NO823254L - PROCEDURE FOR ELECTROCHEMICAL GASPING OF CARBON-CONTAINING MATERIAL. - Google Patents
PROCEDURE FOR ELECTROCHEMICAL GASPING OF CARBON-CONTAINING MATERIAL.Info
- Publication number
- NO823254L NO823254L NO823254A NO823254A NO823254L NO 823254 L NO823254 L NO 823254L NO 823254 A NO823254 A NO 823254A NO 823254 A NO823254 A NO 823254A NO 823254 L NO823254 L NO 823254L
- Authority
- NO
- Norway
- Prior art keywords
- iron
- anode
- electrolyte
- carbon
- cathode
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 239000000463 material Substances 0.000 title claims description 8
- 206010013975 Dyspnoeas Diseases 0.000 title 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 68
- 229910052742 iron Inorganic materials 0.000 claims description 34
- 239000003575 carbonaceous material Substances 0.000 claims description 28
- 239000003792 electrolyte Substances 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 230000002378 acidificating effect Effects 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 238000002309 gasification Methods 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 claims 5
- 125000002091 cationic group Chemical group 0.000 claims 1
- 238000011084 recovery Methods 0.000 claims 1
- 239000003245 coal Substances 0.000 description 24
- 239000003054 catalyst Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- -1 pods Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 239000002023 wood Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000006056 electrooxidation reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 238000010349 cathodic reaction Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 229910000457 iridium oxide Inorganic materials 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000002739 metals Chemical group 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000036647 reaction Effects 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- LMSDCGXQALIMLM-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;iron Chemical compound [Fe].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O LMSDCGXQALIMLM-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 239000005569 Iron sulphate Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005363 electrowinning Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- PANJMBIFGCKWBY-UHFFFAOYSA-N iron tricyanide Chemical compound N#C[Fe](C#N)C#N PANJMBIFGCKWBY-UHFFFAOYSA-N 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- PQQAOTNUALRVTE-UHFFFAOYSA-L iron(2+);diformate Chemical class [Fe+2].[O-]C=O.[O-]C=O PQQAOTNUALRVTE-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- OWZIYWAUNZMLRT-UHFFFAOYSA-L iron(2+);oxalate Chemical class [Fe+2].[O-]C(=O)C([O-])=O OWZIYWAUNZMLRT-UHFFFAOYSA-L 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- NPFOYSMITVOQOS-UHFFFAOYSA-K iron(III) citrate Chemical class [Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NPFOYSMITVOQOS-UHFFFAOYSA-K 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- LNOZJRCUHSPCDZ-UHFFFAOYSA-L iron(ii) acetate Chemical class [Fe+2].CC([O-])=O.CC([O-])=O LNOZJRCUHSPCDZ-UHFFFAOYSA-L 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 239000012978 lignocellulosic material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002916 wood waste Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
- C10J3/18—Continuous processes using electricity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/78—High-pressure apparatus
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
- C02F2305/026—Fenton's reagent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/06—Catalysts as integral part of gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/12—Electrodes present in the gasifier
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
- C10J2300/092—Wood, cellulose
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0943—Coke
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0946—Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
- C10J2300/0986—Catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Hydrology & Water Resources (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Secondary Cells (AREA)
Description
Oppf innelsens områdeThe field of the invention
Oppfinnelsen angår en fremgangsmåte ved elektrokjemisk forgassing av carbonholdige materialer i en vandig sur elektrolytt under anvendelse av en jernkatalysator. The invention relates to a method by electrochemical gasification of carbonaceous materials in an aqueous acidic electrolyte using an iron catalyst.
Teknikkens standState of the art
Det er kjent at carbonholdige materialer når de er blandet med en vandig, sur elektrolytt i en elektrokjemisk celle gjennom hvilken en likestrøm ledes, reagerer elektrokjemisk og oxyderer det carbonholdige materialettil oxyder av carbon på anoden. Den elektrokjemiske oxydasjon av det carbonholdige materiale på anoden finner sted uavhengig av arten av den samtidige katodereaksjon som f.eks. kan være fremstilling av hydrogen, den elektriske avsetning av metaller, hydrogeneringen av umettede organiske forbindelser eller en hvilken som helst annen elektrokjemisk reduksjonsprosess, eller en hvilken som helst annen prosess som kan finne sted på katoden, og dessuten i en hvilken som helst avdeling av elektrolysecellen på annet sted enn på anoden, og dette vil være alminnelighkjent for fagmannen. It is known that carbonaceous materials when mixed with an aqueous, acidic electrolyte in an electrochemical cell through which a direct current is passed react electrochemically and oxidize the carbonaceous material to oxides of carbon on the anode. The electrochemical oxidation of the carbonaceous material on the anode takes place regardless of the nature of the simultaneous cathodic reaction, e.g. may be the production of hydrogen, the electrodeposition of metals, the hydrogenation of unsaturated organic compounds, or any other electrochemical reduction process, or any other process that may take place at the cathode, and furthermore in any compartment of the electrolytic cell in a place other than on the anode, and this will be common knowledge to the person skilled in the art.
I US patentskrift 4268363 er elektrokjemisk forgassingIn US patent 4268363 is electrochemical gasification
av carbonholdige materialer ved anodisk oxydasjon beskrevet som fører til oxyder av carbon på anoden og hydrogen, metalliske elementer eller hydrogenering av kull på katoden i en elektrolysecelle. of carbonaceous materials by anodic oxidation described as leading to oxides of carbon on the anode and hydrogen, metallic elements or hydrogenation of coal on the cathode in an electrolytic cell.
I US patentskrift 4279710 er elektrokjemisk oxydasjon av carbonholdige materialer på anoden beskrevet og den ledsagende dannelse av hydrogen på katoden, og dessuten fremstilling av elektrisk kraft ved å anvende hydrogenet som brensel i en brenselcelle. In US patent 4279710, electrochemical oxidation of carbon-containing materials on the anode is described and the accompanying formation of hydrogen on the cathode, and also production of electric power by using the hydrogen as fuel in a fuel cell.
I US patentskrift 4226683 er fremstilling av hydrogen ved omsetning av kull eller carbonstøv med varmt vann som. foreligger som vann ved overatmosfærisk trykk., beskrevet. Trykket reguleres ved å anvende en inert, dielektrisk væske som In US patent 4226683, hydrogen is produced by reacting coal or carbon dust with hot water which. exists as water at superatmospheric pressure., described. The pressure is regulated by using an inert, dielectric liquid which
. vasker elektrodene og som avpolariserer disse ved absorp-. washes the electrodes and which depolarises these by absorption
sjon av gassene mens vaskingen finner sted.tion of the gases while the washing takes place.
r US patentskrift 4233132 er en fremgangsmåte beskrevet hvor elektroder neddykkes i olje som danner et lag over en r US patent document 4233132 describes a method where electrodes are immersed in oil which forms a layer over a
vannmengde. Når elektrisk strøm ledes mellom elektrodene, spaltes vannet elektrisk. Gassformig hydrogen oppsamles i det lukkede rom over olje/vannlagene, og oxygenet antas å reagere med bestanddelene i oljelaget. amount of water. When electric current is passed between the electrodes, the water is electrically split. Gaseous hydrogen is collected in the closed space above the oil/water layers, and the oxygen is assumed to react with the constituents of the oil layer.
Som erkjent i US patentskrift 4226683 har hovedproblemet med den tidligere anvendelse av dette prinsipp for kommersiell fremstilling av hydrogen vært den langsomme hastighet for den elektrokjemiske reaksjon mellom kull eller carbon og vann. Det har nu vist seg at jern når det tilsettes til en vandig, sur elektrolytt som inneholder det carbonholdige materiale, fortrinnsvis jern i treverdig form, katalyserer reaksjonshastigheten og letter oppnåelsen av en mer fullstendig oxydasjon for den elektrokjemiske oxydasjon av det carbonholdige materiale på anoden, hvorved slike prosesser som den kommersielle produks jon'åv hydrogen eller elektroutvinningsmetoder blir kommersielt gangbare. As recognized in US Patent 4226683, the main problem with the previous application of this principle for the commercial production of hydrogen has been the slow rate of the electrochemical reaction between coal or carbon and water. It has now been found that iron when added to an aqueous acidic electrolyte containing the carbonaceous material, preferably iron in the trivalent form, catalyzes the reaction rate and facilitates the achievement of a more complete oxidation for the electrochemical oxidation of the carbonaceous material on the anode, whereby such processes as the commercial production of hydrogen or electroextraction methods are becoming commercially feasible.
Oppsummering av oppfinnelsenSummary of the invention
Som beskrevet ovenfor er det velkjent at carbonholdige materialer, som kull, kan oxyderes på anoden i en elektrokjemisk celle som inneholder en vandig sur elektrolytt, under samtidig fremstilling av oxyder av carbon på anoden og at den anodiske halvcellereaksjon kan utnyttes i kombinasjon med de katodiske halvcellereaksjoner, som elektroavsetningen av et metall M fra en vandig oppløsning av dets ioner (M<m+>), eller fremstilling av hydrogen. I det tilfelle hvor f.eks. As described above, it is well known that carbonaceous materials, such as coal, can be oxidized on the anode in an electrochemical cell containing an aqueous acidic electrolyte, with the simultaneous production of oxides of carbon on the anode and that the anodic half-cell reaction can be utilized in combination with the cathodic half-cell reactions , such as the electrodeposition of a metal M from an aqueous solution of its ions (M<m+>), or production of hydrogen. In the case where e.g.
et metall avsettes elektrisk, kan den anodiske reaksjon, med spesielt henblikk på carbonet i kull og ved å representere dette med C, skrives som den støkiometriske ligning: a metal is electrically deposited, the anodic reaction, with particular regard to the carbon in coal and by representing this with C, can be written as the stoichiometric equation:
i kombinasjon med den samtidige katodiske reaksjon in combination with the simultaneous cathodic reaction
Nettoreaksjonen, dvs, summen av ligningene (I) og (II), for det tilfelle hvor m = 1 er: The net reaction, i.e. the sum of equations (I) and (II), for the case where m = 1 is:
Ved elektrisk utskillelse av f .eks . kobber, vil den utskillelse som befordres av kullet, kunne skrives i form av ligningen In the case of electrical separation of e.g. copper, the excretion promoted by the coal can be written in the form of the equation
Ved fremstilling av hydrogen vil denne anodiske reaksjon, When producing hydrogen, this anodic reaction,
med spesielt henblikk på carbonet i kull og ved å representere dette med C, kunne skrives i form av den følgende støkiometriske ligning: with particular regard to the carbon in coal and by representing this with C, could be written in the form of the following stoichiometric equation:
i kombinasjon med den samtidige katodiske reaksjon in combination with the simultaneous cathodic reaction
Nettoreaksjonen, dvs. summen av ligningene (IV) og (V), er: The net reaction, i.e. the sum of equations (IV) and (V), is:
I disse ligninger betegner symbolene (g), (s) og (1) henholdsvis gassformige, faste og flytende tilstander. Ligningene (I) og (IV), dvs. reaksjonen mellom kull og vann forårsaket ved å påføre en egnet elektrisk spenning over en egnet elektrokjemisk celle, representerer de reaksjoner som i US patentskrifter 4268363 og 4279710 er betegnet som elektrokjemisk forgassing av kull. In these equations, the symbols (g), (s) and (1) denote gaseous, solid and liquid states, respectively. Equations (I) and (IV), i.e. the reaction between coal and water caused by applying a suitable electrical voltage across a suitable electrochemical cell, represent the reactions which in US patents 4268363 and 4279710 are designated as electrochemical gasification of coal.
Et problem med disse kjente metoder er den forholdsvis lave reaksjonshastighet og den ufullstendige forbrenning av det carbonholdige materiale på anoden. A problem with these known methods is the relatively low reaction rate and the incomplete combustion of the carbonaceous material on the anode.
Det har nu vist seg at når en tilstrekkelig mengde jern tilsettes i elementær form eller i toverdig eller treverdig valenstilstand eller i form av en blanding av disse til det carbonholdige materiale som er utsatt for oxydasjon i en vandig, sur elektrolytt på anoden, vil reaksjonshastigheten for oxydasjonsprosessen øke. Jernkatalysatoren hjelper til med at oxydasjonen av carbonholdig materiale blir fullstendig og øker strømmengden produsert på anoden for en gitt arbeids-spenni.ng. It has now been found that when a sufficient amount of iron is added in elemental form or in the divalent or trivalent valence state or in the form of a mixture of these to the carbonaceous material which is subjected to oxidation in an aqueous, acidic electrolyte at the anode, the reaction rate for the oxidation process increase. The iron catalyst helps complete the oxidation of carbonaceous material and increases the amount of current produced at the anode for a given working voltage.
Detaljert beskrivelse av. oppfinnelsenDetailed description of. the invention
De carbonholdige materialer, som kan anvendes ved fremgangsmåten ifølge oppfinnelsen, omfatter en lang rekke forskjellige materialer, som bituminøst kull, kullprodukter frem-stilt ved tørrdestillasjon av kull, lignitt, torv, aktive carbonkvaliteter, koks, kjønrøkkvaliteter, grafitt, tre eller andre lignocelluloseholdige materialer omfattende skogspro-dukter, som treavfall, treflis, sagmugg, tremel, bark, spon eller trepellets, omfattende forskjellige biomassematerialer som land- eller sjøvegetasjon eller avfall av dette efter annen behandling, omfattende gress, forskjellige hakkelser, nyttevekster og avfall fra nyttevekster, avfall efter malt kaffe, blader, strå, frukstener, belger, skall, stengler, agner, kolber eller vrakmaterialer omfattende dyreavføring, kloakkslam som skriver seg fra kommunale behandlingsanlegg, eller plaster eller avfall eller vrak dannet ved fremstilling av plast, som polvethylen eller celluloseacetat etc. Det fremaår således at i det vesentlige et hvilket som helst brensel- eller avfallsmateriale. uavhen<q>ig av om dette er en væske, olje, en aass, som methan eller et annet hvdro-carbon eller et vrakmateriale som inneholder carbon, med unn-tagelse av CC>2/gir et egnet utgangsmateriale for carbonholdig materiale for anvendelse ved den foreliggende fremgangsmåte . The carbon-containing materials that can be used in the method according to the invention include a wide range of different materials, such as bituminous coal, coal products produced by the dry distillation of coal, lignite, peat, active carbon grades, coke, carbon black grades, graphite, wood or other lignocellulosic materials including forest products, such as wood waste, wood chips, sawdust, wood flour, bark, shavings or wood pellets, including different biomass materials such as land or sea vegetation or waste thereof after other treatment, including grass, various wood chips, crops and waste from crops, waste after ground coffee, leaves, straw, fruit stones, pods, husks, stalks, chaff, cobs or scrap materials including animal faeces, sewage sludge from municipal treatment plants, or plastic or waste or scrap formed during the manufacture of plastics, such as polyethylene or cellulose acetate etc. thus appears that essentially a which h or fuel or waste material. regardless of whether this is a liquid, oil, ash, such as methane or another hydrocarbon or a scrap material containing carbon, with the exception of CC>2/provides a suitable starting material for carbonaceous material for use by the present method.
Det spesielle apparat som anvendes for å utføre den elektrolytiske oxydasjon av de carbonholdige materialer, er ikke av avgjørende betydning. Det samme apparat og de samme metoder kan i det vesentlige anvendes som anvendes ved den elektrolytiske utskillelse av metaller pg den elektrolytiske spaltning av vann, såvel som de som er beskrevet i US patentskrifter 4268363, 4279710, 4226683 og 4233132. The special apparatus used to carry out the electrolytic oxidation of the carbonaceous materials is not of decisive importance. The same apparatus and the same methods can essentially be used as used in the electrolytic separation of metals due to the electrolytic splitting of water, as well as those described in US patents 4268363, 4279710, 4226683 and 4233132.
Cellene som er beskrevet i US patentskrifter 4268363The cells described in US Patent 4,268,363
og 4 2 79710,omfattende "den der beskrevne anvendelse av sure, vandige elektrolytter, valg av anode- og katodematerialer og den valgfrie, men foretrukne,, bruk av cellemembraner for å holde det carbonholdige materiale på anodesiden, er mest foretrukne , and 4 2 79710, including "the therein described use of acidic aqueous electrolytes, selection of anode and cathode materials and the optional, but preferred, use of cell membranes to retain the carbonaceous material on the anode side is most preferred,
Selv om elektrodematerialene beskrevet i US patent skrifter 4268363 og 4279710 er egnede for anvendelse ved ut-førelsen av den foreliggende fremgangsmåte, omfatter anode-materialer som har. vist seg å gi spesielt gode resultater, Although the electrode materials described in US patent documents 4,268,363 and 4,279,710 are suitable for use in carrying out the present method, anode materials that have proved to give particularly good results,
en blanding av Ru02/Ti02på et Ti-substrat og en blanding av TiR02/Ti02på et Ti-substrat, idet begge disse anoder er til-gjengelige i handelen. a mixture of RuO2/TiO2 on a Ti substrate and a mixture of TiR02/TiO2 on a Ti substrate, both of these anodes being commercially available.
De foretrukne sure,, vandige elektrolytter som kan anvendes ved utførelsen av den foreliggende fremgangsmåte, har en pH av under 3 og omfatter oppløsninger av sterke syrer, som svovelsyre, salpetersyre, saltsyre eller fosforsyre etc. The preferred acidic, aqueous electrolytes that can be used in the execution of the present method have a pH below 3 and include solutions of strong acids, such as sulfuric acid, nitric acid, hydrochloric acid or phosphoric acid, etc.
Selv om temperaturer fra over vannets frysepunkt og høyere kan anvendes, er temperaturer av 25-350°C foretrukne. Temperaturer av 120-300°C er mest foretrukne spesielt når faste carbonholdige materialer, som kull, anvendes. Ved temperaturer under 140°C avtar faste carbonholdige materialers, som kulls, reaktivitet jevnt efterhvert som den elektrokjemiske oxydasjon finner sted. Denne nedsatte reaktivitet antas å skyldes at overflateoxyder dannes på kullets overflate og hindrer en videre opprettholdt reaktivitet for kullet. Ved temperaturer av ca. 140°C og derover opprettholdes kullets reaktivitet, og ingen vesentlig minskning kan iakttas. Although temperatures from above the freezing point of water and higher can be used, temperatures of 25-350°C are preferred. Temperatures of 120-300°C are most preferred, especially when solid carbonaceous materials, such as coal, are used. At temperatures below 140°C, the reactivity of solid carbonaceous materials, such as coal, decreases steadily as the electrochemical oxidation takes place. This reduced reactivity is believed to be due to surface oxides forming on the coal's surface and preventing further maintained reactivity for the coal. At temperatures of approx. 140°C and above, the coal's reactivity is maintained, and no significant reduction can be observed.
Da det er ønskelig å la reaksjonen forløpe i flytende fase, er det selvfølgelig nødvendig at reaksjonen utføres ved forhøyet trykk når forhøyede temperaturer anvendes. I alminnelighet er trykk av 2-400 atmosfærer tilfredsstillende. As it is desirable to allow the reaction to proceed in the liquid phase, it is of course necessary that the reaction be carried out at elevated pressure when elevated temperatures are used. In general, pressures of 2-400 atmospheres are satisfactory.
Det har også vist seg ifølge oppfinnelsen at til-setningen av jernkatalysatoren til et fast carbonholdig materiale, som kull, vil opprettholde kullets aktivitet i lengre tid ved temperaturer under 120°C sammenlignet med systemer som ikke inneholder jernkatalysatoren. Dessuten er jernkatalysatorens katalytiske virkninger mer fremherskende ved de høyere temperaturer. It has also been shown according to the invention that the addition of the iron catalyst to a solid carbonaceous material, such as coal, will maintain the coal's activity for a longer time at temperatures below 120°C compared to systems that do not contain the iron catalyst. Moreover, the catalytic effects of the iron catalyst are more predominant at the higher temperatures.
Selv om jern kan anvendes i elementær tilstand, fore-trekkes det å anvende jern i toverdiq oq treverdig, valenstilstand; Det er mest foretrukket å anvende jern i treverdig . valenstilstand, . Uorganiske jernforbindelser, som jernoxyder, jerncarbonat, jernsilikater, jernsulfid, jernoxyd, jern-hydroxyd, jernhalogenidér, jernsulfat eller jernni.tråt etc., kan således anvendes. Dessuten kan forskjellige organiske jernsalter og -komplekser, som salter av carboxylsyrer, f.eks. jernacetater, jernsitrater, .jernformiater eller jernglyconater etc. eller jerncyanid, jernchelateforbindelser, som chelater med diketoner, som 2,4-pentandion, jernethylendiamintetra-eddiksyre eller jernoxalater etc., anvendes. Although iron can be used in an elemental state, it is preferred to use iron in the bivalent or trivalent, valence state; It is most preferred to use trivalent iron. valence state, . Inorganic iron compounds, such as iron oxides, iron carbonate, iron silicates, iron sulphide, iron oxide, iron hydroxide, iron halides, iron sulphate or iron nitrate etc., can thus be used. In addition, various organic iron salts and complexes, such as salts of carboxylic acids, e.g. iron acetates, iron citrates, iron formates or iron glyconates, etc. or iron cyanide, iron chelate compounds, as chelates with diketones, such as 2,4-pentanedione, iron ethylenediaminetetraacetic acid or iron oxalates, etc., are used.
Selv om jernkatalysatoren kan anvendes ved en konsentrasjon opp til metningspunktet i den vandige elektrolytt, er den foretrukne konsentrasjon av jernkatalysatoren 0,04- Although the iron catalyst can be used at a concentration up to the saturation point in the aqueous electrolyte, the preferred concentration of the iron catalyst is 0.04-
0,5 molar, helst 0,05-0,1 molar.0.5 molar, preferably 0.05-0.1 molar.
Selv om visse carbonholdige materialer, som kull, kan inneholde jern som forurensning, er i alminnelighet en jernholdig katalysator fra en ekstern kilde nødvendig for å øke reaksjonshastigheten, i det minste til å begynne med, til aksepterbare nivåer for kommersielle anvendelse. Jernkatalysatoren kan dannes in situ ved å oxydere tilstrekkelig med jernholdig kull til at en effektiv mengde jernkatalysator vil bli dannet i elektrolytten. Although certain carbonaceous materials, such as coal, may contain iron as an impurity, generally an ferrous catalyst from an external source is required to increase the reaction rate, at least initially, to acceptable levels for commercial application. The iron catalyst can be formed in situ by oxidizing sufficient ferrous coal that an effective amount of iron catalyst will be formed in the electrolyte.
Selvfølgelig krever jernfrie, carbonholdige materialer, som kjønrøk, en jernkatalysator tilsatt fra en ekstern kilde. Of course, non-iron, carbonaceous materials, such as carbon black, require an iron catalyst added from an external source.
Ifølge én utførelsesform av den foreliggende opp-finnelse tilsettes således en tilstrekkelig mengde med jernkatalysator fra en ekstern kilde for å gi det foretrukne katalysatorkonsentrasjonsområde, dvs. 0,04-0,5 molar. Thus, according to one embodiment of the present invention, a sufficient amount of iron catalyst is added from an external source to provide the preferred catalyst concentration range, ie 0.04-0.5 molar.
Ifølge en annen utførelsesform kan en effektiv mengde av jernkatalysator dannes in situ ved å oxydere en tilstrekkelig mengde med jernholdig kull, om enn med en lavere hastighet til å begynne med, for å gi det foretrukne kataly-satorkonsentras jonsområde . According to another embodiment, an effective amount of iron catalyst can be formed in situ by oxidizing a sufficient amount of ferrous coal, albeit at a slower rate initially, to provide the preferred catalyst concentration range.
Den dannede katalysator vil derefter bli befridd for kullet og istand til å funksjonere på lignende måte som en utenfra tilført jernkatalysator. The catalyst formed will then be freed from the carbon and able to function in a similar manner to an externally supplied iron catalyst.
Ifølge en tredje utførelsesform kan en kombinasjon av jernkatalysator tilført utenfra og jernkatalysator dannet in situ anvendes for å gi. det foretrukne katalysatorkonsentrasjonsområde, dvs. 0,04-0,5 molar. Konsentrasjonen eller men-gden av carbonholdig materiale som er tilstede i elektrolytten, kan variere innen et vidt område i avhengighet av hvorvidt det carbonholdige materiale er. en væske, et fast materiale eller en gass og i avhengighet av partikkelstørrelsen, men det foretrukne område er 0,1-0,7 g/ml. According to a third embodiment, a combination of iron catalyst supplied from outside and iron catalyst formed in situ can be used to provide. the preferred catalyst concentration range, ie 0.04-0.5 molar. The concentration or amount of carbonaceous material present in the electrolyte can vary within a wide range depending on whether the carbonaceous material is. a liquid, a solid or a gas and depending on the particle size, but the preferred range is 0.1-0.7 g/ml.
På samme måte som for det tilfelle som er beskrevet i US patentskrift 4268363, er det mulig elektrisk å utvinne, elektrobelegget eller elektrisk å avsette et hvilket som helst element som kan reduseres katodisk fra en vandig opp-løsning under samtidig elektrokjemisk anodisk oxydasjon av carbonholdig materiale. Typiske metalliske elementer som ofte blir utskilt i praksis fra vandige elektrolytter, omfatter Cr, Mn, Co, Ni, Pb, Cu, Sn, Zn, Ga, Hg, Cd, Ir, Au,Ag, Os, Rh, Ru, Ir, Pd eller Pt. De metalliske elementer er fortrinnsvis Cu, Zn, Ag, Ni eller Pb. In the same way as for the case described in US patent document 4268363, it is possible to electrically recover, electrocoat or electrically deposit any element that can be reduced cathodically from an aqueous solution during simultaneous electrochemical anodic oxidation of carbonaceous material . Typical metallic elements that are often separated in practice from aqueous electrolytes include Cr, Mn, Co, Ni, Pb, Cu, Sn, Zn, Ga, Hg, Cd, Ir, Au, Ag, Os, Rh, Ru, Ir, Pd or Pt. The metallic elements are preferably Cu, Zn, Ag, Ni or Pb.
Oppfinnelsen vil bli nærmere beskrevet ved hjelp av de nedenstående eksempler. The invention will be described in more detail using the examples below.
Eksempel 1Example 1
Elektrisk utskillelse av Cu ble utført ved konstant Electrical separation of Cu was carried out at constant
(R) (R)
spenning i en celle med en Nafion^-membran og hvor katalytt-og anolyttoppløsningen ble pumpet. voltage in a cell with a Nafion^ membrane and where the catalyst and anolyte solution was pumped.
Anolytten inneholdt intet kull og intet tilsatt jern ved det første forsøk og ble pumpet gjennom et eksternt sirkulasjonssystem. Katolytten ble pumpet gjennom et system på lignende måte som anolytten. Den vandige elektrolytt var 0,5M H2S04, og katoden inneholdt også 0,5M i CuS04. Det samlede volum var 500 ml og temperaturen 95°C og 120°C, og anoden hadde et areal av 55 cm 2 og besto av titan belagt med iridiumoxyd og titandioxyd (TIR). Katoden utgjordes av en kobberplate. The anolyte contained no charcoal and no added iron in the first trial and was pumped through an external circulation system. The catholyte was pumped through a system in a similar manner to the anolyte. The aqueous electrolyte was 0.5 M H 2 SO 4 , and the cathode also contained 0.5 M CuSO 4 . The total volume was 500 ml and the temperature 95°C and 120°C, and the anode had an area of 55 cm 2 and consisted of titanium coated with iridium oxide and titanium dioxide (TIR). The cathode consisted of a copper plate.
Eksempel 2 Example 2
Det anvendte apparat og de anvendte betingelser var de samme som ifølge eksempel 1, bortsett fra at den pumpede anolytt inneholdt 0,5 g/cm<3>kull ("WOW 3932V) . Resultatene var som følger: The apparatus used and the conditions used were the same as in Example 1, except that the pumped anolyte contained 0.5 g/cm<3>coal ("WOW 3932V"). The results were as follows:
Eksempel 3 Example 3
Ved det tredje forsøk var de anvendte betingelser og det anvendte apparat de samme som ifølge eksempel 2, bortsett fra at anolytten inneholdt 0,04M Fe3+ på grunngav tilsetning av Fe2(SC"4) ^- Resultatene var som følger: In the third experiment, the conditions used and the apparatus used were the same as according to example 2, except that the anolyte contained 0.04M Fe3+ due to the addition of Fe2(SC"4)^- The results were as follows:
Ved 120°C ble Fe<3+->konsentrasjonen øket til 0,1M, mens At 120°C, the Fe<3+-> concentration was increased to 0.1M, while
alle andre betingelser og apparatet ble holdt konstant. all other conditions and apparatus were held constant.
Resultatene var:The results were:
Eksempel 4 Example 4
Fremstilling av hydrogen ad elektrisk vei ble utført Production of hydrogen by electrical means was carried out
(r) (s)
ved konstant spenning i en celle med en Nafiorf^-membran, og hvor katolytt- og anolyttoppløsninger ble omrørt med mangnet-iske omrøringsanordninger. at constant voltage in a cell with a Nafiorf^ membrane, and where catholyte and anolyte solutions were stirred with magnetic stirring devices.
Den vandige elektrolytt hadde en svovelsyrekonsentra- . sjon av 0,5M E^ SO^ både hva gjaldt katolyttoppløsningen og anolyttoppløsningen. Det samlede cellevolum var 500 ml og temperaturen 180°C. Anoden besto av 98 cm^ titan belagt med iridiumoxyd/titandioxyd. Katoden besto av platina. Det første forøsk ble utført uten at kull ble tilsatt til anolytten. Resultatene var som følger: The aqueous electrolyte had a sulfuric acid concentration. tion of 0.5M E^ SO^ both as regards the catholyte solution and the anolyte solution. The total cell volume was 500 ml and the temperature 180°C. The anode consisted of 98 cm^ titanium coated with iridium oxide/titanium dioxide. The cathode consisted of platinum. The first pre-ash was carried out without coal being added to the anolyte. The results were as follows:
Eksempel 5 Example 5
Det anvendte apparat og de anvendte betingelser var de samme som ifølge eksempel 4, bortsett fra at anolytten inneholdt 0,17 g/cm<3>kull ("WOW 3932") eller koks (El Segundo). The apparatus used and the conditions used were the same as in Example 4, except that the anolyte contained 0.17 g/cm<3>coal ("WOW 3932") or coke (El Segundo).
Eksempel 6 Example 6
Betingelsene og apparatet var de samme som ifølge eksempel 5, bortsett fra at anolytten ble bragt til å inne-3+ The conditions and apparatus were the same as in Example 5, except that the anolyte was brought to contain -3+
holde 0,07M Fe ved tilsetning av Fe2(S04)3.keep 0.07M Fe by adding Fe2(SO4)3.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/305,876 US4389288A (en) | 1981-09-28 | 1981-09-28 | Catalyzed electrochemical gasification of carbonaceous materials at anode and production of hydrogen at cathode |
US06/305,877 US4405420A (en) | 1981-09-28 | 1981-09-28 | Catalyzed electrochemical gasification of carbonaceous materials at anode and electrowinning of metals at cathode |
Publications (1)
Publication Number | Publication Date |
---|---|
NO823254L true NO823254L (en) | 1983-03-29 |
Family
ID=26974847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO823254A NO823254L (en) | 1981-09-28 | 1982-09-27 | PROCEDURE FOR ELECTROCHEMICAL GASPING OF CARBON-CONTAINING MATERIAL. |
Country Status (9)
Country | Link |
---|---|
AU (1) | AU551068B2 (en) |
DE (1) | DE3233352A1 (en) |
DK (1) | DK419482A (en) |
FR (1) | FR2513662A1 (en) |
GB (1) | GB2106936B (en) |
IT (1) | IT1153975B (en) |
NL (1) | NL8203591A (en) |
NO (1) | NO823254L (en) |
SE (1) | SE8205475L (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3781930T2 (en) * | 1986-05-19 | 1993-04-15 | Delphi Research Inc | METHOD FOR TREATING ORGANIC WASTE MATERIALS AND THE USEFUL CATALYST / CO-CATALYST COMPOSITION THEREFOR. |
FR2792307B1 (en) * | 1999-04-14 | 2001-06-29 | Julien Lacaze | PROCESS AND DEVICE FOR TREATING INDUSTRIAL EFFLUENTS FOR THE ELIMINATION OF ORGANIC AND / OR MINERAL POLLUTION |
DE60014185T2 (en) * | 2000-06-23 | 2005-10-20 | Lacaze S.A. | METHOD AND ARRANGEMENT FOR THE TREATMENT OF INDUSTRIAL WASTE WATERS TO ELIMINATE ORGANIC POLLUTION |
-
1982
- 1982-08-25 AU AU87703/82A patent/AU551068B2/en not_active Ceased
- 1982-09-08 DE DE19823233352 patent/DE3233352A1/en not_active Withdrawn
- 1982-09-16 NL NL8203591A patent/NL8203591A/en not_active Application Discontinuation
- 1982-09-20 FR FR8215796A patent/FR2513662A1/en not_active Withdrawn
- 1982-09-21 DK DK419482A patent/DK419482A/en not_active Application Discontinuation
- 1982-09-23 IT IT23398/82A patent/IT1153975B/en active
- 1982-09-24 SE SE8205475A patent/SE8205475L/en not_active Application Discontinuation
- 1982-09-27 NO NO823254A patent/NO823254L/en unknown
- 1982-09-28 GB GB08227602A patent/GB2106936B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DK419482A (en) | 1983-03-29 |
GB2106936A (en) | 1983-04-20 |
AU8770382A (en) | 1983-04-14 |
DE3233352A1 (en) | 1983-04-07 |
NL8203591A (en) | 1983-04-18 |
FR2513662A1 (en) | 1983-04-01 |
IT1153975B (en) | 1987-01-21 |
SE8205475D0 (en) | 1982-09-24 |
IT8223398A0 (en) | 1982-09-23 |
AU551068B2 (en) | 1986-04-17 |
SE8205475L (en) | 1983-03-29 |
GB2106936B (en) | 1985-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5944390B2 (en) | Method of electrolytic oxidation of carbonaceous materials | |
US2273795A (en) | Electrolytic process | |
US8568581B2 (en) | Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide | |
US8961774B2 (en) | Electrochemical production of butanol from carbon dioxide and water | |
CN109675586B (en) | Catalyst for preparing formic acid by electro-reduction of carbon dioxide and preparation method thereof | |
US4699700A (en) | Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor | |
US4608137A (en) | Production of hydrogen at the cathode of an electrolytic cell | |
CN112410799B (en) | Method for producing hydrogen | |
EP0246957B1 (en) | A method for treating organic waste material and a catalyst/cocatalyst composition useful therefor | |
US4405420A (en) | Catalyzed electrochemical gasification of carbonaceous materials at anode and electrowinning of metals at cathode | |
Cook et al. | Electrochemical reduction of carbon dioxide to methane at high current densities | |
US4592814A (en) | Electrochemical synthesis of humic acid and other partially oxidized carbonaceous materials | |
US4608136A (en) | Oxidation of carbonaceous material and electrodeposition of a metal at the cathode of an electrolytic cell | |
JPH0532453B2 (en) | ||
EP0043854B1 (en) | Aqueous electrowinning of metals | |
NO823254L (en) | PROCEDURE FOR ELECTROCHEMICAL GASPING OF CARBON-CONTAINING MATERIAL. | |
Wapner et al. | Organic sulfur removal from coal by electrolysis in alkaline media | |
CN114182294B (en) | Dual-catalyst system and method for producing hydrogen by electrochemical degradation of biomass refining organic wastes | |
Stavart et al. | Electrooxidation of cyanide on cobalt oxide anodes | |
US4064022A (en) | Method of recovering metals from sludges | |
DE1115322B (en) | Process for the regeneration of double skeleton catalyst electrodes | |
US20200010964A1 (en) | Methods of and systems for electrochemical reduction of substrates | |
US2273797A (en) | Electrolyzing brines | |
CN111996541B (en) | Indirect hydrogen sulfide electrolysis method and device for improving hydrogen yield | |
Chen et al. | Application of the SPE Method to Organic Electrochemistry. XII. Lead Dioxide as a Mediator for Electrooxidation of Cinnamyl Alcohol on Pt–Nafion |