NO791526L - DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMS - Google Patents
DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMSInfo
- Publication number
- NO791526L NO791526L NO791526A NO791526A NO791526L NO 791526 L NO791526 L NO 791526L NO 791526 A NO791526 A NO 791526A NO 791526 A NO791526 A NO 791526A NO 791526 L NO791526 L NO 791526L
- Authority
- NO
- Norway
- Prior art keywords
- automatic switching
- radio systems
- parallel
- noise
- logarithmic amplifiers
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0802—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
- H04B7/0817—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
- H04B7/082—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radio Transmission System (AREA)
- Radio Relay Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Description
Anordning ved automatisk omkobling av parallelt drevne retningsradioanlegg. Device for automatic switching of parallel operated directional radio systems.
Oppfinnelsen vedrorer en anordning for automatisk omkobling av parallelt drevne retningsradioanlegg, hvor det benyttes uavhengige logaritmiske forsterkere for avveining av mottakerstoyandelen. The invention relates to a device for automatic switching of parallel operated directional radio systems, where independent logarithmic amplifiers are used to offset the receiver noise component.
Som kjent oppnås ved retningsradioanlegg stor redundans- og fadingsikkerhet ved parallelldrift av to sender/mottakeranord-ninger (f.eks. rom- hhv. frekvensulikhet). Fig. 1 viser et kjent utforelseseksempel av denne driftstype som er blitt ut-provet i praksis (bare mottakersiden): I addisjonsnettverket 1 med utgangen Ag sammenfattes utgangs-signalet fra mottakerne A og B. For nyttesignalet utgjor for-sterkningen etter addisjonen 6 dB (= firedobbelt effekt). Stoy-signalene som kommer fra mottakerne A og B vil/da de ikke er korrelert, bare utsettes for en effektaddisjon/dvs. stoynivået stiger bare med 3 dB. Ved utgangen av 1 oppnår man således et 6 dB - 3 dB = 3 dB bedre stoyforhold enn ved demodulatorutgan-gen for mottakerne A hhv. B. Denne forsterkning går dog tapt, hvis signal-stoyforholdet for en av de to mottakere blir dras-tisk dårligere, f.eks. som folge av en selektiv fading. I dette tilfelle er det gunstigere å kople ut den forstyrrede mottaker fra addisjonsnettverket 1 ved hjelp av brytere Sl hhv. S2. Be-tjeningen av disse brytere skjer som regel ved en-omkoblings-automatikk/som utleder sine ordre fra ekstra informasjoner fra mottakerne A og B. Oppfinnelsen vedrorer en særlig gunstig anordning for styring av bryterne Sl og S2. As is well known, directional radio systems achieve great redundancy and fading security by parallel operation of two transmitter/receiver devices (e.g. space or frequency difference). Fig. 1 shows a known embodiment of this type of operation that has been tested in practice (only the receiver side): In the addition network 1 with the output Ag, the output signal from the receivers A and B is combined. For the useful signal, the gain after the addition is 6 dB ( = quadruple effect). The noise signals coming from the receivers A and B will/as they are not correlated, will only be subjected to a power addition/i.e. the noise level only rises by 3 dB. At the output of 1, one thus achieves a 6 dB - 3 dB = 3 dB better noise ratio than at the demodulator output for the receivers A or B. This amplification is lost, however, if the signal-to-noise ratio for one of the two receivers becomes drastically worse, e.g. as a result of a selective fading. In this case, it is more advantageous to disconnect the disturbed receiver from the addition network 1 by means of switches Sl or S2. The operation of these switches usually takes place by means of a one-switch automatic/which derives its orders from additional information from the receivers A and B. The invention relates to a particularly favorable device for controlling the switches S1 and S2.
' jNevnte fordel ved parallelkobling av to mottakere ved hjelp av | ' jMentioned advantage of parallel connection of two receivers by means of |
addisjonsnettverket 1, dvs. okning i signal/stoyforholdet, fordi nytteeffekten etter addisjon firedobles, mens stoyeffekten bare dobles, går forst tapt, når stoyeffekten av en av de to mottakerne oker, og fra et bestemt stoynivå er parallellkoblin-gen endog skadelig. Dette "omslagspunkt" (break-even-punkt) er lett å bestemme: dersom en av mottakerne avgir en 3 ganger storre stoyeffektandel enn den andre, er hele stoyeffekten fire ganger storre enn den beste mottakerens og svarer til okningen i nytteeffekt. Fra dette kan man for betjening av bryterne Sl og S2 utlede folgende regel: "Ved storre differanse mellom stoyeffektene av mottakerne A og B enn faktoren 3 (=4,77 dB), må mottakeren med den storste stoy-andel koples ut" the addition network 1, i.e. an increase in the signal/noise ratio, because the useful effect after addition quadruples, while the noise effect only doubles, is first lost when the noise effect of one of the two receivers increases, and from a certain noise level the parallel connection is even harmful. This "turnover point" (break-even point) is easy to determine: if one of the receivers emits a 3 times greater noise effect share than the other, the entire noise effect is four times greater than that of the best receiver and corresponds to the increase in useful effect. From this, the following rule can be derived for operating the switches Sl and S2: "If the difference between the noise effects of the receivers A and B is greater than the factor 3 (=4.77 dB), the receiver with the largest noise level must be disconnected"
For å finne en elektronisk kopling som registrerer og vurderer disse kriterier, går man frem i flere trinn. Til å atskille stoyandelen fra nyttesignalet, brukes en filterkrets ifolge fig. 2a,b. Filtrene F1Aog Flg (fig. 2a) tar ut stoyandelen G (fig. 2b) ovenfor nyttebåndet og leder den til en egnet komparator-kobling 2, som i tilslutning genererer koblingskriteriene for Sl og S2. I fig. 2b er SN nyttesignalets spektrum og f er fre-kvensen. To find an electronic link that registers and assesses these criteria, one proceeds in several steps. To separate the noise part from the useful signal, a filter circuit according to fig. 2a,b. The filters F1A and Flg (fig. 2a) take out the noise part G (fig. 2b) above the useful band and lead it to a suitable comparator coupling 2, which subsequently generates the coupling criteria for Sl and S2. In fig. 2b is the spectrum of the SN useful signal and f is the frequency.
Komparatorkoblingen 2 er dog ikke enkel å realisere, fordi sam-menligningen for bestemmelse av 4,77-dB-differansepunktet må skje i et stort dynamikområde på ca. 50 dB. En komparatorkob-ling, som bare sammenligner den absolutte verdi av to spennin-ger, egner seg derfor ikke. However, the comparator connection 2 is not easy to realize, because the comparison for determining the 4.77-dB difference point must take place in a large dynamic range of approx. 50 dB. A comparator connection, which only compares the absolute value of two voltages, is therefore not suitable.
En mulig losning fremkommer av fig. 3: dersom man mellom kompa-ratoren 5 og filtrene Fl^og F1Bkobler inn hver sin logaritmiske forsterker 3 hhv. 4 med et dynamikområde på 50 dB, vil det innenfor dette område til enhver tid opptre samme spennings-differanse for en stoyeffektdifferanse på 4,77 dB ved kompara-torinngangene E,. og E^. Forutsetningen er at utgangsspenningen Ua, for de logaritmiske forsterkere 3 hhv. 4 eksakt folger logaritmen av inngangsspenningen ue(A)/ Ue(B)* A possible solution appears from fig. 3: if one connects between the comparator 5 and the filters Fl^ and F1B each a logarithmic amplifier 3 respectively. 4 with a dynamic range of 50 dB, within this range the same voltage difference will occur at all times for a noise effect difference of 4.77 dB at the comparator inputs E,. and E^. The assumption is that the output voltage Ua, for the logarithmic amplifiers 3 or 4 exactly follows the logarithm of the input voltage ue(A)/ Ue(B)*
|Det fins noen kjente metoder for realisering av en logaritmisk | |There are some known methods for realizing a logarithmic |
forsterker. Avhengig av den nodvendige presisjon varierer om-kostningene for den innen vide grenser. Ved noyaktige måleap-parater, som f.eks. spektrumanalyseapparat m.v. kreves stor innsats, men når det dreier seg om en retningsradio-byggestein blant mange andre,må prisen for forsterkeren ikke overstige en bestemt andel av totalomkostningene, dersom retningsradioan-legget skal kunne tilbys til en konkurransedyktig pris. amplifier. Depending on the required precision, the costs for it vary widely. In the case of precise measuring devices, such as e.g. spectrum analyzer etc. great effort is required, but when it is a directional radio building block among many others, the price for the amplifier must not exceed a certain proportion of the total costs, if the directional radio system is to be offered at a competitive price.
En mulig losning er beskrevet i tidsskriftet "Electronic Design", 3, februar 1974, s. 52-59. Her realiseres den logaritmiske ka-rakteristikk ved den ikke lineære karakteristiske kurve for en halvlederdiode. Men som det fremgår av formel (1), s. 52, er denne karakteristiske kurve temperaturavhengig, slik at de inn-stilte parametre bare er stabile innenfor et snevert område av omgivelsestemperaturen. Hvis man - som vist i fig. 3 - benytter to separate logaritmiske forsterkere, er termisk synkronisering ikke sikret, og automatikkens omslagspunkt forblir ikke kons-tant ved varierende temperatur. A possible solution is described in the journal "Electronic Design", 3, February 1974, pp. 52-59. Here, the logarithmic characteristic is realized by the non-linear characteristic curve for a semiconductor diode. But as can be seen from formula (1), p. 52, this characteristic curve is temperature dependent, so that the set parameters are only stable within a narrow range of the ambient temperature. If one - as shown in fig. 3 - uses two separate logarithmic amplifiers, thermal synchronization is not ensured, and the automatic switching point does not remain constant at varying temperatures.
Fig. 4a og 4b viser, hvordan disse i og for seg kjente vanske-ligheter overvinnes ved en retningsradioanordning som er på mar-kedet i dag. Fig. 4a and 4b show how these known difficulties are overcome by a directional radio device that is on the market today.
Båndpassene 6 og 7 for uttagning av stoyandelen har forskjelli-ge båndområder (skraverte flater i fig. 4b), om stoyandelen for hver mottaker kan registreres frekvensselektivt (SN i 4b viser igjen spektret av nyttesignalet). Via en kopler 8 ledes stoy-spenningene til en felles logaritmisk forsterker 9 og atskilles ved utgangen ved hjelp av filtere 11 og 12. Deretter folger sammenligning ved komparatorén 13. Denne losning kan modifise-res ytterligere, f.eks. ved en frekvensomforming i en mikser. Bandpasses 6 and 7 for extracting the noise portion have different band ranges (shaded areas in fig. 4b), if the noise portion for each receiver can be registered frequency-selectively (SN in 4b again shows the spectrum of the useful signal). Via a coupler 8, the noise voltages are led to a common logarithmic amplifier 9 and separated at the output by means of filters 11 and 12. A comparison then follows at the comparator 13. This solution can be further modified, e.g. by a frequency conversion in a mixer.
Denne anordning krever åpenbart stor innsats når det gjelder filtere og er dermed kostbar. This device obviously requires a lot of effort when it comes to filters and is thus expensive.
Til grunn for oppfinnelsen ligger den oppgave å unngå ulempene ved de kjente anordninger. Dette oppnås ved at de logaritmiske forsterkere er utfort som monolitiske enheter og befinner seg på en liten felles silisium-plate (chip) for termisk synkroni-(sering. The invention is based on the task of avoiding the disadvantages of the known devices. This is achieved by the fact that the logarithmic amplifiers are designed as monolithic units and are located on a small common silicon plate (chip) for thermal synchronization.
Oppfinnelsen skal nå beskrives under henvisning til fig. 5.The invention will now be described with reference to fig. 5.
Med utgangspunkt i basiskoblingen ifolge fig. 3 benyttes igjen to uavhengige logaritmiske forsterkere, dog med fblgende til-leggsbetingelser: - de logaritmiske forsterkerne er monolitiske integrerte kob-linger, - begge forsterkere befinner seg på samme silisiumplate (chip). Da det som kjent er jevn temperaturfordeling på denne lille plate som bare er få mm 2stor, er problemet i forbindelse med termisk synkronisering eliminert. Based on the basic connection according to fig. 3, two independent logarithmic amplifiers are again used, although with the following additional conditions: - the logarithmic amplifiers are monolithic integrated connections, - both amplifiers are located on the same silicon plate (chip). Since there is, as is known, even temperature distribution on this small plate which is only a few mm 2 in size, the problem in connection with thermal synchronization is eliminated.
Ved utgangen for hver logaritmisk forsterker foreligger en vek-selspenning, som må likerettes for ytterligere bearbeiding. At the output of each logarithmic amplifier there is an alternating voltage, which must be rectified for further processing.
Til det brukes de aktive likerettere i7, som av ovennevnte grun-ner likeledes plasseres på den felles chip. Deretter folger kom-paratoren 18, som leverer styringskriteriene for styrelogikken 19. For that, the active rectifiers i7 are used, which, for the reasons mentioned above, are also placed on the common chip. Then follows the comparator 18, which supplies the control criteria for the control logic 19.
Anordningen ifolge oppfinnelsen som vist i fig. 5, forer til be-tydelig kostnadsbesparelse sammenlignet med de kjente losninger. The device according to the invention as shown in fig. 5, leads to significant cost savings compared to the known solutions.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH513078A CH630498A5 (en) | 1978-05-11 | 1978-05-11 | ARRANGEMENT FOR THE AUTOMATIC SWITCHING OF DIRECTIONAL RADIO SYSTEMS OPERATED IN PARALLEL. |
Publications (1)
Publication Number | Publication Date |
---|---|
NO791526L true NO791526L (en) | 1979-11-13 |
Family
ID=4288436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO791526A NO791526L (en) | 1978-05-11 | 1979-05-07 | DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMS |
Country Status (7)
Country | Link |
---|---|
CH (1) | CH630498A5 (en) |
DE (1) | DE2824329C2 (en) |
FR (1) | FR2425774A1 (en) |
GB (1) | GB2020949B (en) |
IT (1) | IT1112747B (en) |
NL (1) | NL7903624A (en) |
NO (1) | NO791526L (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55150627A (en) * | 1979-05-14 | 1980-11-22 | Nec Corp | Signal synthesizing circuit |
GB2096865B (en) * | 1981-03-26 | 1984-12-12 | Ferranti Ltd | Diversity receivers |
FR2538645B1 (en) * | 1982-12-28 | 1986-04-11 | Thomson Csf | METHOD AND DEVICE FOR INTERPOLATING SPEECH IN A DIGITAL SPEECH TRANSMISSION SYSTEM |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4028564A (en) * | 1971-09-22 | 1977-06-07 | Robert Bosch G.M.B.H. | Compensated monolithic integrated current source |
US4097815A (en) * | 1975-04-09 | 1978-06-27 | Indesit Industria Elettrodomestici Italiana S.P.A. | Amplifying circuit |
-
1978
- 1978-05-11 CH CH513078A patent/CH630498A5/en not_active IP Right Cessation
- 1978-06-02 DE DE2824329A patent/DE2824329C2/en not_active Expired
-
1979
- 1979-05-07 NO NO791526A patent/NO791526L/en unknown
- 1979-05-09 IT IT22509/79A patent/IT1112747B/en active
- 1979-05-09 GB GB7916064A patent/GB2020949B/en not_active Expired
- 1979-05-09 NL NL7903624A patent/NL7903624A/en not_active Application Discontinuation
- 1979-05-09 FR FR7912506A patent/FR2425774A1/en active Granted
Also Published As
Publication number | Publication date |
---|---|
DE2824329C2 (en) | 1987-04-30 |
CH630498A5 (en) | 1982-06-15 |
DE2824329A1 (en) | 1979-11-15 |
FR2425774A1 (en) | 1979-12-07 |
IT1112747B (en) | 1986-01-20 |
NL7903624A (en) | 1979-11-13 |
FR2425774B1 (en) | 1982-04-23 |
GB2020949B (en) | 1982-06-16 |
GB2020949A (en) | 1979-11-21 |
IT7922509A0 (en) | 1979-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2863762B2 (en) | Power sensor | |
US2324215A (en) | Measuring apparatus | |
US20100216413A1 (en) | Leakage suppressing circuit | |
US7603088B2 (en) | Multi-channel radiometer imaging system and MMIC chips for use thereof | |
US2225524A (en) | Directional wireless system employing pulses | |
NO791526L (en) | DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMS | |
CN113640576A (en) | Radio frequency power detection circuit and electronic equipment | |
CN111490833B (en) | Method, device, system and medium for adjusting transmitting signal of antenna | |
JP6886496B2 (en) | Improved detection circuit for RFID devices | |
US11815530B2 (en) | RF power detector with a variable threshold | |
US2214929A (en) | Radio receiving system | |
Yoshizawa et al. | A discriminant-based RMSE improvement technique for classical Prony method in small array radars | |
US20230333264A1 (en) | Collaborative geolocation estimation | |
US20220377729A1 (en) | Radio communication apparatus, radio communication method, and radio communication system | |
US2966584A (en) | Receiving systems | |
US10840965B2 (en) | Test system | |
CN112881976B (en) | CSI-based single antenna positioning method, device, equipment and storage medium | |
CN211123689U (en) | Auxiliary control circuit of power amplifier module, power amplifier module and communication equipment | |
US2415955A (en) | Radio direction finding | |
US6804498B1 (en) | Method for influencing the level of a radio-frequency transmitted signal in a base station in a fixed radio network | |
US6791312B1 (en) | Measuring power of analog signals | |
CN113114352B (en) | Optical module power compensation method and device and optical module | |
WO2023210193A1 (en) | Radio wave information management system, radio wave information management method and program | |
US3743932A (en) | Clipped correlation to signal-to-noise ratio meter | |
US20220123703A1 (en) | Attenuator arrangement |