NO830235L - WORKING MEDIUM FOR ABSORPTION HEAT PUMPS. - Google Patents
WORKING MEDIUM FOR ABSORPTION HEAT PUMPS.Info
- Publication number
- NO830235L NO830235L NO830235A NO830235A NO830235L NO 830235 L NO830235 L NO 830235L NO 830235 A NO830235 A NO 830235A NO 830235 A NO830235 A NO 830235A NO 830235 L NO830235 L NO 830235L
- Authority
- NO
- Norway
- Prior art keywords
- difluorochloromethane
- heat
- absorber
- evaporator
- expeller
- Prior art date
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 9
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000003507 refrigerant Substances 0.000 claims abstract description 15
- 239000006096 absorbing agent Substances 0.000 claims description 14
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical group COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000004090 dissolution Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims 2
- 239000002250 absorbent Substances 0.000 claims 2
- 239000003960 organic solvent Substances 0.000 claims 2
- 239000011877 solvent mixture Substances 0.000 claims 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 abstract description 4
- 239000003463 adsorbent Substances 0.000 abstract 2
- 239000002904 solvent Substances 0.000 description 16
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- -1 halogen derivative of methane Chemical class 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoric acid amide group Chemical group P(N)(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/047—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Oppfinnelsen vedrører et arbeidsmedium som inneholder difluorklormetan og i en varmepumpe av absorbsjonstypen kan anvendes til frembringelse av kulde eller varme. The invention relates to a working medium which contains difluorochloromethane and can be used in a heat pump of the absorption type to produce cold or heat.
Anvendelsen av varmepumper for kjøle- og varmeformål har vært kjent lenge. Mens til å begynne med elektrisk drevne kompre-sjonsmaskiner til fremstilling av kulde sto i forgrunnen finner i den senere tid varmevarmepumper interesse som er i stand til å innspare energi. Derved kan det prinsippielt kanvendes såvel kompresjons- som også sorbsjonsvarmepumper. Sorbsjonsvarmepumper har imidlertid i forhold til elektrisk drevne kompresjons-varmepumper noen fordeler, i det vesentlige lydfattighet, The use of heat pumps for cooling and heating purposes has been known for a long time. While initially electrically driven compression machines for the production of cold were in the foreground, in recent times heating heat pumps are finding interest as they are able to save energy. In principle, both compression and sorption heat pumps can thereby be used. However, compared to electrically driven compression heat pumps, sorption heat pumps have some advantages, mainly quietness,
mindre slitasje, da det knapt er til stede mekanisk drevne deler, mindre ettersynsbehov, mindre anleggsomkostninger, fremfor alt imidlertid et mindre primær-energiforbruk. Ved en elektrisk drevet kompresjons-varmepumpe er f.eks. å ta hensyn til at inntil strømfrembringelse er gått tapt ca. 2/3 less wear and tear, as there are hardly any mechanically driven parts, less need for maintenance, less installation costs, above all, however, less primary energy consumption. In the case of an electrically driven compression heat pump, e.g. to take into account that until power generation has been lost approx. 2/3
av primærenergien.of the primary energy.
Stoffpar for sorbsjons-varmepumper, bestående av et oppløsnings-middel og et flyktig oppløsbart stoff er allerede kjent. Slike stoffpar ble i første rekke utviklet for anvendelse i stor-tekniske kuldemaskiner (vann/ammoniakk) litiumbromid/vann). Substance pairs for sorption heat pumps, consisting of a solvent and a volatile soluble substance, are already known. Such substance pairs were primarily developed for use in large-scale refrigeration machines (water/ammonia) lithium bromide/water).
For privathusholdning er riktignok anvendelsen av ammoniakk begrenset av toksikologiske og sikkerhetstekniske grunner. Kombinasjoner med litiumbromid krever et stort arbeide med hensyn til tetthet, da anleggene arbeider i høyt vakuum. For private households, the use of ammonia is admittedly limited for toxicological and safety reasons. Combinations with lithium bromide require a lot of work with regard to tightness, as the plants work in a high vacuum.
Dessuten er krystallisasjonsgrensen ved lave temperaturerMoreover, the crystallization limit is at low temperatures
av varmekilden å ta hensyn til.of the heat source to take into account.
For anvendelse i mind re systemer, s pesielt i private hushold-ninger er det blitt.foreslått systemer som inneholder et fluorklor-hydrokarbon som flyktig fase da denne stoffgruppe ikke er brennbar og samt forholdsvis lite toksisk og lite korrosiv. For use in smaller systems, particularly in private households, systems have been proposed that contain a fluorochlorohydrocarbon as a volatile phase, as this group of substances is not flammable and relatively low-toxic and low-corrosive.
Arbeidsstoffpar for sorbsjons-varmepumper hvori oppløsnings-middelet er et fosforsyreamid med alkyl- eller fenylgrupper og den flyktige fase er et fluorkloralkan er gjenstand for DE-OS 29 44 189. Som den tids gunstigste system av et fluor-klorhydrokarbon med et oppløsningsmiddel anses i faglitteraturen kombinasjonen av FKW 22 (difluorklormetan) med tetraetylenglykol-dimetyleter (B. Eisemann, Absorption refrigeration, ASHRAE Journal, Dec. 1959, side 45-50, S.Mastrangelo, Chlor-fluorhydrocarbons in tetraethylene glyco dimethyl ether, ASHRAE Journal, Oet. 1959, side 64-67, K. Stephan, D. Seher, Arbeitsgemische fur Sorptions-Warmepumpen, Klima-Kalte-Heizung 1/1980 side 874, 875). Work substance pair for sorption heat pumps in which the solvent is a phosphoric acid amide with alkyl or phenyl groups and the volatile phase is a fluorochloroalkane is the subject of DE-OS 29 44 189. As the most favorable system of a fluoro-chlorohydrocarbon with a solvent is considered in the literature the combination of FKW 22 (difluorochloromethane) with tetraethylene glycol dimethyl ether (B. Eisemann, Absorption refrigeration, ASHRAE Journal, Dec. 1959, pages 45-50, S. Mastrangelo, Chlor-fluorohydrocarbons in tetraethylene glyco dimethyl ether, ASHRAE Journal, Oet. 1959 , pages 64-67, K. Stephan, D. Seher, Arbeitsgemische fur Sorptions-Warmepumpen, Klima-Kalte-Heizung 1/1980 pages 874, 875).
Tegningens figur 1 viser sterk forenkling av en absorbsjons-varmepumpe-kretsprosess. Varmestrømmen inn i systemet og ut av systemet betegnes med Q og angis ved pilretningen. Figure 1 of the drawing shows a strong simplification of an absorption heat pump circuit process. The heat flow into and out of the system is denoted by Q and is indicated by the direction of the arrow.
Funksjonsmåten er som følger:'The mode of operation is as follows:'
I fordamperen 6 fordampes ved varmeopptak ved lav temperatur (f.eks. 0°C) kuldemiddelet (f..eks. F KW 22). Kuldemiddeldampen kommer over ledning 7 inn i absorbereren 8 og oppløser seg der i oppløsningsmiddelet. Derved frigjøres varme som f.eks. kan avgis til et vannkretsløp som skal oppvarmes. In the evaporator 6, the refrigerant (e.g. F KW 22) is evaporated by heat absorption at a low temperature (e.g. 0°C). The refrigerant vapor enters via line 7 into the absorber 8 and dissolves there in the solvent. Thereby, heat is released as e.g. can be discharged to a water circuit to be heated.
Det med kjølemiddel anrikede oppløsningsmiddel (rik oppløsning) pumpes over ledningene 10 og 11 med en pumpe 12 inn i utdriveren 1. Utdriveren 1 oppvarmes (f.eks. ved 130°C) hvorved kuldemiddel desorberes fra oppløsningen og kommer over ledning 2 inn i flytendegjøreren 3. I flytendegjøreren 3 flytendegjøres kuldemiddeldampen ved høyere temperatur, f.eks. 5 0°C. Den derved frigjorte fordampningsvarme kan f.eks. avgis til et vann-kretsløp som skal oppvarmes. Hensiktmessig drives varmepumpen således at flytendegjørerens og absorbererens varmeavgivning foregår ved samme temperatur (f.eks. 50°C). The refrigerant-enriched solvent (rich solution) is pumped via lines 10 and 11 with a pump 12 into the expeller 1. The expeller 1 is heated (e.g. at 130°C) whereby coolant is desorbed from the solution and comes via line 2 into the liquefier 3. In the liquefier 3, the refrigerant vapor is liquefied at a higher temperature, e.g. 50°C. The heat of evaporation thereby released can e.g. is delivered to a water circuit to be heated. Ideally, the heat pump is operated in such a way that the liquefier's and the absorber's heat release takes place at the same temperature (e.g. 50°C).
Fra flytendegjøreren 3 kommer det flytende kuldemiddel over ledning 4 og ekspansjonsventil 5 igjen inn i fordamperen 6. From the liquefier 3, the liquid refrigerant enters the evaporator 6 via line 4 and expansion valve 5.
Den i utdriveren 1 ved desorbsjon av kuldemiddel på kuldemiddel utarmet oppløsning (fattig oppløsning) kommer over ledning 9 The one in expeller 1 during desorption of refrigerant on refrigerant-depleted solution (poor solution) comes over line 9
og strupeventil 13 tilbake i absorbereren 8 og kan der igjen oppløse kuldemiddeldamp fra fordamperen 6. and throttle valve 13 back into the absorber 8 and can again dissolve refrigerant vapor from the evaporator 6 there.
Varmepumpe-kretsprosessen foregår mellom to trykknivåer.The heat pump circuit process takes place between two pressure levels.
Trykket på lavtrykksiden (etter ekspansjonsventil, fordamper, absorberer til oppløsningspumpe) fremkommer av metningsdamptrykk av kuldemiddelet ved fordampningstemperaturen. F.eks. FKW 22 har ved 0°C et metningsdamptrykk på 5 bar. Trykket av høytrykks-siden (fra oppløsningspumpe-uttreden, utdriver, flytendegjører til ekspansjonsventil) fremkommer av metningsdamptrykket av kuldemiddelet ved flytendegjøringstemperaturen. F.eks. FKW 22 har ved 50OC et metningsdamptrykk på 19 bar. The pressure on the low pressure side (after expansion valve, evaporator, absorber to dissolution pump) results from the saturation vapor pressure of the refrigerant at the evaporation temperature. E.g. FKW 22 has a saturation vapor pressure of 5 bar at 0°C. The pressure of the high-pressure side (from the dissolution pump exit, expeller, liquefier to expansion valve) results from the saturation vapor pressure of the refrigerant at the liquefaction temperature. E.g. At 50OC, FKW 22 has a saturation vapor pressure of 19 bar.
Det ligger for hånden at pr. kilo oppløsningsmiddel kan det transporteres desto mer varme i anlegget, jo større differansen mellom oppløseligheten av kuldemiddelet i absorbereren og utdriveren er. Den oppløselighetsdifferanse i kilo kuldemiddel pr. kilo oppløsningsmiddel betegnes som avgasningsbredde. Multipliserer man avgasningsbredde med fordampningsvarmen av kuldemiddelet (FKW 22 har ved 50°C en fordampningsvarme på 154 KJ pr. kilo) så får man den pr. kilo oppløsningsmiddel transporterte varmemengde. It is at hand that per kilo of solvent, the more heat can be transported in the plant, the greater the difference between the solubility of the refrigerant in the absorber and expeller. The solubility difference in kilograms of refrigerant per kilogram of solvent is referred to as degassing width. If you multiply the degassing width by the vaporization heat of the refrigerant (FKW 22 has a vaporization heat of 154 KJ per kilogram at 50°C), you get it per kilogram of solvent transported amount of heat.
For det i litteraturen omtalte system FKW 22/tetraetylenglykol-dimetyleter utgjør ifølge egne forsøk avgasningsbredden 0,19 kilo FKW 22 pr. kilo oppløsningsmiddel. Målingen ble foretatt under følgende betingelser: Fordamper/absorbererdel : 5 bar damptrykk av FKW 22 og 50°C oppløsningstemperatur. Utdriver-/ kondensatordel : 19 bar damptrykk av FKW 22 og 130°C oppløs-nings temper atur_.__ For the FKW 22/tetraethylene glycol dimethyl ether system mentioned in the literature, according to our own experiments, the degassing width amounts to 0.19 kilograms of FKW 22 per kilos of solvent. The measurement was made under the following conditions: Evaporator/absorber part: 5 bar steam pressure of FKW 22 and 50°C solution temperature. Extruder/condenser part: 19 bar steam pressure of FKW 22 and 130°C solution temperature_.__
Den transporterbare varmemengde utgjør følgelig 29,3 KJ/kilo oppløsningsmiddel. The transportable amount of heat therefore amounts to 29.3 KJ/kilogram of solvent.
Til grunn for oppfinnelsen ligger den oppgave å tilveiebringeThe invention is based on the task of providing
et arbeidsstoffpar som pr. vektenhet av oppløsningsmiddelet transporterer en betraktelig høyere varmemengde, men likeledes oppfyller de øvrige krav til et slikt system. Eksempelvis skal systemet i arbeidsområdet ha lav viskositet og ikke være korro-sivt. Det skal være mulig fra omgivelsen ved -20°C å fjerne varme. Den flyktige forbindelse skal kunne utdrives av opp-løsningsmiddelet ved temperaturer fra 90°C til 180°C. a pair of working materials which per unit weight of the solvent transports a considerably higher amount of heat, but also fulfills the other requirements for such a system. For example, the system in the work area must have a low viscosity and not be corrosive. It must be possible to remove heat from the surroundings at -20°C. The volatile compound must be able to be expelled by the solvent at temperatures from 90°C to 180°C.
Det ble nu funnet at stoffparet difluorklormetan (FKW 22)/ trietylenglykol-dimetyleter (TEG) oppfyller disse krav. Dette system's avgasningsbredde er rundt 50% større enn ved systemet FKW 22/tetraetylenglykol-dimetyleter. Den varmemengde som It was now found that the substance pair difluorochloromethane (FKW 22)/ triethylene glycol dimethyl ether (TEG) meets these requirements. This system's degassing width is around 50% greater than with the FKW 22/tetraethylene glycol dimethyl ether system. The amount of heat which
kan transporteres pr. kilo oppløsningsmiddel utgjør derfor i foreliggende tilfelle ca. 46,2 KJ/kilo oppløsningsmiddel. Det er videre fordelaktig at oppløsningsmiddelet TEG ved 20°C har en viskositet på bare 3,0 mPa-s, mens tetraetylenglykol-dimetyleter har en viskositet på 5,1 mPa-s. De med stoffpar ifølge oppfinnelsen fyllte sorbsjons-varmepumper kan drives såvel som kuldemaskin som også oppvarmingsvarmepumpe. can be transported per kilos of solvent therefore in the present case amount to approx. 46.2 KJ/kilogram of solvent. It is further advantageous that the solvent TEG at 20°C has a viscosity of only 3.0 mPa-s, while tetraethylene glycol dimethyl ether has a viscosity of 5.1 mPa-s. The sorption heat pumps filled with material pairs according to the invention can be operated both as a cooling machine and also as a heating heat pump.
Anvendelsen av stoffpar ifølge oppfinnelsen er mulig i visse temperaturområder. Temperaturområdene for forskjellige anlegg-deler oppføres nedenfor. The use of substance pairs according to the invention is possible in certain temperature ranges. The temperature ranges for different plant parts are listed below.
1. Fordamper:1. Evaporator:
Fordampningen kan foregå i området fra -20°C til +40oC, fortrinnsvis i området -10°C til +20°C, spesielt i området -5°C til +10°C. The evaporation can take place in the range from -20°C to +40°C, preferably in the range -10°C to +20°C, especially in the range -5°C to +10°C.
2. Kodensasjon:2. Co-condensation:
Kondensasjonen kan foregå i området fra 20oc til 80°C, fortrinnsvis mellom 35 og 65°C. The condensation can take place in the range from 20°C to 80°C, preferably between 35 and 65°C.
3. Absorberer:3. Absorbs:
Absorbsjonen kan foregå ved temperaturer mellom 20 og 80°C, fortrinnsvis mellom 35 og 65°C. The absorption can take place at temperatures between 20 and 80°C, preferably between 35 and 65°C.
4. Utdriver:4. Expels:
Utdrivningen av FKW 2 2 fra oppløsningen kan foregå mellomThe expulsion of FKW 2 2 from the solution can take place between
90 og 180°C, fortrinnsvis mellom 110 og 150°C.90 and 180°C, preferably between 110 and 150°C.
Stillingen av midtpunktet av anleggdel 1 (utdriver), 3 (flyt-endegjører), 6 (fordamper) og 8 (absorberer) med hensyn til det egnede koordinatsystem på figuren anskueliggjør samtidig foretrukkede arbeidsbetingelser for en varmepumpe med arbeidsmedium ifølge oppfinnelsen. The position of the center point of plant part 1 (expander), 3 (flow finisher), 6 (evaporator) and 8 (absorber) with respect to the suitable coordinate system in the figure simultaneously illustrates preferred working conditions for a heat pump with working medium according to the invention.
Under de allerede nevnte betingelser i fordamper/absorberer-delen og utdriver/kondensator-delen har FKW 22 i TEG og sammen-ligningsmessig i tetraetylenglykol-dimetyleter følgende opp-løsligheter: Under the already mentioned conditions in the evaporator/absorber part and expeller/condenser part, FKW 22 in TEG and comparatively in tetraethylene glycol dimethyl ether have the following solubilities:
Det er overraskende at systemet ifølge oppfinnelsen inneholdende TEG har en fordel overfor det anloge system på basis av tetraetylenglykol-dimetyle-tex- Det—e-r—f-r-a—US--patent 20 40 901 kjent at begge etere er gode oppløsningsmidler for FKW 21. I det samme litteratursistat anføres imidlertid at fra oppløslighets-egenskapene av et bestemt halogenderivat av metan kan det ikke trekkes noen slutninger med hensyn til oppløslighetsegenskapene av et annet halogenderivat av metan. Jo lavere temperaturen i avsorbereren er dersto høyere er den oppnådde oppladning av TEG med FKW 22. Jo høyere temperaturen i utdriveren er desto mindre er restoppladningen. Blandingsforholdet TEG/FKW 22 avhenger altså fra arbeidsbetingelsene. I de fleste tilfeller utgjør vektdelen FKW 22 10 - 75%, fortrinnsvis 20 - 40%. It is surprising that the system according to the invention containing TEG has an advantage over the analogous system based on tetraethylene glycol-dimethyl-tex- It is known that both ethers are good solvents for FKW 21. however, the same literature review states that no conclusions can be drawn from the solubility properties of a certain halogen derivative of methane with regard to the solubility properties of another halogen derivative of methane. The lower the temperature in the absorber, the higher the achieved charging of TEG with FKW 22. The higher the temperature in the expeller, the smaller the residual charging. The TEG/FKW 22 mixing ratio therefore depends on the working conditions. In most cases, the weight portion of FKW 22 is 10 - 75%, preferably 20 - 40%.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19823202377 DE3202377A1 (en) | 1982-01-26 | 1982-01-26 | WORKING MEDIUM FOR ABSORPTION HEAT PUMPS |
Publications (1)
Publication Number | Publication Date |
---|---|
NO830235L true NO830235L (en) | 1983-07-27 |
Family
ID=6153921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO830235A NO830235L (en) | 1982-01-26 | 1983-01-25 | WORKING MEDIUM FOR ABSORPTION HEAT PUMPS. |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0084869B1 (en) |
JP (1) | JPS58131130A (en) |
AT (1) | ATE15060T1 (en) |
AU (1) | AU550260B2 (en) |
CA (1) | CA1197372A (en) |
DE (2) | DE3202377A1 (en) |
DK (1) | DK28583A (en) |
ES (1) | ES8308914A1 (en) |
FI (1) | FI830228L (en) |
NO (1) | NO830235L (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2567140B1 (en) * | 1984-07-06 | 1986-11-07 | Gaz De France | APPLICATION OF STABLE MIXTURES OF CHLOROFLUORIC HYDROCARBONS AND SOLVENTS AS A CALOGEN COMPOSITION FOR AN ABSORPTION HEAT PUMP |
DE3543171A1 (en) * | 1985-12-06 | 1987-06-11 | Hoechst Ag | FABRIC PAIR FOR ABSORPTION HEAT TRANSFORMERS |
CA1270710A (en) * | 1986-01-09 | 1990-06-26 | Takao Yamauchi | Chemical heat pump utilizing clathrate formation reaction |
US4990277A (en) * | 1987-10-30 | 1991-02-05 | Atochem, Gaz De France | Compositions based on chlorofluorinated ether and solvent and their application in absorption apparatus |
FR2622593B1 (en) * | 1987-10-30 | 1991-04-26 | Gaz De France | APPLICATION OF A MIXTURE OF FLUIDS BASED ON CHLOROFLUORIC ETHER AND SOLVENTS TO ABSORPTION MACHINES |
FR2622576B1 (en) * | 1987-10-30 | 1991-06-07 | Atochem | COMPOSITIONS BASED ON CHLOROFLUORIC ETHER AND SOLVENT |
ATE127509T1 (en) * | 1988-12-14 | 1995-09-15 | Lubrizol Corp | LIQUID MIXTURES CONTAINING CARBOXYLIC ESTERS. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54152257A (en) * | 1978-05-19 | 1979-11-30 | Sanyo Electric Co Ltd | Freezing composition for use in absorption type freezer |
NL7811002A (en) * | 1978-11-06 | 1980-05-08 | Philips Nv | WORKING MEDIUM FOR AN ABSORPTION HEAT PUMP COMPRISING A SOLUTION OF A FLUORCHLORANE ALKANE. |
JPS5679175A (en) * | 1979-11-30 | 1981-06-29 | Daikin Ind Ltd | Absorption refrigerant carrier composition |
JPS5844713B2 (en) * | 1981-04-07 | 1983-10-05 | 松下電器産業株式会社 | absorption refrigerant composition |
DE3265173D1 (en) * | 1981-04-07 | 1985-09-12 | Matsushita Electric Ind Co Ltd | Composition for absorption refrigeration |
-
1982
- 1982-01-26 DE DE19823202377 patent/DE3202377A1/en not_active Withdrawn
-
1983
- 1983-01-21 AT AT83100506T patent/ATE15060T1/en not_active IP Right Cessation
- 1983-01-21 EP EP83100506A patent/EP0084869B1/en not_active Expired
- 1983-01-21 DE DE8383100506T patent/DE3360578D1/en not_active Expired
- 1983-01-24 FI FI830228A patent/FI830228L/en not_active Application Discontinuation
- 1983-01-24 ES ES519216A patent/ES8308914A1/en not_active Expired
- 1983-01-25 CA CA000420139A patent/CA1197372A/en not_active Expired
- 1983-01-25 AU AU10763/83A patent/AU550260B2/en not_active Ceased
- 1983-01-25 JP JP58009453A patent/JPS58131130A/en active Pending
- 1983-01-25 DK DK28583A patent/DK28583A/en not_active Application Discontinuation
- 1983-01-25 NO NO830235A patent/NO830235L/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE3360578D1 (en) | 1985-09-26 |
AU1076383A (en) | 1983-08-04 |
ATE15060T1 (en) | 1985-09-15 |
FI830228A0 (en) | 1983-01-24 |
FI830228L (en) | 1983-07-27 |
DE3202377A1 (en) | 1983-07-28 |
CA1197372A (en) | 1985-12-03 |
AU550260B2 (en) | 1986-03-13 |
DK28583A (en) | 1983-07-27 |
EP0084869B1 (en) | 1985-08-21 |
ES519216A0 (en) | 1983-10-16 |
EP0084869A1 (en) | 1983-08-03 |
DK28583D0 (en) | 1983-01-25 |
ES8308914A1 (en) | 1983-10-16 |
JPS58131130A (en) | 1983-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5600967A (en) | Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller | |
US3478530A (en) | Absorption refrigeration system | |
US4674297A (en) | Chemically assisted mechanical refrigeration process | |
KR20160113320A (en) | Absorption Refrigeration Cycles Using a LGWP Refrigerant | |
JP3369568B2 (en) | An improved triple-effect absorption cycle device. | |
KR101483845B1 (en) | Method of operating an absorption heat pump | |
NO830235L (en) | WORKING MEDIUM FOR ABSORPTION HEAT PUMPS. | |
JPS5575780A (en) | Heat pump type water making equipment | |
US4593538A (en) | Refrigeration cycle operatable by low thermal potential energy sources | |
Liang et al. | The latent application of ionic liquids in absorption refrigeration | |
ATE229633T1 (en) | ABSORPTION REFRIGERATOR | |
GB872874A (en) | Improvements in or relating to heat pumps | |
CA1233655A (en) | Chemically assisted mechanical refrigeration process | |
US4042524A (en) | Methods for absorption heating | |
Ghodeshwar et al. | Thermodynamic analysis of lithium bromide-water (LiBr-H2O) vapor absorption refrigeration system based on solar energy | |
US4779675A (en) | Pair of substances for absorption heat transformers | |
US4294080A (en) | Desorption step in absorption heat pumps and refrigerators | |
US4283918A (en) | Liquid phase separation in absorption refrigeration | |
US5275751A (en) | Azeotrope-like compositions of trifluoromethane, carbon dioxide and sulfur hexafluoride | |
CN212481743U (en) | Low-temperature damage prevention equipment for propylene refrigeration compressor | |
US2040898A (en) | Absorption refrigeration | |
JP2776200B2 (en) | Absorption type ice cold storage device | |
JP2002267299A (en) | Cold liquid extracting system of steam compression refrigerating machine used for refrigeration or ice making | |
US2357431A (en) | Refrigeration | |
US2040897A (en) | Absorption refrigeration |