or ng,
the manifold assembly having a manifold body that is a c injection molded
integral structure and includes:
an inlet having at least one inlet port and an inlet chamber configured to
receive the le medium from at least one fluid source,
an inlet check valve assembly channel formed therein and being in fluidic
communication with the inlet chamber and both of the upper and lower diaphragm
pumping assemblies,
an inlet duckbill check valve assembly having two input duckbill check valves
arranged in the inlet check valve assembly channel, each input duckbill check valve
configured to allow the le medium to pass from the inlet chamber, through the
- 5a -
inlet check valve assembly channel, to a respective one of the upper and lower
diaphragm pumping assemblies,
an outlet check valve assembly channel formed therein and being in fluidic
communication with both of the upper and lower diaphragm pumping assemblies,
an outlet duckbill check valve assembly having two output duckbill check
valves arranged in the outlet check valve assembly channel, each output duckbill
check valve configured to allow the particle medium to pass from the respective one
of the upper and lower agm pumping assemblies and through the outlet
check valve assembly channel, and
an outlet having an outlet chamber and at least one outlet port the outlet
r being in fluidic communication with the outlet check valve ly
channel, and configured to allow the le medium to pass from the outlet check
valve assembly channel, through the outlet r, to the at least one outlet port
for providing to at least one fluid outlet source.
Advantages of the present invention may e one or more of the
following:
a. Capability to pump high viscosity fluids.
b. Capable of handling solids and particulates in the fluid being
pumped.
c. Reinforced duckbills prevent the check valve from collapsing during
operations that generate higher back pressures.
d. Flexible wiring options for quick connect/disconnect for servicing
allowing easier installation, servicing and general maintenance.
e. Multiple port pump housing or assembly that allows for flexibility of
port fitting connections and dispensing/mixing.
- 5b -
In effect, the pump having the aforementioned diaphragm pumping and
ld assemblies according to the present invention solves problems that have
plagued the prior art pump shown in Figure 1, and provides an important
contribution to the state of the art.
BRIEF DESCRIPTION OF THE DRAWING
The drawing, which are not necessarily drawn to scale, includes the following
Figures:
Figure 1 shows a front-to-back cross-sectional view of a pump that is known
in the art.
Figure 2 shows a perspective view of a pump having a single inlet and outlet,
according to some ments of the present invention.
Figure 2A shows a cross-sectional view of a lower half of the pump in Figure
2 along lines and arrows 2A-2A, ing to some embodiments of the present
invention.
Figure 3 shows a top down plan view of the pump in Figure 2, according to
some embodiments of the present invention.
- 5c followed by page 6 -
Figure 4 shows a side view of the pump in Figure 2, according to some
ments of the present invention.
Figure 4A shows a cross-sectional view of a left side of the pump in Figure 2
along lines and arrows 4A-4A, according to some ments of the present
invenflon.
Figure 5 shows a front-to-back cross-sectional view of the pump in Figure 2
along lines and arrows 5-5, according to some ments of the present
invenflon.
Figure 6 shows a top perspective view of a pump housing with multi-ports,
including inlet ports and outlet ports, according to some embodiments of the present
invenflon.
Figure 7 shows a top perspective view of a pump housing with multi-ports
including inlet ports and outlet ports, according to other embodiments of the present
invenflon.
Figure 7(A) shows a top perspective view of part of a pump having a pump
assembly with the pump housing in Figure 7 configured with inlet/outlet port fitting
connections extending in left/right directions transverse to the longitudinal axis of the
pump, according to other embodiments of the present invention.
Figure 7(B) shows a top perspective view of part of a pump having a pump
assembly with the pump g in Figure 7 configured with inlet/outlet port fitting
connections extending in a front ion along the longitudinal axis of the pump,
according to other embodiments of the present invention.
Figure 7(C) shows a top perspective view of part of a pump having a pump
assembly with the pump housing in Figure 7 configured with inlet/outlet port fitting
connections ing in the left/right ions and a dual outlet port fitting
tion extending in a left/right ion and a front direction, according to other
embodiments of the present invention.
Figure 8 shows a back-to-front cross-sectional view of the pump in Figure 2
along lines and arrows 8-8, according to some embodiments of the present
invenflon.
Figure 9A shows a art having steps for implementing control
functionality for operating a pump arrangement or configuration like that shown in
Figure 98, according to some embodiments of the present invention.
Figure 9B shows part of a pump arrangement or configuration having a motor
1O d via a printed circuit board assembly (PCBA) to a pressure switch, an on/off
switch and a connector for receiving an input, for operating a pump, according to
some embodiments of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Figures 2-8: The Dual Diaphragm and Manifold Assembly
Figures 2-8 show a dual diaphragm pump lly indicated as 10,
according to some embodiments of the present invention. Figures 1-5 show the dual
diaphragm pump generally indicated as 10 having a single inlet/outlet configuration.
In st, Figures 6-8 show configurations for a dual diaphragm pump having a
multiple outlet configuration. In either case, the dual diaphragm pump may be
configured with a multipart pump housing, e.g., having a motor housing 11a and a
removable front cover 11b, and may also include a pump stand or mount 11c.
Figure 2A shows a motor 13 and a motor diaphragm actuator assembly 15
arranged in the multipart pump housing, which couples to upper and lower
diaphragm pumping assemblies generally indicated as 12, 14 (see Figures 7A, 7B
and 7C), e.g., that cooperate consistent with that described below. Figures 7A, 7B,
70 also shows the dual diaphragm pump ured with a pressure sensor or
switch module 50 (see also Fig. QB) that senses the pressure of the fluid being
pumped, and provides a suitable pressure sensing signal containing information
about the pressure sensed. Pressure sensors and/or switches are known in the art,
and the scope of the invention is not intended to be limited to any particular type or
kind thereof either now known or later developed in the future. In Figures 7A, 7B
and 70, the front pump housing for covering the configuration of the multiport
manifold assembly is not shown, e.g., which is analogous to element 11b in Figures
1-5. The scope of the invention is not ed to be limited to how the multipart
pump housing may be configured, ed or led together, etc., e.g.,
ing the number of te parts in the configuration, combination or assembly.
Moreover, s 2 through 4A and 8 show that the dual diaphragm pump
may also be configured with a quick connector 60 (see also Fig. 9B) for coupling to a
corresponding connector for providing electrical power to the pump, e.g., including
from a wall mounted transformer (not shown). The quick connector 60 configured on
the pump wiring allows a user to y the connector they require, and the wiring
from their system would be configured with a suitable mating connector and plug for
coupling directly into the pump. This quick connector configuration 60 allows for a
quick and safe removal of a pump for a power source for the purpose of servicing.
Flexible wiring options may also be configured that also allow for remote mounting of
signal input/output devices and a power input.
The Manifold Assembly 20, 20'
The diaphragm pump may include a manifold ly like elements 20 and
20', e.g., as shown in Figures 6 and 7.
By way of example, Figure 7 shows the manifold assembly 20 equipped with
internal input and output duckbill valves 30, 32, 40, 42 that allow for the passing of
solids and particulate in the liquid being pumped without fouling or clogging the
internal duckbill valves 30, 32, 40, 42. The integration of the internal duckbill valves
, 32, 40,42 allows the diaphragm pump 10 to handle higher viscosity fluids with
less ction and is capable of passing a larger particle medium of sizes up to 4
millimeters (mm) in diameter, especially when compared to the prior art pump shown
in Figure 1. The internal input and output duckbill valves 30, 32, 40, 42 can be
reinforced with an internal support to prevent the tive valve from collapsing in
applications that will generate higher back pressures during operation or when the
pump is not g, e.g., consistent with that disclosed in Patent No. US 616
(Atty docket no. M-FLJ-O902//911-5.49—2) and US 8,690,554 (Atty docket no. M-FLJ-
1002//911-5.52-1), which are assigned to the ee of the present application and
hereby incorporated by reference in their entirety.
The diaphragm pump may include the upper and lower diaphragm pumping
assemblies generally indicated as 12, 14 in combination with the manifold assembly
, e.g., as shown in Figure 4A and 5. By way of example, the upper and lower
diaphragm pumping assemblies 12, 14 may be configured with upper and lower
diaphragm 12a, 14a, and upper and lower diaphragm assembly covers or plates
12b, 14b that are respectively ed to the manifold assembly 20, as shown. See
the five (5) fasteners/screws like element f1 in Figures 7A, 7B and 7C, and the
corresponding five (5) fastener openings like t 01 configured or formed in the
manifold assembly 20 in Figure 7. See also Figures 7A, 7B and 70, which show the
upper diaphragm pumping assembly 12.
In operation, the upper and lower diaphragm pumping assemblies 12, 14 may
be configured for pumping fluid through the dual diaphragm pump 10. By way of
example, the upper diaphragm pumping assembly 12 may be configured to draw the
fluid from the inlet chamber 20a into the manifold ly 20, through the upper
input duckbill valve 30, through the upper output ll valve 40, to the outlet
chamber 20b and from the manifold assembly 20; and the lower diaphragm pumping
assembly 14 may be configured to draw the fluid from the inlet chamber 20a into the
ld assembly 20, through the lower input duckbill valve 32, through the lower
output duckbill valve 42, to the outlet chamber 20b and from the manifold assembly
20, e.g., consistent with that shown in Figure 5.
The manifold ly 20 may be configured or arranged between the upper
and lower diaphragm pumping assemblies 12, 14 and have components configured
to operate as follows:
As best shown in Figures 5 and 7, in addition to the inlet chamber 20a, and
the outlet chamber 20b, the manifold assembly 20 may also include or be configured
with a ation of a one-piece integral manifold body 20c, an inlet check valve
assembly channel 20d having upper diaphragm pumping assembly orifices, one
such inlet orifice which is labeled 20d(1), and an outlet check valve assembly
channel 20e having upper and lower agm g ly orifices, one
such outlet orifice which is labeled 20e(1).
The inlet 20a may be configured with dual inlet ports lly indicated as
20a(1), 20a(2) to receive the fluid from at least one fluid source (not shown). The
dual inlet ports 20a(1), 20a(2) may be ured with inlet port channels 20a(3),
20a(4) to slidably receive inlet fitting couplers 20a(5), 20a(6) that couple inlet fittings
20a(7), 20a(8) to the dual inlet ports 20a(1), 20a(2) of the manifold assembly 20.
The inlet check valve assembly channel 20d may include an inlet duckbill
check valve ly arranged therein that may include the inlet duckbill check
valve 30, 32, as well as one or more other inlet duckbill check valve assembly
components like valve receiving members 30(1), 32(1), and internal supports (not
shown) to prevent the valve from collapsing in applications that will te higher
back pressures during operation or when the pump is not running, e.g., consistent
with that disclosed in Patent No. US 8,276,616 (Atty docket no. M-FLJ-O902//911-
549-2) and US 8,690,554 (Atty docket no. M-FLJ-1002//911-5.52-1).
By way of example, the manifold body 20c may include, or take the form of, a
c injection molded integral structure, although embodiments are envisioned
using other ures or configuration both now known and later developed in the
future within the spirit on the underlying invention.
Figure 5 shows a flowpath of fluid h the dual diaphragm pump,
including an input partway of a fluid flow path FPin for fluid flowing into the inlet 20a,
an internal part for fluid flowing through the inlet check valve ly l 20d,
through the upper and lower diaphragm pumping assemblies 12, 14, and h the
outlet check valve assembly channel 20e, and an output flowpath FPO”, for fluid
flowing from the outlet 20b, e.g., consistent with that set forth herein.
The upper diaphragm pumping assembly inlet orifice 20d(1) may be
configured to be in fluidic communication with the upper diaphragm pumping
assembly like t 12 arranged therein to receive the fluid from the inlet duckbill
check valve 30, as well as one or more other inlet duckbill check valve assembly
components like valve receiving members 30(1), provide (i.e. pump) the fluid via
upper manifold conduits indicated by reference label 12b', 12b", 12'”, to the upper
diaphragm pumping assembly orifice 20e(1). In operation, and as a person skilled in
the art would appreciate, the motor shaft/diaphragm actuator assembly 15 together
with the diaphragm 12a may be configured in order to provide the liquid from the
upper ld conduit 12b', through the upper manifold conduits 12b", and to the
upper manifold conduit 12'”. The upper agm pumping assembly outlet orifice
20e(1) may be configured to be in fluidic communication with the outlet check valve
assembly channel 20e, for providing fluid to the outlet duckbill check valve 40, as
well as one or more other outlet duckbill check valve assembly components like
valve ing members 40(1), and provide (i.e. pump) the fluid to the outlet 20b.
As a person skilled in the art would appreciate, the lower diaphragm g
assembly 14 is configured to operate in a similar manner to the upper diaphragm
pumping assembly 12.
The outlet 20b may be configured with dual outlet ports generally indicated as
20b(1), 20b(2) to provide the fluid the pump 10 to at least one fluid outlet source (not
shown). The dual outlet ports 20b(1), 20b(2) may be configured with outlet port
channels 20b(3), 20b(4) to slidably e outlet fitting couplers 20b(5), 20b(6) that
couple outlet fittings 20b(7), 20b(8) to the dual outlet ports 20b(1), 20b(2) of the
manifold assembly 20.
Figures 7, 7A, 7B and 70
s 7, 7A, 7B and 70 show multi-directional port configurations. In effect,
the present invention allows for many ent inlet/outlet port connections which
provide for ility in certain tight, fixed spaces. By way of example, with the dual
inlet ports, mixing of two (2) different fluids may be made possible as well; and the
dual discharge ports allow for two (2) dispensing valves/faucets.
As shown, the dual inlet ports 20a(1), 20a(2) may be configured or ed
orthogonal to one another; and the dual outlet ports 20b(1), 20b(2) are configured or
oriented orthogonal to one another, although embodiments are envisioned using
other types or kinds of geometric onship between the dual inlet ports, the dual
output ports, or both.
The dual inlet ports 20a(1), 20a(2) and the inlet r 20a may be
configured to receive the fluid from two fluid s (not shown) for mixing together
in the inlet chamber 20a; and the dual outlet ports 20b(1), 20b(2) and the outlet
chamber 20b are configured to provide a mixed fluid to at least one fluid outlet
source (not shown).
The inlet duckbill check valve assembly 20d and the outlet duckbill check
valve assembly 20e may be configured to process a particle medium having up to 4
millimeters (mm) in diameter.
Either the dual inlet ports 20a(1), 20a(2), or the dual outlet ports 20b(1),
20b(2), or both the dual inlet ports , 20a(2) and the dual outlet ports 20b(1),
, may be configured to receive different port fitting connections.
It is noted that in Figures 7A, 7B and 70 the part of the pump shown does not
include, by way of example, the front pump housing analogous to element 11b in
Figure 2. A person d in the art would appreciate how to configured such a front
pump housing without undue experimentation, e.g., based on that disclosed herein.
Figure 6 shows an alternative ment of the manifold assembly 20',
having parts and components thereof labeled similar to the parts and components of
the manifold assembly 20 in Figure 7 with the additional of a single quote " ' The
manifold assembly 20' is configured to operate in a manner substantially similar to
the manifold assembly 20 (Figure 7).
Figures 9A and QB: The Controller
Figure 9A shows a flowchart generally indicated as 100 having steps 100a
through 100k for implementing control onality according to the present
invention for operating a pump, e.g., having at least some combination of the
components shown in Figure QB, consistent with that set forth herein.
ller 52 — The electronics controller may include, or take the form of, an
electronic PCBA 52, e.g., that may be internal to the pump, as shown in Fig. QB.
i. Steps 100a and 100b: Power may be applied to the pump via a
1O power supply jack or an integral tor 60, which allows for direct power to
the pump via the end user’s source or from a wall mount transformer (not
shown), so the On/Off switch 54 can be turned On.
ii. Steps 100c and 100d: The l circuit 52 then applies power to
the motor 13 and allows a pre-designated time for priming. If the pump
exceeds that time and there is a low/no current draw condition, then the
control circuit 52 shuts the power off. The control circuit 52 then sends a
signal indicating that the pump has shut down due to a run dry/no power
condition. By way of example, the signal may take the form of an audio or
visual alarm, as well as a ss signal provided to a remote location,
including a wifi signal transferred via the Internet to a remote (e.g., off site)
access point.
iii. Steps 100d, 100e, 100f: If the pump primes and is running, then the
control circuit 52 monitors the current draw on the pump, and if the pump
unit’s current draw drops beneath a designated current range, whether by the
fluid being pumped being exhausted or by some other issue, then the control
t 52 will remove power to the motor 13. The control circuit 52 then sends
a signal indicating that the pump has shut down due to a run dry/no power
condition or an out-of-product being dispensed condition.
iv. Steps 100h, 100i, 100j: If the pump experience a high current draw,
e.g., exceeding a pre-designated range, then the control circuit 52 will remove
power to the motor 13 and then sends a signal ting that the pump has
shut down due to an over-current condition.
v. By way of further example, if the power to the circuit board 52 should
be removed by the pressure switch 50, e.g., due to an outlet (not shown)
1O being shut off, then the control t 52 may be configured to remove power
form the pump until the pressure is relieved at which time the control circuit 52
may be configured to automatically turn the pump back on and supply fluid.
vi. By way of further example, if the pump runs continuously for a
specified period of time, then the circuit board 52 may be configured to
remove the power from the motor and sends a signal indicating the pump has
shut down due to a continuous running or ut ion.
vii. By way of further example, the control circuit 52 may also be
configured to precisely control the dispense amount and flow rate, e.g., by
controlling the time and/or varying the voltage to the motor 13 using a pulse
wave modulation (PWM) que, or other method of motor speed control,
including techniques both known in the art or later developed in the future.
viii. By way of further example, the control circuit 52 may also be used
for storing, communicating, and/or ly adjusting the pump operating
parameters/settings, pump performance profiles with various fluids and
media, error codes, flow rate, and dispensed ty information, power
consumption, etc.
Possible Applications:
Food and Beverage dispensing/processing, Fluid and chemical transfer and
mixing, any application that may require moving liquid with high viscosity,
particulates and/or solids.
The Scope of the Invention
Further still, the embodiments shown and described in detail herein are
provided by way of example only; and the scope of the invention is not intended to
be limited to the particular configurations, ionalities, and/or design details of
these parts or elements included herein. In other words, a person skilled in the art
would appreciate that design changes to these embodiments may be made and such
that the resulting embodiments would be ent than the embodiments disclosed
herein, but would still be within the overall spirit of the present invention.
It should be understood that, unless stated otherwise herein, any of the
features, teristics, alternatives or modifications described ing a
particular embodiment herein may also be applied, used, or incorporated with any
other embodiment described herein. Also, the gs herein are not drawn to
scale.
Although the invention has been described and illustrated with respect to
exemplary embodiments f, the foregoing and various other additions and
ons may be made therein and thereto without departing from the spirit and
scope of the present invention.
Claims (7)
1. A dual diaphragm pump, comprising: upper and lower diaphragm pumping assemblies; and a manifold assembly arranged between the upper and lower agm 5 pumping assemblies, the upper and lower diaphragm g assemblies configured to pump a particle medium having solids and particulates with up to four millimeters in diameter through the manifold assembly without g or clogging, the manifold assembly having a manifold body that is a plastic injection molded integral structure and includes: 10 an inlet having at least one inlet port and an inlet chamber ured to receive the particle medium from at least one fluid source, an inlet check valve assembly channel formed n and being in fluidic communication with the inlet chamber and both of the upper and lower diaphragm pumping assemblies, 15 an inlet duckbill check valve assembly having two input duckbill check valves arranged in the inlet check valve assembly channel, each input duckbill check valve configured to allow the particle medium to pass from the inlet chamber, through the inlet check valve assembly channel, to a respective one of the upper and lower diaphragm pumping assemblies, 20 an outlet check valve assembly channel formed therein and being in fluidic communication with both of the upper and lower agm pumping assemblies, an outlet ll check valve assembly having two output duckbill check valves arranged in the outlet check valve assembly channel, each output duckbill check valve ured to allow the particle medium to pass from the respective one 25 of the upper and lower diaphragm pumping assemblies and through the outlet check valve assembly channel, and an outlet having an outlet chamber and at least one outlet port the outlet r being in fluidic communication with the outlet check valve assembly channel, and configured to allow the particle medium to pass from the outlet check valve assembly channel, through the outlet chamber, to the at least one outlet port 5 for providing to at least one fluid outlet source.
2. A dual diaphragm pump according to claim 1, wherein the at least one inlet port comprises dual inlet ports configured to receive inlet port fitting connections, and the at least one outlet port comprises dual outlet ports configured to receive 10 outlet port fitting connections.
3. A dual diaphragm pump according to claim 2, wherein the dual inlet ports are configured or oriented orthogonal to one r; and the dual outlet ports are configured or oriented orthogonal to one another.
4. A dual diaphragm pump according to claim 2, wherein the dual inlet ports and the inlet chamber are configured to receive the particle medium from two fluid sources for mixing together in the inlet chamber; and the dual outlet ports and the outlet chamber are configured to provide a mixed fluid to the at least one fluid outlet 20 source.
5. A dual agm pump according to claim 2, wherein either the dual inlet ports, or the dual outlet ports, or both the dual inlet ports and the dual outlet ports are configured to receive different port fitting connections.
6. A dual diaphragm pump ing to claim 1, wherein the manifold assembly ses two manifold assembly plates attached to upper and lower surfaces of the manifold body and configured with first and second manifold conduits.
7. A dual diaphragm pump according to claim 1, wherein 5 the two input duckbill check valves include an upper input duckbill check valve configured to e the particle medium from the inlet check valve assembly l to an upper diaphragm pumping assembly, and include a lower input duckbill check valve configured to provide the particle medium from the inlet check valve assembly channel to a lower diaphragm pumping assembly; and 10 the two output duckbill check valves include an upper output duckbill check valve configured to provide the particle medium from an upper agm pumping assembly via the outlet check valve assembly channel to the outlet r, and include a lower output duckbill check valve configured to provide the particle medium from a lower diaphragm pumping assembly via the outlet check valve 15 assembly channel to the outlet chamber.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462012526P | 2014-06-16 | 2014-06-16 | |
US62/012,526 | 2014-06-16 | ||
PCT/US2015/035968 WO2015195624A1 (en) | 2014-06-16 | 2015-06-16 | Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ727587A NZ727587A (en) | 2020-12-18 |
NZ727587B2 true NZ727587B2 (en) | 2021-03-19 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11898548B2 (en) | Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity | |
KR101810719B1 (en) | Customizable dispense system with smart controller | |
US8821718B2 (en) | Automated fluid handling system | |
CN104632703B (en) | For heating and/or the circulation pump assembly of cooling system | |
US11965496B2 (en) | Dosing pump system | |
JP6751552B2 (en) | Fluid equipment | |
US6241487B1 (en) | Fluid powered diaphragm pump | |
WO2007109775A3 (en) | Liquid filtration systems | |
WO2011119506A3 (en) | Valve for in-floor pool cleaning system | |
NZ727587B2 (en) | Diaphragm pump utilizing duckbill valves, multi-directional ports and flexible electrical connectivity | |
US11835148B2 (en) | Compact controlled valve with integrated orifices for precise mixing | |
WO2012016959A3 (en) | Pump | |
CN117448146A (en) | Gene sequencer, liquid path system and control method | |
WO2019171248A1 (en) | Hydraulic distributor | |
CN110678672A (en) | Integrated cooling medium supply module and transmission with cooling medium supply module | |
US20070253869A1 (en) | Chemical delivery system | |
MX2021015263A (en) | ASSEMBLY, APPARATUS AND METHOD FOR DISPENSING LIQUID PRODUCTS. | |
CN215172490U (en) | Electromagnetic valve integrated assembly, structure and electric appliance | |
JPH04256462A (en) | Liquid dropping prevention device | |
CN104144881A (en) | water purification system |