[go: up one dir, main page]

NO881963L - PROCEDURE FOR THE PREPARATION OF GENETICALLY CODABLE POLYPEPTIDES. - Google Patents

PROCEDURE FOR THE PREPARATION OF GENETICALLY CODABLE POLYPEPTIDES.

Info

Publication number
NO881963L
NO881963L NO881963A NO881963A NO881963L NO 881963 L NO881963 L NO 881963L NO 881963 A NO881963 A NO 881963A NO 881963 A NO881963 A NO 881963A NO 881963 L NO881963 L NO 881963L
Authority
NO
Norway
Prior art keywords
solution
fusion protein
galactosidase
gene
urea
Prior art date
Application number
NO881963A
Other languages
Norwegian (no)
Other versions
NO881963D0 (en
Inventor
Andreas Plueckthun
Rudolf Glockshuber
Original Assignee
Andreas Plueckthun
Rudolf Glockshuber
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andreas Plueckthun, Rudolf Glockshuber filed Critical Andreas Plueckthun
Publication of NO881963D0 publication Critical patent/NO881963D0/en
Publication of NO881963L publication Critical patent/NO881963L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

Oppfinnelsen vedrører genteknisk fremstilling av polypeptider dels med et uløselig fusjonsprotein med en del av e-galaktosidase, hvor dette fusjonsproteinet ikke som vanlig er i suspensjon, men i oppløsning hvor spalting for frigjøring av de ønskede proteinene blir tilveiebragt. The invention relates to the genetic engineering production of polypeptides partly with an insoluble fusion protein with a part of ε-galactosidase, where this fusion protein is not in suspension as usual, but in solution where cleavage to release the desired proteins is provided.

Fremgangsmåte for fremstilling av et genetisk kodbart polypeptid ved kobling av strukturgenene for dette polypeptidet i riktig leseramme for et gen for p<->galaktosidase ved en reguleringsregion, anbringe denne genstrukturen i en bakterie, ekspresjon av et uløselig fusjonsprotein, isolering av fusjonsproteinene etter celleavslutning og utvinning av de ønskede polypeptidene ved kjemisk eller enzymatisk spalting er stort sett kjent. Ifølge oppfinnelsen bringes det uløselige fusjonsproteinet under bestemte betingelser igjen i løsning som letter opparbeidingen og tilveiebringer nye muligheter for opparbeiding. Method for the production of a genetically coded polypeptide by linking the structural genes for this polypeptide in the correct reading frame for a gene for p<->galactosidase at a regulatory region, placing this gene structure in a bacterium, expressing an insoluble fusion protein, isolating the fusion proteins after cell termination and recovery of the desired polypeptides by chemical or enzymatic cleavage is largely known. According to the invention, the insoluble fusion protein is brought back into solution under specific conditions, which facilitates processing and provides new possibilities for processing.

K. Nagai et al., Proe. Nati. Acad. Sei. USA 82 (1985) 7252-7255; Nature 309 (1984) 810-812, har allerede beskrevet oppløsing av et fusjonsprotein. Det handler derimot her om et fusjonsprotein av X cll-protein og p-globin, som er relativt lett løselige og som bare ved en høy saltkonsentrasjon forbi-gående blir uløselig. K. Nagai et al., Proe. Nati. Acad. Pollock. USA 82 (1985) 7252-7255; Nature 309 (1984) 810-812, have already described dissolution of a fusion protein. On the other hand, it is a fusion protein of X cll protein and p-globin, which are relatively easily soluble and which only temporarily become insoluble at a high salt concentration.

Det er overraskende at oppløsning også er mulig når det gjelder de sterkt uløselige fusjonsproteinene som ifølge oppfinnelsen blir satt inn, hvorved disse proteinene holdes i løsning. Man kan dermed på den ene side benytte fordelene som er forbundet med den høye stabiliteten til det uløselige fusjonsproteinet i vertscellen, eller på den andre side benytte opparbeidingsveier, som forutsetter løselige protein inn i medium eller som heri blir veldig begunstiget. It is surprising that dissolution is also possible in the case of the highly insoluble fusion proteins which, according to the invention, are inserted, whereby these proteins are kept in solution. One can thus on the one hand use the advantages associated with the high stability of the insoluble fusion protein in the host cell, or on the other hand use processing routes, which require soluble protein into the medium or which are greatly favored here.

Fremgangsmåten ifølge oppfinnelsen er kjennetegnet ved at man omsetter det uløselige fusjonsproteinet, hensiktsmessig ved en temperatur fra 0°C til romtemperatur, fortrinnsvist til 10"C, med urinstoff helt til det blir oppløst, og skylder det oppløste fra resten, og fjerner urlnstoffet ved dialyse fra løsningen og utsetter den resulterende fusjonsproteinopp-løsningen for spalting. The method according to the invention is characterized by reacting the insoluble fusion protein, suitably at a temperature from 0°C to room temperature, preferably to 10°C, with urea until it is dissolved, and separating the dissolved from the remainder, and removing the urea by dialysis from the solution and exposes the resulting fusion protein solution to cleavage.

I det følgende vil flere fordelaktige fremstillinger ifølge oppfinnelsen bli nærmere forklart. In the following, several advantageous preparations according to the invention will be explained in more detail.

Den nedre grensen for urinstoffkonsentrasjonen avhenger av oppløsningen til de uløselige fusjonsproteinene som vanligvis ligger ved omtrent 6 M. Den øvre grense avhenger av løselig-heten til urlnstoffet i systemet, som ligger på omtrent på omtrent 8 M. The lower limit of the urea concentration depends on the solubility of the insoluble fusion proteins, which is usually about 6 M. The upper limit depends on the solubility of the urea in the system, which is about about 8 M.

Mengden innsatt fusjonsproteiner pr. ml urinstoffoppløsning er avhengig av løselighetsbeskaffenheten til fusjonsproteinene og kan bestå av til 10 mg/ml. I de fleste tilfeller er fusjonsprotein-konsentrasjonen på omtrent 1 til omtrent 2,5 mg/ml urinstoffoppløsning gunstig. The amount of inserted fusion proteins per ml urea solution depends on the solubility of the fusion proteins and can consist of up to 10 mg/ml. In most cases, the fusion protein concentration of about 1 to about 2.5 mg/ml urea solution is favorable.

Dialyse utføres ved en temperatur fra 0 til ICC, fortrinnsvis 4°C, mot en vanlig bufferløsning. pH-verdien ligger omtrent på mellom 8 til 9, fortrinnsvis 8,3 til 8,6. Som ved tilsetting av salt som koksalt hensiktsmessig blir tilveiebragt. Dialysis is performed at a temperature from 0 to ICC, preferably 4°C, against a normal buffer solution. The pH value is approximately between 8 to 9, preferably 8.3 to 8.6. As with the addition of salt such as table salt is appropriately provided.

Ved denne fremgangsmåten blir fusjonsproteinene i løsning og blir veldig sterkt anriket, slik at de kan bli utvunnet med en gjennomsnittlig renhet på over 75$. By this method, the fusion proteins are in solution and are very highly enriched, so that they can be recovered with an average purity of over 75%.

En spesiell fordel ifølge foreliggende oppfinnelse, innbefatter at den slik tilveiebragte proteinløsningen umiddelbart kan bli utsatt for kjemisk eller fortrinnsvis enzymatisk spalting. Det er fordelaktig å for eksempel utføre spaltingen med faktor Xa, som eksempelvis er beskrevet av Nagai et al., a.a.o. eller i de Europeiske Patentskriftet med nummeret (i følgende EP-A) 0 161 973. Det samme gjelder for spalting med andre enzymer som trypsin eller IgA-protease (fra Nelsserla gonorrhoe), slik at proteinløsningen som er tilveiebragt ifølge oppfinnelsen opprettholder betingelsene, slik at ingen skade på de ønskede proteinene inntreffer. A particular advantage according to the present invention includes that the protein solution provided in this way can immediately be subjected to chemical or preferably enzymatic cleavage. It is advantageous, for example, to carry out the cleavage with factor Xa, which is for example described by Nagai et al., a.a.o. or in the European Patent with the number (hereinafter EP-A) 0 161 973. The same applies to cleavage with other enzymes such as trypsin or IgA protease (from Nelsserla gonorrhoea), so that the protein solution provided according to the invention maintains the conditions, such that no damage to the desired proteins occurs.

Fremgangsmåten ifølge oppfinnelsen tilveiebringer også fordeler når det gjelder den kjemiske spalting av fusjonsproteinene, som vanligvis foregår fortere i løsning enn i suspensjon. På denne måten blir det f.eks. lettere å utføre spaltingen av et iføgle oppfinnelsen innsatt fusjonsprotein-pre-p-laktamase med hydroksylamin. The method according to the invention also provides advantages in terms of the chemical cleavage of the fusion proteins, which usually takes place faster in solution than in suspension. In this way, it becomes e.g. easier to carry out the cleavage of a fusion protein-pre-β-lactamase inserted according to the invention with hydroxylamine.

Det har overraskende vist seg at fremgangsmåten ifølge oppfinnelsen ikke er utsatt for noen begrensninger med hensyn på det innsatte fusjonsproteinet. Karakteren til de ønskede proteinene i det innsatte fusjonsproteinet spiller dermed ingen avgjørende rolle. It has surprisingly turned out that the method according to the invention is not subject to any limitations with regard to the inserted fusion protein. The nature of the desired proteins in the inserted fusion protein thus plays no decisive role.

For å tilveie et tilstrekkelig vanskelig løselig fusjonsprotein kan "Genet for p-galaktosidase" være det uforandrede villtypegenet, men vanligvis er det tilstrekkelig med et forkortet gen. Slike forkortede e-galaktosidase-gen er for eksempel kjente fra EP-A 0 001 930 og fra Br5ker, Gene Anal. Techn. 3 (1986) 53-57. Svært fordelaktige er genkonstruksjonene for et3-galaktosidase-fragment på over 250 aminosyr--er, som er signifikant mindre enn hele p-galaktosidase-sekvensen, fortrinnsvis. genstrukturer som koder for et fragment til omtrent 800, spesielt til omtrent 650 aminosyrer. Spesielt gunstige genkonstruksjoner er de som består av e-galaktosidase-fragment fra en aminoterminal og/eller en karboksyterminal del sekvens. To provide a sufficiently insoluble fusion protein, the "β-galactosidase gene" can be the unaltered wild-type gene, but usually a truncated gene is sufficient. Such abbreviated ε-galactosidase genes are known, for example, from EP-A 0 001 930 and from Br5ker, Gene Anal. Technology 3 (1986) 53-57. Very advantageous are the gene constructs for a 3-galactosidase fragment of over 250 amino acids, which is significantly smaller than the entire β-galactosidase sequence, preferably. gene structures encoding a fragment of up to about 800, especially up to about 650 amino acids. Particularly favorable gene constructs are those which consist of ε-galactosidase fragment from an amino-terminal and/or a carboxy-terminal part of the sequence.

Genkonstruksjonene for en forkortet g-galaktosidase er dermed fordelaktige fordi "Ballast"-andelen av cellefremmede proteiner blir mindre, og utbyttet av ønskede protein også blir høyere. Figur 1 viser fordelaktige forkortede p<->galaktosidasegen, hvorved de blir koblet med rekke betegnet A umiddelbar, og med rekke betegnet B over en linker på genet for det ønskede polypeptidet. Figur 2 viser konstruksjonen av vektorene pLZPWB (som inneholder den oppførte genkonstruksjonen i figur A 2). Figur 3 og fortsettelsen, figur 3A, viser konstruksjonen av vektoren pLZPWB/Xa/VL og pLZHP/Xa/VL/A. Figurene 2 og 3 er for å gjøre det tydeligere ikke tegnet 1 riktig målestokk. The gene constructs for a shortened γ-galactosidase are thus advantageous because the "Ballast" proportion of cellular proteins becomes smaller, and the yield of desired protein also becomes higher. Figure 1 shows advantageous abbreviated p<->galactosidase genes, whereby they are linked with sequence designated A immediately, and with sequence designated B above a linker on the gene for the desired polypeptide. Figure 2 shows the construction of the vectors pLZPWB (containing the listed gene construct in Figure A 2). Figure 3 and its continuation, Figure 3A, show the construction of the vector pLZPWB/Xa/VL and pLZHP/Xa/VL/A. Figures 2 and 3 are, to make it clearer, drawing 1 is not to the correct scale.

En fordelaktig utførelse av fremgangsmåten ifølge oppfinnelsen, innbefatter at man konstruerer genet for et fusjonsprotein, hvor det etter DNA-sekvensen for3-galaktosidasefragmentet på over 250 aminosyrer følger et DNA-ledd, som koder for en aminosyre eller en gruppe aminosyrer, som muliggjør kjemisk eller enzymatisk avspalting av de ønskede proteinene, og som medfører at strukturgenet for det ønskede proteinet fremkommer. Dette genet for fusjonsproteinet blir ved bruk av kjente fremgangsmåter satt inn i en E. coli-ekspresjonsvektor, og transformert i E. coli og som dermed uttrykker det kodede fusjonsproteinet. Når cellene har nådd den ønskede konsentrasjonen på f.eks. O.D.559=1,0, inkubert med isopropyl-3-D-tiogalakto-pyranosid (IPTG) i en sluttkonsentrasjon på 1 mM i tilstrekkelig tid og til slutt sentrifugert. Følgende blir deretter resuspendert i omtrent 1/10 av det opprinnelige volumet med natriumfosfatbuffer, hvorpå cellesuspensjonen på kjent måte blir homogenisert. Homogeni-seringen kan f.eks. etterfølges av to ganger gjennomgang gjennom en "French Press". En omrøringskulemølle er også egnet, f.eks. fra Typ(<R>)DYN0 (Willi Bachofen, Basel). An advantageous embodiment of the method according to the invention includes constructing the gene for a fusion protein, where after the DNA sequence for the 3-galactosidase fragment of more than 250 amino acids follows a DNA section, which codes for an amino acid or a group of amino acids, which enables chemical or enzymatic cleavage of the desired proteins, which causes the structural gene for the desired protein to emerge. Using known methods, this gene for the fusion protein is inserted into an E. coli expression vector, and transformed into E. coli, which thus expresses the encoded fusion protein. When the cells have reached the desired concentration of e.g. O.D.559=1.0, incubated with isopropyl-3-D-thiogalactopyranoside (IPTG) at a final concentration of 1 mM for sufficient time and finally centrifuged. The following is then resuspended in approximately 1/10 of the original volume with sodium phosphate buffer, after which the cell suspension is homogenized in a known manner. The homogenization can e.g. followed by twice passing through a "French Press". A stirring ball mill is also suitable, e.g. from Typ(<R>)DYN0 (Willi Bachofen, Basel).

En oppløsning bestående av 400 g sakkarose pr. liter av nevnte natriumfosfatbuffer i et firedoblet volum i forhold til lysatene blir, deretter dekket med lysatet og sentrifugert (Sorvall-Rotor GSA, 4000-13000 rpm,. 4 °C). Bunnfallet bestående av sterkt anriket fusjonsprotein blir oppslemmet i et så lite volumtris-buffer (10 mM, pH 8,3) som mulig, og et relativt stort volum tris-buffer, fortrinnsvis et volum i samme størrelse som de opprinnelige lysatene, hvor urlnstoffet inneholder (10 mM tris-HCl, pH 8,3; 8 M urinstoff), dråpevis tilsatt med god sammenblanding og fortrinnsvis under omrøring. Ved dette går fusjonsproteinet i løsning. Denne urinstoff-løsningen blir pånytt sentrifugert (Sorvall-sentrifuge, Rotor SS 34, 20000 rpm, 1 time, 4"C). Supernatanten blir dialysert mot tris-buffer (10 mM tris-HCl, pH 8,3) ved 4°C. Dette medfører at fusjonsproteinene blir i løsning. A solution consisting of 400 g of sucrose per liters of said sodium phosphate buffer in a fourfold volume in relation to the lysates are then covered with the lysate and centrifuged (Sorvall-Rotor GSA, 4000-13000 rpm, 4 °C). The precipitate consisting of highly enriched fusion protein is suspended in as small a volume of tris buffer (10 mM, pH 8.3) as possible, and a relatively large volume of tris buffer, preferably a volume of the same size as the original lysates, where the original substance contains (10 mM tris-HCl, pH 8.3; 8 M urea), added dropwise with good mixing and preferably with stirring. This causes the fusion protein to go into solution. This urea solution is centrifuged again (Sorvall centrifuge, Rotor SS 34, 20,000 rpm, 1 hour, 4"C). The supernatant is dialyzed against tris buffer (10 mM tris-HCl, pH 8.3) at 4°C This results in the fusion proteins being in solution.

Fusjonsproteinet som ble anriket på denne måten kan om ønskelig bli renset videre ved bruk av kjente fremgangsmåter, men som vanligvis ikke er nødvendig. Vanligvis blir den slik tilveiebragte proteinløsningen umiddelbart utsatt for kjemisk eller enzymatisk spalting. The fusion protein which was enriched in this way can, if desired, be further purified using known methods, but which are usually not necessary. Usually, the protein solution thus provided is immediately subjected to chemical or enzymatic cleavage.

Oppfinnelsen blir i de følgende eksemplene nøyere forklart. Prosentbetegnelsene står i det følgende for vekten, hvis ikke noe annet er angitt. The invention is explained in more detail in the following examples. The percentage designations in the following stand for the weight, unless otherwise stated.

Eksempel 1 Example 1

DNA-konstruksj oner DNA constructs

20 jag plasmid pUC9 (jfr. Vieira et al., Gene 19 (1982 ) 259-268; blir utsatt for en dobbeltspalting med restriksjons-endonukleasen EcoRI og Pvul, og et DNA-fragment på 123 basepar (Bp) ble avspaltet ved gelelektroforese. Dette fragmentet omfatter en del av den aminoterminale kodingssek-vensen til3-galaktosidase. 20 jag plasmid pUC9 (cf. Vieira et al., Gene 19 (1982) 259-268; is subjected to a double cleavage with the restriction endonuclease EcoRI and Pvul, and a DNA fragment of 123 base pairs (Bp) was cleaved by gel electrophoresis. This fragment comprises part of the amino-terminal coding sequence for 3-galactosidase.

For å isolere de karboksyterminale delene av p<->galaktosidase til de naturlige EcoRI-kuttsetene blir 20 jjg av plasmidene pUR270 (Rtither og Mtiller-Hill , EMBO J.. 2 (1983) 1791-1794 ) deretter spaltet med EcoRI og deretter med enzymet Pvul. Ved elektroforese på en 5%- ig polyakrylamidgel blir et DNA-fragment på ca. 1200 Bp adskilt og isolert. To isolate the carboxy-terminal parts of p<->galactosidase to the natural EcoRI cut sites, 20 µg of the plasmids pUR270 (Rtither and Mtiller-Hill, EMBO J.. 2 (1983) 1791-1794 ) are then digested with EcoRI and then with the enzyme Pvul. By electrophoresis on a 5% polyacrylamide gel, a DNA fragment of approx. 1200 Bp separated and isolated.

De arainoterminale og karboksyterminale DNA-fragmentene til p-galaktosidase blir i løpet av 6 timer ved 16° C ligert og ligeringsproduktet blir felt med etanol. Det utfelte og resuspenderte DNA-et blir spaltet med EcoRI og deretter igjen fraksjonert på en 5%- lg polyakrylamidgel. DNA-fragmentet med en lengde på ca. 1320 Bp blir isolert ved elektroeluering ut av gelen og deretter ligert i Eco RI-spaltingssete til plasmidene pBR322. Det slikt tilveiebragte hybridplasmidet blir betegnet som pLZPWB. The amino-terminal and carboxy-terminal DNA fragments of β-galactosidase are ligated within 6 hours at 16° C and the ligation product is precipitated with ethanol. The precipitated and resuspended DNA is cleaved with EcoRI and then again fractionated on a 5% lg polyacrylamide gel. The DNA fragment with a length of approx. 1320 Bp is isolated by electroelution out of the gel and then ligated into the Eco RI cleavage site of the plasmids pBR322. The hybrid plasmid thus provided is designated pLZPWB.

De ovenfor beskrevne reaksjonstrinnene er ført opp i figur 2. Enkelttrinnene ble på kjent måte (Maniatis et al., Molecular Cloning, Cold Spring Harbor 1982) gjennomført. The reaction steps described above are listed in Figure 2. The individual steps were carried out in a known manner (Maniatis et al., Molecular Cloning, Cold Spring Harbor 1982).

Plasmid pLZPWB blir transformert i E. coli og amplifisert og igjen isolert. Ved spalting med EcoRI kan det amino- og karboksyterminalforkortede e-galaktosidase-genfragmentet bli spaltet ut og preparativt isolert. Plasmid pLZPWB is transformed into E. coli and amplified and again isolated. By cleavage with EcoRI, the amino- and carboxy-terminal shortened ε-galactosidase gene fragment can be cleaved out and preparatively isolated.

Ved de kjente restriksjonsenzymspaltingssetene kan andre forkortinger bli konstruert og deretter bli ført inn i egnede ekspresjonsplasmider. Figur IA viser slike forkortninger^Slik blir vektor pLZHP tilveiebragt, når på den ene side pUR270 blir spaltet med EcoRI og Hpal, og på den andre siden pUR270 blir spaltet med EcoRI og PvuII på en analog måte som ovenfor er beskrevet. Denne vektoren Inneholder fragment A. 5 ifølge figur 1. At the known restriction enzyme cleavage sites, other abbreviations can be constructed and then introduced into suitable expression plasmids. Figure IA shows such abbreviations^ This is how vector pLZHP is provided, when on the one hand pUR270 is cleaved with EcoRI and HpaI, and on the other hand pUR270 is cleaved with EcoRI and PvuII in an analogous manner as described above. This vector contains fragment A. 5 according to Figure 1.

Lignende konstruksjoner er på analoge måter mulige. Både konstruksjonen i figur 1, del A og figur I B, er slik valgt at leserammen til den forkortede p<->galaktosidase kontinuerlig går over i leserammen til de ønskede karboksyterminale polypeptidene. Den kjemisk-syntetiske linkeren i figur 1, del-fi kan bli fremstilt etter ønske, men må selvfølgelig gåran- tere den stoppkodonf rie leserammen og må også utvise de ønskede restriksjonsenzymsplatingssetene. Similar constructions are possible in analogous ways. Both the construction in Figure 1, part A and Figure I B, are chosen in such a way that the reading frame of the abbreviated β<->galactosidase continuously transitions into the reading frame of the desired carboxy-terminal polypeptides. The chemical-synthetic linker in figure 1, part-fi can be prepared as desired, but must of course include the stop codon-free reading frame and must also exhibit the desired restriction enzyme cleavage sites.

Genet for den variable domenen til den lette kjeden svarer til kjent proteinsekvens (Kabat, E.A. et. al., Sequences of Proteins of Immunological Interest, Nat. Inst. of Health The gene for the variable domain of the light chain corresponds to known protein sequence (Kabat, E.A. et. al., Sequences of Proteins of Immunological Interest, Nat. Inst. of Health

(1983)) ved kjemisk syntese oppfyller den ønskede oligonuk-leotiden. Den fullstendige DNA-sekvensen er gjengitt i tabell 1. På analog måte ble den variable domenen til den tunge kjeden fremstilt (tabell 2). (1983)) by chemical synthesis meets the desired oligonucleotide. The complete DNA sequence is given in Table 1. In an analogous manner, the variable domain of the heavy chain was prepared (Table 2).

Oligonukleotidene ble fremstilt med en DNA-syntesemaskin (modell 380A fra Applied Biosystems) med fosfoamiditmetoden (Sinha, N.D. et. al., Nucleic Acid Res. 12 (1984 ) 4539). Oligonukleotidene ble renset ved polyakrylamidgelelektor-forese og ble deretter behandlet med polynukleotldkinase, hybridisert og ligert med T4 ligase (Dorper, T. og "Winnacker, E.L., Nucleic Acid Res. 11 (1983) 2575 og Rommens, J. et al., Nucleic Acid Rest. 11 (1983) 5921). Et fragment med den ventede størrelsen ble renset preparativt ved agarose-gelelektroforese og deretter ble den ligert i vektor pUC12, som var blitt spaltet med EcoRI og Hindlll. Følgende DNA-sekvens ble bestemt, og dermed ble det verifisert at den var riktig, både når det gjelder genet for den lette og for den tunge kjeden (tabell 1 til 4). The oligonucleotides were prepared with a DNA synthesizer (model 380A from Applied Biosystems) using the phosphoamidite method (Sinha, N.D. et. al., Nucleic Acid Res. 12 (1984) 4539). The oligonucleotides were purified by polyacrylamide gel electrophoresis and then treated with polynucleotide kinase, hybridized and ligated with T4 ligase (Dorper, T. and "Winnacker, E.L., Nucleic Acid Res. 11 (1983) 2575 and Rommens, J. et al., Nucleic Acid Rest. 11 (1983) 5921). A fragment of the expected size was preparatively purified by agarose gel electrophoresis and then ligated into vector pUC12, which had been digested with EcoRI and HindIII. The following DNA sequence was determined, and thus was verified to be correct, both for the light and heavy chain genes (Tables 1 to 4).

To oligonukleotlder ble fremstilt for konstruksjonen av fusjonsproteinene bestående av den forkortede p-galak-tosidasen og VL-genet som inneholder gjenkjenningssekvensen for proteasefaktor Xa (Ile-Glu-Gly-Arg) ved at de rekker fra EcoRI-setet 1 lacZ-genet til vektorene og helt til første enestående spaltingssete i v^-genet, dvs. et Pst-I-sete (tabell 3 og 4). Dermed blir start-met ioninen, som ikke er tilstedeværende i modne antistoffmolekyler overflødige. Begge ovenfornevnte oligonukleotlder ble deretter klonet inn i vektor pUC12 mellom EcoRI-setet og Pst-I-setet til polylinkerne og det ble ved DNA-sekvensering verifisert som feilfri (pUC12/Xa/VL') (fig. 3). Denne vektoren ble deretter spaltet med Pstl og Hindlll og resten av Vådelen til det ovenf ornevnte p"UC12/VL-plasmidet ble satt inn som isolerte Pstl-Hindlll-fragment, som tilveiebragte plasmid pUC12/Xa/VL. Dette plasmidet (pUC12/Xa/VL) ble spaltet med EcoRI og Hindlll og det slik tilveiebragte isolerte fragmentet ble satt inn i vektor pLZPWB som nettopp var blitt spaltet med EcoRI og Hindlll. På denne måten ble målplasmidet pLZPWB/Xa-/Vltilveiebragt. At konstruksjonen var riktig, ble ved bruk av DNA-sekvensering verifisert og de nøyaktige fusjonene er vist i tabell 3. Two oligonucleotides were prepared for the construction of the fusion proteins consisting of the truncated β-galactosidase and the VL gene containing the recognition sequence for protease factor Xa (Ile-Glu-Gly-Arg) by extending from the EcoRI site 1 lacZ gene to the vectors and all the way to the first unique cleavage site in the v^ gene, ie a Pst-I site (Tables 3 and 4). Thus, the starting met ionine, which is not present in mature antibody molecules, becomes redundant. Both of the above-mentioned oligonucleotides were then cloned into vector pUC12 between the EcoRI site and the Pst-I site of the polylinkers and it was verified by DNA sequencing as error-free (pUC12/Xa/VL') (Fig. 3). This vector was then cleaved with PstI and HindIII and the remainder of the Vadel until the above-mentioned p"UC12/VL plasmid was inserted as isolated PstI-HindIII fragment, yielding plasmid pUC12/Xa/VL. This plasmid (pUC12/Xa /VL) was cleaved with EcoRI and HindIII and the thus obtained isolated fragment was inserted into vector pLZPWB which had just been cleaved with EcoRI and HindIII. In this way the target plasmid pLZPWB/Xa-/Vl was obtained. That the construction was correct was confirmed by verified using DNA sequencing and the exact fusions are shown in Table 3.

På analog måte ble en fusjon mellom vektor pLZHP og genet forVL-regionen tilveiebragt. Dermed ble det ovenfornevnte Pstl-HindIII-fragmentet (som svarer til hoveddelen av Vj^-genet) også i nærvær av en Hindlll-EcoRI-Hindlll-Adapter A ligert (fig. 3 og fortsettelsen, fig. 3A) som tilveiebragte vektor pUC12/Xa/Vl/A• Dermed kunne genet med faktor Xa-gjenkjenningssekvensen også bli spaltet med EcoRI og EcoRI-setet kunne bli ligert med alkalifosfatasebehandlet vektor pLZHP som tilveiebragte plasmid pLZHP/Xa/Vl/A. In an analogous manner, a fusion between vector pLZHP and the gene for the VL region was provided. Thus, the above-mentioned Pstl-HindIII fragment (corresponding to the main part of the Vj^ gene) was also ligated in the presence of a HindIII-EcoRI-HindIII Adapter A (Fig. 3 and the continuation, Fig. 3A) which provided vector pUC12/ Xa/Vl/A• Thus, the gene with the factor Xa recognition sequence could also be cleaved with EcoRI and the EcoRI site could be ligated with alkaline phosphatase-treated vector pLZHP providing plasmid pLZHP/Xa/Vl/A.

På analog måte ble det også utført fusjoner med den syntetiske variable domenen til den tunge kjeden til de samme antistoffene, både i vektor pLZPWB og i pLZHP. Sekvensen til fusjonsregionen, begynnende med EcoRI-setet i LacZ-genet og det syntetiske faktor Xa-gjenkjenningssetet, ér ført opp i tabell 4. In an analogous manner, fusions with the synthetic variable domain of the heavy chain of the same antibodies were also performed, both in vector pLZPWB and in pLZHP. The sequence of the fusion region, beginning with the EcoRI site in the LacZ gene and the synthetic factor Xa recognition site, is listed in Table 4.

Eksempel 2 Example 2

Fremstilling, isolering og spalting av fusjonsproteinene Preparation, isolation and cleavage of the fusion proteins

Hver av de slik tilveiebragte plasmidene ble transformert inn I E. coli-stamme W3110. I en typisk preparering ble cellene anbragt i 400 ml LB-medium og ved en O.D.550på 1,0 ble de indusert med IPTG (sluttkonsentrasjon 1 mM).og inkubert med omrøring overnatt. Cellene ble sentrifugert (SORVALL-rotor GSA, 4000 rpm, 15 min., 4°C) og resuspendert i 40 ml natrium fosfatbuffer (50 mM, pH 7,0). Deretter ble cellene homogenisert ved å kjøre cellene to ganger gjennom en "French Press". Each of the plasmids thus provided was transformed into E. coli strain W3110. In a typical preparation, the cells were placed in 400 ml of LB medium and at an O.D.550 of 1.0 they were induced with IPTG (final concentration 1 mM) and incubated with agitation overnight. The cells were centrifuged (SORVALL rotor GSA, 4000 rpm, 15 min., 4°C) and resuspended in 40 ml of sodium phosphate buffer (50 mM, pH 7.0). Then the cells were homogenized by running the cells twice through a French Press.

En oppløsning (160 ml) bestående av 400 g Saccharose pr. liter nevnte natriumfosfat-buffer ble blandet med lysat og sentrifugert (SORVALL Rotor GSA, 4000 rpm. 4°C, 30 min.). Bunnfallet ble grundig oppslemmet i 1 til 2 ml tris-buffer (10 mM), pH 8,3) og ble deretter dråpevis under omrøring satt til en 40 ml urinstoffoppløsning (10 mM tris-HCl. pH 8,3. 8 M urinstoff). Dermed gikk fusjonsproteinet i løsning. Denne løsningen ble igjen sentrifugert (SORVALL-sentrifuge, Rotor SS34, 20000 rpm, 1 time, 4°C). Supernatanten ble dialysert ved 4°C mot tris-buffer (10 mM tris-HCl, pH 8,3). Løsningen ble klar; og fusjonsproteinet ble i løsning. A solution (160 ml) consisting of 400 g of sucrose per liter of said sodium phosphate buffer was mixed with lysate and centrifuged (SORVALL Rotor GSA, 4000 rpm. 4°C, 30 min.). The precipitate was thoroughly resuspended in 1 to 2 ml tris buffer (10 mM, pH 8.3) and then added dropwise with stirring to a 40 ml urea solution (10 mM tris-HCl. pH 8.3. 8 M urea) . Thus the fusion protein went into solution. This solution was again centrifuged (SORVALL centrifuge, Rotor SS34, 20000 rpm, 1 hour, 4°C). The supernatant was dialyzed at 4°C against tris buffer (10 mM tris-HCl, pH 8.3). The solution became clear; and the fusion protein remained in solution.

Det slik tilveiebragte fusjonsproteinet ble spaltet med faktor XA fra okseblod. Faktor X ble renset som beskrevet av Fujikawa et al. (Fujikawa K., et. al. Biochemistry 11 (1972) 4882), og aktivert til faktor Xa (Fujikawa K. et. al., Biovhemistyr 11 (1972) 4982). Spalting av fusjonsproteinet med faktor Xa ble utført ved 4°C i en tris-buffer (50 mM tris-HCl, pH 8,0, 100 mM NaCl, ImM Cacl2), hvorpå fusjonsproteinet også blir løselig. Spaltingsproduktet ble renset til homogenitet kromatografisk. Riktig faktor Xa-spalting ble bekreftet ved sekvensering av N-Terminus til de rensede produktene. The fusion protein thus obtained was cleaved with factor XA from ox blood. Factor X was purified as described by Fujikawa et al. (Fujikawa K., et. al. Biochemistry 11 (1972) 4882), and activated to factor Xa (Fujikawa K. et. al., Biochemistry 11 (1972) 4982). Cleavage of the fusion protein with factor Xa was performed at 4°C in a tris buffer (50 mM tris-HCl, pH 8.0, 100 mM NaCl, 1 mM CaCl2), whereupon the fusion protein also becomes soluble. The cleavage product was purified to homogeneity chromatographically. Correct factor Xa cleavage was confirmed by sequencing the N-terminus of the purified products.

Claims (9)

1. Fremgangsmåte for fremstillling av genetisk kodbare polypeptider ved kobling av strukturgenene for dette polypeptidet i riktig leseramme for et gen for p-galaktosidase ved en reguleringsregion, anbringe denne genstrukturen 1 en bakterie, ekspresjon av et uløselig fusjonsprotein, isolering av fusjonsproteinet etter celleavslutting og utvinning av de ønskede polypeptidene ved bruk av kjemisk eller enzymatisk spalting,karakterisert vedat man løser opp det uløselige fusjonsproteinet med urinstoff og fjerner urlnstoffet fra løsningen med dialyse og utfører spalting på den slik tilveiebragte løsningen av fusjonsproteinet.1. Process for the production of genetically coded polypeptides by linking the structural genes for this polypeptide in the correct reading frame for a gene for β-galactosidase at a regulatory region, placing this gene structure 1 in a bacterium, expressing an insoluble fusion protein, isolating the fusion protein after cell termination and recovering the the desired polypeptides using chemical or enzymatic cleavage, characterized by dissolving the insoluble fusion protein with urea and removing the urea from the solution by dialysis and performing cleavage on the thus provided solution of the fusion protein. 2 . Fremgangsmåte ifølge krav 1,karakterisertved at man utfører oppløsningen ved en temperatur fra 0°C til romtemperatur, fortrinnsvis ved 4 til 10°C.2. Method according to claim 1, characterized in that the dissolution is carried out at a temperature from 0°C to room temperature, preferably at 4 to 10°C. 3. Fremgangsmåte ifølge krav 1 eller 2,karakterisert vedat urinstoffkonsentrasjonen er på omtrent 6 til omtrent 8 M.3. Method according to claim 1 or 2, characterized in that the urea concentration is approximately 6 to approximately 8 M. 4. Fremgangsmåte ifølge ett eller flere av de ovenfornevnte kravene,karakterisert vedat konsentrasjonen av fusjonsproteinene i urinstoffløsningen er opptil 10 mg/ml.4. Method according to one or more of the above-mentioned claims, characterized in that the concentration of the fusion proteins in the urea solution is up to 10 mg/ml. 5 . Fremgangsmåte ifølge ett eller flere av ovenfor nevnte krav,karakterisert vedat man utfører dialysen ved en temperatur fra 0 til 10°C, fortrinnsvis ved omtrent 4°C.5 . Method according to one or more of the above-mentioned claims, characterized in that the dialysis is carried out at a temperature from 0 to 10°C, preferably at approximately 4°C. 6. Fremgangsmåte ifølge ett eller flere av ovenfornevnte krav,karakterisert vedat pH-verdien til dialyseløsningen er i området på fra 8 til 9, fortrinnsvis 8,3 til 8,6.6. Method according to one or more of the above-mentioned claims, characterized in that the pH value of the dialysis solution is in the range of from 8 to 9, preferably 8.3 to 8.6. 7. Fremgangsmåte ifølge ett eller flere av ovenfornevnte krav,karakterisert vedat den dialyseanrikede løsningen av fusjonsproteinene blir utsatt for kjemisk eller fortrinnsvis enzymatisk spalting uten videre opprensing.7. Method according to one or more of the above-mentioned claims, characterized in that the dialysis-enriched solution of the fusion proteins is subjected to chemical or preferably enzymatic cleavage without further purification. 8. Fremgangsmåte ifølge ett eller flere av ovenfornevnte krav,karakterisert vedat genet for3-galaktosidase koder for et3-galaktosidasefragment på over 250 aminosyrer, men som er signifikant mindre enn hele e-galak-tosidasesekvensen, fortrinnsvis til omtrent 800, spesielt til omtrent 650 aminosyrer.8. Method according to one or more of the above-mentioned claims, characterized in that the gene for 3-galactosidase codes for a 3-galactosidase fragment of over 250 amino acids, but which is significantly smaller than the entire ε-galactosidase sequence, preferably to about 800, especially to about 650 amino acids. 9. Fremgangsmåte ifølge krav 8,karakterisertved at p-galaktosidasefragmentet består av en aminoterminal og/eller karboksyterminal delsekvens.9. Method according to claim 8, characterized in that the β-galactosidase fragment consists of an amino-terminal and/or carboxy-terminal partial sequence.
NO881963A 1987-05-06 1988-05-05 PROCEDURE FOR THE PREPARATION OF GENETICALLY CODABLE POLYPEPTIDES. NO881963L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873715033 DE3715033A1 (en) 1987-05-06 1987-05-06 METHOD FOR ISOLATING FUSION PROTEINS

Publications (2)

Publication Number Publication Date
NO881963D0 NO881963D0 (en) 1988-05-05
NO881963L true NO881963L (en) 1988-11-07

Family

ID=6326923

Family Applications (1)

Application Number Title Priority Date Filing Date
NO881963A NO881963L (en) 1987-05-06 1988-05-05 PROCEDURE FOR THE PREPARATION OF GENETICALLY CODABLE POLYPEPTIDES.

Country Status (12)

Country Link
EP (1) EP0290005A2 (en)
JP (1) JPS6447394A (en)
KR (1) KR880013979A (en)
AU (1) AU1563188A (en)
DE (1) DE3715033A1 (en)
DK (1) DK244988A (en)
FI (1) FI882079A (en)
IL (1) IL86276A0 (en)
NO (1) NO881963L (en)
NZ (1) NZ224484A (en)
PT (1) PT87414B (en)
ZA (1) ZA883208B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3805150A1 (en) * 1987-04-11 1988-10-20 Hoechst Ag GENE TECHNOLOGICAL METHOD FOR PRODUCING POLYPEPTIDES
US5426036A (en) * 1987-05-05 1995-06-20 Hoechst Aktiengesellschaft Processes for the preparation of foreign proteins in streptomycetes
DE4012818A1 (en) 1990-04-21 1991-10-24 Hoechst Ag METHOD FOR THE PRODUCTION OF FOREIGN PROTEINS IN STREPTOMYCETES
AU612370B2 (en) 1987-05-21 1991-07-11 Micromet Ag Targeted multifunctional proteins
IL90514A (en) * 1988-06-03 1995-10-31 Us Health Fusion gene comprising a multi-drug resistance gene fused to an adenine deaminase gene
US5358857A (en) * 1989-08-29 1994-10-25 The General Hospital Corp. Method of preparing fusion proteins
US5227293A (en) * 1989-08-29 1993-07-13 The General Hospital Corporation Fusion proteins, their preparation and use

Also Published As

Publication number Publication date
NZ224484A (en) 1991-03-26
AU1563188A (en) 1988-11-10
JPS6447394A (en) 1989-02-21
IL86276A0 (en) 1988-11-15
PT87414A (en) 1989-05-31
FI882079A (en) 1988-11-07
DK244988A (en) 1988-11-07
PT87414B (en) 1992-08-31
DK244988D0 (en) 1988-05-05
ZA883208B (en) 1988-11-08
KR880013979A (en) 1988-12-22
FI882079A0 (en) 1988-05-04
EP0290005A2 (en) 1988-11-09
DE3715033A1 (en) 1988-11-17
NO881963D0 (en) 1988-05-05

Similar Documents

Publication Publication Date Title
JP2622479B2 (en) A replicable bacterial plasmid expressing the gene for human growth hormone.
DK171278B1 (en) DNA Sequence, vector comprising such a sequence, host organism transformed with such vector and method for producing a protein or peptide product by means thereof.
JP4243104B2 (en) Fusion proteins for secretion of important proteins into bacterial culture supernatants
JP3250968B2 (en) Large polypeptides with oligopeptide repeat units
EP0331961B1 (en) Method for protein synthesis using CKS fusion proteins
Baty et al. Extracellular release of colicin A is non‐specific.
EP0410655A1 (en) Improved control of expression of heterologous genes from lac operated promoters
NO175640B (en)
Lupski et al. Regulation of the rpsU-dnaG-rpoD macromolecular synthesis operon and the initiation of DNA replication in Escherichia coli K-12
WO1984004330A1 (en) Secretion of exogenous polypeptides from yeast
NO308667B1 (en) Method of Preparation of Fusion Proteins
lyoda et al. Molecular dissection of the flagellum-specific anti-sigma factor, FlgM, of Salmonella typhimurium
NO881963L (en) PROCEDURE FOR THE PREPARATION OF GENETICALLY CODABLE POLYPEPTIDES.
JPH04502851A (en) Expression system for preparing polypeptides in prokaryotic cells
AU698656B2 (en) Promoters for gene expression
EP0306673B1 (en) A method for the preparation of human growth hormone
Koshi et al. Complete sequence of the ompH gene encoding the 16-kDa cationic outer membrane protein of Salmonella typhimurium
MIYAKE et al. Secretion of human interferon-α induced by using secretion vectors containing a promoter and signal sequence of alkaline phosphatase gene of Escherichia coli
EP0225860B1 (en) A method to export gene products to the growth medium of gram negative bacteria
PT87501B (en) PROCESS FOR PRODUCTION OF ANGIOGENINS BY GENETIC MANIPULATION
DK175964B1 (en) Recombinant metalloproteinase inhibitor sequence vector system, its use as well as recombinant DNA method for the preparation thereof
Jansson et al. A dual-affinity gene fusion system to express small recombinant proteins in a soluble form: expression and characterization of protein A deletion mutants
Stochaj et al. Truncated forms of Escherichia coli lactose permease: models for study of biosynthesis and membrane insertion
EP0264074B1 (en) Expression vector for insulin-like growth factor i
Geli et al. Synthesis and sequence-specific proteolysis of a hybrid protein (colicin A:: growth hormone releasing factor) produced in Escherichia coli