[go: up one dir, main page]

NO791526L - DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMS - Google Patents

DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMS

Info

Publication number
NO791526L
NO791526L NO791526A NO791526A NO791526L NO 791526 L NO791526 L NO 791526L NO 791526 A NO791526 A NO 791526A NO 791526 A NO791526 A NO 791526A NO 791526 L NO791526 L NO 791526L
Authority
NO
Norway
Prior art keywords
automatic switching
radio systems
parallel
noise
logarithmic amplifiers
Prior art date
Application number
NO791526A
Other languages
Norwegian (no)
Inventor
Paul Streich
Manfred Tiesnes
Original Assignee
Patelhold Patentverwertung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patelhold Patentverwertung filed Critical Patelhold Patentverwertung
Publication of NO791526L publication Critical patent/NO791526L/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Radio Relay Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

Anordning ved automatisk omkobling av parallelt drevne retningsradioanlegg. Device for automatic switching of parallel operated directional radio systems.

Oppfinnelsen vedrorer en anordning for automatisk omkobling av parallelt drevne retningsradioanlegg, hvor det benyttes uavhengige logaritmiske forsterkere for avveining av mottakerstoyandelen. The invention relates to a device for automatic switching of parallel operated directional radio systems, where independent logarithmic amplifiers are used to offset the receiver noise component.

Som kjent oppnås ved retningsradioanlegg stor redundans- og fadingsikkerhet ved parallelldrift av to sender/mottakeranord-ninger (f.eks. rom- hhv. frekvensulikhet). Fig. 1 viser et kjent utforelseseksempel av denne driftstype som er blitt ut-provet i praksis (bare mottakersiden): I addisjonsnettverket 1 med utgangen Ag sammenfattes utgangs-signalet fra mottakerne A og B. For nyttesignalet utgjor for-sterkningen etter addisjonen 6 dB (= firedobbelt effekt). Stoy-signalene som kommer fra mottakerne A og B vil/da de ikke er korrelert, bare utsettes for en effektaddisjon/dvs. stoynivået stiger bare med 3 dB. Ved utgangen av 1 oppnår man således et 6 dB - 3 dB = 3 dB bedre stoyforhold enn ved demodulatorutgan-gen for mottakerne A hhv. B. Denne forsterkning går dog tapt, hvis signal-stoyforholdet for en av de to mottakere blir dras-tisk dårligere, f.eks. som folge av en selektiv fading. I dette tilfelle er det gunstigere å kople ut den forstyrrede mottaker fra addisjonsnettverket 1 ved hjelp av brytere Sl hhv. S2. Be-tjeningen av disse brytere skjer som regel ved en-omkoblings-automatikk/som utleder sine ordre fra ekstra informasjoner fra mottakerne A og B. Oppfinnelsen vedrorer en særlig gunstig anordning for styring av bryterne Sl og S2. As is well known, directional radio systems achieve great redundancy and fading security by parallel operation of two transmitter/receiver devices (e.g. space or frequency difference). Fig. 1 shows a known embodiment of this type of operation that has been tested in practice (only the receiver side): In the addition network 1 with the output Ag, the output signal from the receivers A and B is combined. For the useful signal, the gain after the addition is 6 dB ( = quadruple effect). The noise signals coming from the receivers A and B will/as they are not correlated, will only be subjected to a power addition/i.e. the noise level only rises by 3 dB. At the output of 1, one thus achieves a 6 dB - 3 dB = 3 dB better noise ratio than at the demodulator output for the receivers A or B. This amplification is lost, however, if the signal-to-noise ratio for one of the two receivers becomes drastically worse, e.g. as a result of a selective fading. In this case, it is more advantageous to disconnect the disturbed receiver from the addition network 1 by means of switches Sl or S2. The operation of these switches usually takes place by means of a one-switch automatic/which derives its orders from additional information from the receivers A and B. The invention relates to a particularly favorable device for controlling the switches S1 and S2.

' jNevnte fordel ved parallelkobling av to mottakere ved hjelp av | ' jMentioned advantage of parallel connection of two receivers by means of |

addisjonsnettverket 1, dvs. okning i signal/stoyforholdet, fordi nytteeffekten etter addisjon firedobles, mens stoyeffekten bare dobles, går forst tapt, når stoyeffekten av en av de to mottakerne oker, og fra et bestemt stoynivå er parallellkoblin-gen endog skadelig. Dette "omslagspunkt" (break-even-punkt) er lett å bestemme: dersom en av mottakerne avgir en 3 ganger storre stoyeffektandel enn den andre, er hele stoyeffekten fire ganger storre enn den beste mottakerens og svarer til okningen i nytteeffekt. Fra dette kan man for betjening av bryterne Sl og S2 utlede folgende regel: "Ved storre differanse mellom stoyeffektene av mottakerne A og B enn faktoren 3 (=4,77 dB), må mottakeren med den storste stoy-andel koples ut" the addition network 1, i.e. an increase in the signal/noise ratio, because the useful effect after addition quadruples, while the noise effect only doubles, is first lost when the noise effect of one of the two receivers increases, and from a certain noise level the parallel connection is even harmful. This "turnover point" (break-even point) is easy to determine: if one of the receivers emits a 3 times greater noise effect share than the other, the entire noise effect is four times greater than that of the best receiver and corresponds to the increase in useful effect. From this, the following rule can be derived for operating the switches Sl and S2: "If the difference between the noise effects of the receivers A and B is greater than the factor 3 (=4.77 dB), the receiver with the largest noise level must be disconnected"

For å finne en elektronisk kopling som registrerer og vurderer disse kriterier, går man frem i flere trinn. Til å atskille stoyandelen fra nyttesignalet, brukes en filterkrets ifolge fig. 2a,b. Filtrene F1Aog Flg (fig. 2a) tar ut stoyandelen G (fig. 2b) ovenfor nyttebåndet og leder den til en egnet komparator-kobling 2, som i tilslutning genererer koblingskriteriene for Sl og S2. I fig. 2b er SN nyttesignalets spektrum og f er fre-kvensen. To find an electronic link that registers and assesses these criteria, one proceeds in several steps. To separate the noise part from the useful signal, a filter circuit according to fig. 2a,b. The filters F1A and Flg (fig. 2a) take out the noise part G (fig. 2b) above the useful band and lead it to a suitable comparator coupling 2, which subsequently generates the coupling criteria for Sl and S2. In fig. 2b is the spectrum of the SN useful signal and f is the frequency.

Komparatorkoblingen 2 er dog ikke enkel å realisere, fordi sam-menligningen for bestemmelse av 4,77-dB-differansepunktet må skje i et stort dynamikområde på ca. 50 dB. En komparatorkob-ling, som bare sammenligner den absolutte verdi av to spennin-ger, egner seg derfor ikke. However, the comparator connection 2 is not easy to realize, because the comparison for determining the 4.77-dB difference point must take place in a large dynamic range of approx. 50 dB. A comparator connection, which only compares the absolute value of two voltages, is therefore not suitable.

En mulig losning fremkommer av fig. 3: dersom man mellom kompa-ratoren 5 og filtrene Fl^og F1Bkobler inn hver sin logaritmiske forsterker 3 hhv. 4 med et dynamikområde på 50 dB, vil det innenfor dette område til enhver tid opptre samme spennings-differanse for en stoyeffektdifferanse på 4,77 dB ved kompara-torinngangene E,. og E^. Forutsetningen er at utgangsspenningen Ua, for de logaritmiske forsterkere 3 hhv. 4 eksakt folger logaritmen av inngangsspenningen ue(A)/ Ue(B)* A possible solution appears from fig. 3: if one connects between the comparator 5 and the filters Fl^ and F1B each a logarithmic amplifier 3 respectively. 4 with a dynamic range of 50 dB, within this range the same voltage difference will occur at all times for a noise effect difference of 4.77 dB at the comparator inputs E,. and E^. The assumption is that the output voltage Ua, for the logarithmic amplifiers 3 or 4 exactly follows the logarithm of the input voltage ue(A)/ Ue(B)*

|Det fins noen kjente metoder for realisering av en logaritmisk | |There are some known methods for realizing a logarithmic |

forsterker. Avhengig av den nodvendige presisjon varierer om-kostningene for den innen vide grenser. Ved noyaktige måleap-parater, som f.eks. spektrumanalyseapparat m.v. kreves stor innsats, men når det dreier seg om en retningsradio-byggestein blant mange andre,må prisen for forsterkeren ikke overstige en bestemt andel av totalomkostningene, dersom retningsradioan-legget skal kunne tilbys til en konkurransedyktig pris. amplifier. Depending on the required precision, the costs for it vary widely. In the case of precise measuring devices, such as e.g. spectrum analyzer etc. great effort is required, but when it is a directional radio building block among many others, the price for the amplifier must not exceed a certain proportion of the total costs, if the directional radio system is to be offered at a competitive price.

En mulig losning er beskrevet i tidsskriftet "Electronic Design", 3, februar 1974, s. 52-59. Her realiseres den logaritmiske ka-rakteristikk ved den ikke lineære karakteristiske kurve for en halvlederdiode. Men som det fremgår av formel (1), s. 52, er denne karakteristiske kurve temperaturavhengig, slik at de inn-stilte parametre bare er stabile innenfor et snevert område av omgivelsestemperaturen. Hvis man - som vist i fig. 3 - benytter to separate logaritmiske forsterkere, er termisk synkronisering ikke sikret, og automatikkens omslagspunkt forblir ikke kons-tant ved varierende temperatur. A possible solution is described in the journal "Electronic Design", 3, February 1974, pp. 52-59. Here, the logarithmic characteristic is realized by the non-linear characteristic curve for a semiconductor diode. But as can be seen from formula (1), p. 52, this characteristic curve is temperature dependent, so that the set parameters are only stable within a narrow range of the ambient temperature. If one - as shown in fig. 3 - uses two separate logarithmic amplifiers, thermal synchronization is not ensured, and the automatic switching point does not remain constant at varying temperatures.

Fig. 4a og 4b viser, hvordan disse i og for seg kjente vanske-ligheter overvinnes ved en retningsradioanordning som er på mar-kedet i dag. Fig. 4a and 4b show how these known difficulties are overcome by a directional radio device that is on the market today.

Båndpassene 6 og 7 for uttagning av stoyandelen har forskjelli-ge båndområder (skraverte flater i fig. 4b), om stoyandelen for hver mottaker kan registreres frekvensselektivt (SN i 4b viser igjen spektret av nyttesignalet). Via en kopler 8 ledes stoy-spenningene til en felles logaritmisk forsterker 9 og atskilles ved utgangen ved hjelp av filtere 11 og 12. Deretter folger sammenligning ved komparatorén 13. Denne losning kan modifise-res ytterligere, f.eks. ved en frekvensomforming i en mikser. Bandpasses 6 and 7 for extracting the noise portion have different band ranges (shaded areas in fig. 4b), if the noise portion for each receiver can be registered frequency-selectively (SN in 4b again shows the spectrum of the useful signal). Via a coupler 8, the noise voltages are led to a common logarithmic amplifier 9 and separated at the output by means of filters 11 and 12. A comparison then follows at the comparator 13. This solution can be further modified, e.g. by a frequency conversion in a mixer.

Denne anordning krever åpenbart stor innsats når det gjelder filtere og er dermed kostbar. This device obviously requires a lot of effort when it comes to filters and is thus expensive.

Til grunn for oppfinnelsen ligger den oppgave å unngå ulempene ved de kjente anordninger. Dette oppnås ved at de logaritmiske forsterkere er utfort som monolitiske enheter og befinner seg på en liten felles silisium-plate (chip) for termisk synkroni-(sering. The invention is based on the task of avoiding the disadvantages of the known devices. This is achieved by the fact that the logarithmic amplifiers are designed as monolithic units and are located on a small common silicon plate (chip) for thermal synchronization.

Oppfinnelsen skal nå beskrives under henvisning til fig. 5.The invention will now be described with reference to fig. 5.

Med utgangspunkt i basiskoblingen ifolge fig. 3 benyttes igjen to uavhengige logaritmiske forsterkere, dog med fblgende til-leggsbetingelser: - de logaritmiske forsterkerne er monolitiske integrerte kob-linger, - begge forsterkere befinner seg på samme silisiumplate (chip). Da det som kjent er jevn temperaturfordeling på denne lille plate som bare er få mm 2stor, er problemet i forbindelse med termisk synkronisering eliminert. Based on the basic connection according to fig. 3, two independent logarithmic amplifiers are again used, although with the following additional conditions: - the logarithmic amplifiers are monolithic integrated connections, - both amplifiers are located on the same silicon plate (chip). Since there is, as is known, even temperature distribution on this small plate which is only a few mm 2 in size, the problem in connection with thermal synchronization is eliminated.

Ved utgangen for hver logaritmisk forsterker foreligger en vek-selspenning, som må likerettes for ytterligere bearbeiding. At the output of each logarithmic amplifier there is an alternating voltage, which must be rectified for further processing.

Til det brukes de aktive likerettere i7, som av ovennevnte grun-ner likeledes plasseres på den felles chip. Deretter folger kom-paratoren 18, som leverer styringskriteriene for styrelogikken 19. For that, the active rectifiers i7 are used, which, for the reasons mentioned above, are also placed on the common chip. Then follows the comparator 18, which supplies the control criteria for the control logic 19.

Anordningen ifolge oppfinnelsen som vist i fig. 5, forer til be-tydelig kostnadsbesparelse sammenlignet med de kjente losninger. The device according to the invention as shown in fig. 5, leads to significant cost savings compared to the known solutions.

Claims (3)

1. Anordning for automatisk omkobling av parallelt drevne retningsradioanlegg, hvor det til avveiing av mottakerstoyandelen benyttes uavhengige logaritmiske forsterkere, karakterisert ved at de logaritmiske forsterkerne (16, fig.1. Device for automatic switching of parallel operated directional radio systems, where independent logarithmic amplifiers are used to balance the receiver noise, characterized in that the logarithmic amplifiers (16, fig. 5) er utfort som monolittiske enheter og for termisk synkronisering befinner seg på en liten felles silisiumplate ("chip").5) are designed as monolithic units and for thermal synchronization are located on a small common silicon plate ("chip"). 2. Anordning som angitt i krav 1, karakterisert ved at de aktive likerettere (17), som brukes til likeret-ting av vekselspenningene som opptrer ved utgangen for de logaritmiske forsterkerne (16) for videre bearbeiding, likeledes er anbrakt på de felles silisiumplater.2. Device as stated in claim 1, characterized in that the active rectifiers (17), which are used for rectification of the alternating voltages that appear at the output of the logarithmic amplifiers (16) for further processing, are also placed on the common silicon plates. 3. Anordning som angitt i krav 1 eller 2, karakterisert ved at de aktive komponentene er anordnet på liten romavstand på et hybridsubstrat (kobling med tykt sjikt eller tynn film).3. Device as specified in claim 1 or 2, characterized in that the active components are arranged at a small spatial distance on a hybrid substrate (connection with thick layer or thin film).
NO791526A 1978-05-11 1979-05-07 DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMS NO791526L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH513078A CH630498A5 (en) 1978-05-11 1978-05-11 ARRANGEMENT FOR THE AUTOMATIC SWITCHING OF DIRECTIONAL RADIO SYSTEMS OPERATED IN PARALLEL.

Publications (1)

Publication Number Publication Date
NO791526L true NO791526L (en) 1979-11-13

Family

ID=4288436

Family Applications (1)

Application Number Title Priority Date Filing Date
NO791526A NO791526L (en) 1978-05-11 1979-05-07 DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMS

Country Status (7)

Country Link
CH (1) CH630498A5 (en)
DE (1) DE2824329C2 (en)
FR (1) FR2425774A1 (en)
GB (1) GB2020949B (en)
IT (1) IT1112747B (en)
NL (1) NL7903624A (en)
NO (1) NO791526L (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150627A (en) * 1979-05-14 1980-11-22 Nec Corp Signal synthesizing circuit
GB2096865B (en) * 1981-03-26 1984-12-12 Ferranti Ltd Diversity receivers
FR2538645B1 (en) * 1982-12-28 1986-04-11 Thomson Csf METHOD AND DEVICE FOR INTERPOLATING SPEECH IN A DIGITAL SPEECH TRANSMISSION SYSTEM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028564A (en) * 1971-09-22 1977-06-07 Robert Bosch G.M.B.H. Compensated monolithic integrated current source
US4097815A (en) * 1975-04-09 1978-06-27 Indesit Industria Elettrodomestici Italiana S.P.A. Amplifying circuit

Also Published As

Publication number Publication date
DE2824329C2 (en) 1987-04-30
CH630498A5 (en) 1982-06-15
DE2824329A1 (en) 1979-11-15
FR2425774A1 (en) 1979-12-07
IT1112747B (en) 1986-01-20
NL7903624A (en) 1979-11-13
FR2425774B1 (en) 1982-04-23
GB2020949B (en) 1982-06-16
GB2020949A (en) 1979-11-21
IT7922509A0 (en) 1979-05-09

Similar Documents

Publication Publication Date Title
JP2863762B2 (en) Power sensor
US2324215A (en) Measuring apparatus
US20100216413A1 (en) Leakage suppressing circuit
US7603088B2 (en) Multi-channel radiometer imaging system and MMIC chips for use thereof
US2225524A (en) Directional wireless system employing pulses
NO791526L (en) DEVICE FOR AUTOMATIC SWITCHING OF PARALLEL-POWERED DIRECTION RADIO SYSTEMS
CN113640576A (en) Radio frequency power detection circuit and electronic equipment
CN111490833B (en) Method, device, system and medium for adjusting transmitting signal of antenna
JP6886496B2 (en) Improved detection circuit for RFID devices
US11815530B2 (en) RF power detector with a variable threshold
US2214929A (en) Radio receiving system
Yoshizawa et al. A discriminant-based RMSE improvement technique for classical Prony method in small array radars
US20230333264A1 (en) Collaborative geolocation estimation
US20220377729A1 (en) Radio communication apparatus, radio communication method, and radio communication system
US2966584A (en) Receiving systems
US10840965B2 (en) Test system
CN112881976B (en) CSI-based single antenna positioning method, device, equipment and storage medium
CN211123689U (en) Auxiliary control circuit of power amplifier module, power amplifier module and communication equipment
US2415955A (en) Radio direction finding
US6804498B1 (en) Method for influencing the level of a radio-frequency transmitted signal in a base station in a fixed radio network
US6791312B1 (en) Measuring power of analog signals
CN113114352B (en) Optical module power compensation method and device and optical module
WO2023210193A1 (en) Radio wave information management system, radio wave information management method and program
US3743932A (en) Clipped correlation to signal-to-noise ratio meter
US20220123703A1 (en) Attenuator arrangement