[go: up one dir, main page]

NO790013L - SILICONE ALLOY STEEL. - Google Patents

SILICONE ALLOY STEEL.

Info

Publication number
NO790013L
NO790013L NO790013A NO790013A NO790013L NO 790013 L NO790013 L NO 790013L NO 790013 A NO790013 A NO 790013A NO 790013 A NO790013 A NO 790013A NO 790013 L NO790013 L NO 790013L
Authority
NO
Norway
Prior art keywords
steel
austenite
bainite
accordance
heat treatment
Prior art date
Application number
NO790013A
Other languages
Norwegian (no)
Inventor
Harri Nevalainen
Original Assignee
Ovako Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ovako Oy filed Critical Ovako Oy
Publication of NO790013L publication Critical patent/NO790013L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)

Description

Den foreliggende oppfinnelse vedrører silisiumlegert høy-karbon-stål som ved isoterm varmebehandling oppnår særlig for- ..• . ; delaktige fasthets- og seighetsegenskaper og som er anvendbart særlig i slitedeler som er utsatt for tunge støt. The present invention relates to silicon-alloyed high-carbon steel which, by isothermal heat treatment, achieves particular advantages. ; partial strength and toughness properties and which is particularly applicable in wear parts that are exposed to heavy impacts.

For slike slitedeler er det generelt kjent å "anvende Mn-legert austenittstål, såkalt Hadfield-stål når det i til-legg til slitestyrke er nødvendig med seighet hos delen. For such wearing parts, it is generally known to "use Mn-alloyed austenite steel, so-called Hadfield steel, when, in addition to wear resistance, toughness is required for the part.

Dersom seighet ikke er nødvendig, er det mulig å anvende kromlegerte høykarbon-stål.(1,0% C, 12% Cr). Begge disse stål- If toughness is not required, it is possible to use chromium-alloyed high-carbon steel (1.0% C, 12% Cr). Both of these steel

typer har atskillige ulemper. Hadfield-stål (1,0% C, 13% Mn) er vanskelig å fremstille, det kan bare formes ved støping og dets korrosjonsbestandighet og sveisbarhet er dårlig. På grunn av det høye Mn-legeringsinnhold er dette stål også kostbart. types have several disadvantages. Hadfield steel (1.0% C, 13% Mn) is difficult to manufacture, it can only be formed by casting and its corrosion resistance and weldability are poor. Due to the high Mn alloy content, this steel is also expensive.

Kromstål med høyt karboninnhold er på den annen side sprø High carbon chromium steel, on the other hand, is brittle

og deres bearbeidbarhet er dårlig. De er også kostbare på grunn av høyt legeringsinnhold. and their workability is poor. They are also expensive due to their high alloy content.

De fordelaktige mekaniske egenskaper til stålet ifølge The advantageous mechanical properties of the steel according to

den foreliggende oppfinnelse er basert på den bainitt-austenitt-dobbeltfase mikrostruktur som oppnås ved isoterm varmebehandling. Mikrostrukturens bainittkomponent gir stålet god begynnelses-hardhet, og høyt restaustenittinnhold bibringer det høy defor-masjons-herdingskapasitet. the present invention is based on the bainite-austenite-double-phase microstructure obtained by isothermal heat treatment. The bainite component of the microstructure gives the steel good initial hardness, and a high residual austenite content gives it a high deformation-hardening capacity.

I stålet ifølge oppfinnelsen har man utnyttet fordelen med den kjente effekt at silisium hindrer karbiddannelse. Ved å øke silisiuminnholdet i et høykarbon-stål opptil 2,0-3,0%, In the steel according to the invention, the advantage of the known effect that silicon prevents carbide formation has been exploited. By increasing the silicon content of a high-carbon steel up to 2.0-3.0%,

kan karbiddannelse hindres under isoterm dekomponering av austenitt ved en egnet temperatur. carbide formation can be prevented during isothermal decomposition of austenite at a suitable temperature.

Anvendelsen av silisium som et legeringselement er kjent, f.eks. i fjærstål hvor C- og Si-inneholdene vanligvis er C<0,8%, Si^2,0%. I disse stål anvendes vanligvis silisium som legerings-' element som øker herdbarhet og anløpningsmotstand. The use of silicon as an alloying element is known, e.g. in spring steel where the C and Si contents are usually C<0.8%, Si^2.0%. In these steels, silicon is usually used as an alloying element that increases hardenability and tarnish resistance.

Det er også kjent lavkarbon-stål med høye Si-innhold (C<0,1%, Si~2,0-4,0%) som anvendes som kjerneplater i elek-tromagneter. There are also known low-carbon steels with high Si contents (C<0.1%, Si~2.0-4.0%) which are used as core plates in electromagnets.

Formålet med legering med silisium er å hindre dannelsen The purpose of alloying with silicon is to prevent its formation

av karbid (cementitt), dersom stålet etter austenitisering til-lates å -dekomponere isotermt til øvre bainitt i et temperaturområde på 350-450°C eller til nedre bainitt i et temperaturområde på 280-350°C. Det frembrakte bainitt-ferritt inneholder således bare ca. 0,01% karbon. Når karbondannelse hindres må karbonet diffundere inn i det resterende austenitt når bainittreaksjonen skrider frem. Dette øker på den annen side austenitts stabilitet medøkende karboninnhold. Dersom f.eks. karboninnholdet i et stål er 1,0% og det dekomponerer til 50% bainitt uten karbiddannelse, øker karboninnholdet i det resterende austenitt til ca. 2%. Ved således å kontrollere stålets sammensetning (C- og Si-innhold), dekomponeringstemperaturen og holdetid, er det of carbide (cementite), if the steel after austenitisation is allowed to -decompose isothermally to upper bainite in a temperature range of 350-450°C or to lower bainite in a temperature range of 280-350°C. The produced bainite-ferrite thus only contains approx. 0.01% carbon. When carbon formation is prevented, the carbon must diffuse into the remaining austenite as the bainite reaction progresses. This, on the other hand, increases the stability of austenite with increasing carbon content. If e.g. the carbon content of a steel is 1.0% and it decomposes to 50% bainite without carbide formation, the carbon content of the remaining austenite increases to approx. 2%. By thus controlling the composition of the steel (C and Si content), the decomposition temperature and holding time, it is

mulig å kontrollere det oppnådde bainitt-austenitt forhold som et resultat av dekomponeringen av austenitt. possible to control the obtained bainite-austenite ratio as a result of the decomposition of austenite.

De etterfølgende eksempler illustrerer mekaniske egenskaper oppnådd med stålet ifølge oppfinnelsen. The following examples illustrate mechanical properties obtained with the steel according to the invention.

Den kjemiske sammensetning av stålet er angitt i tabell 1. The chemical composition of the steel is given in table 1.

Prøvestålene ble varmebehandlet på følgende måte: austenitisering 920-1030°C, 10 minutter + isoterm bainitisering ved 380°C, 350°C eller 320°C, vannkjøling. Prøvestykkene ble<*>underkastet strekkprøver som ble utført med et strekkprøve-stykke med diameter på 8 mm, og støtprøver (KV), og resterende austenittinnhold ble bestemt med røntgenstrålemålinger. Prøveresultatene er angitt i tabell 2. The test steels were heat treated in the following way: austenitising 920-1030°C, 10 minutes + isothermal bainitising at 380°C, 350°C or 320°C, water cooling. The test pieces were<*>subjected to tensile tests which were carried out with an 8 mm diameter tensile test piece, and impact tests (KV), and residual austenite content was determined by X-ray measurements. The test results are given in Table 2.

Ved å sammenlikne de oppnåde fasthets- og seighetsverdier med innhold av resterende austenitt, kan man se at de beste kombinasjoner av egenskaper oppnås med resterende austenittinnhold på mellom 30 og 40%. Således vil den konvensjonelle flytegrense være R _ „T850 N/mm 2 og strekkfastheten R ^ 1300 By comparing the obtained strength and toughness values with the content of residual austenite, it can be seen that the best combinations of properties are achieved with a residual austenite content of between 30 and 40%. Thus, the conventional yield strength will be R _ „ T850 N/mm 2 and the tensile strength R ^ 1300

2 p 0 , 2 > J om 2 p 0 , 2 > J om

N/mm når den isoterme bainitiseringstemperatur er 380 C. Senk-ning av bainitiseringstemperaturen til under 3 50°C øker stålets fasthet betydelig. Bainitiseringstemperaturen vil da være lenger, og den oppnådde mikrostruktur vil ha lavere bainittinnhold. Bruddforlengelse A5> 20%; for lavt C- + Si-innhold fører til for lav mengde resterende austenitt, sterkere, men sprøere bainitt som regulerer egenskapene. Dette er tilfellet med stålet ifølge eksempel 1, så C + Si må være JL2,80. N/mm when the isothermal bainitisation temperature is 380 C. Lowering the bainitisation temperature to below 350°C increases the strength of the steel significantly. The bainitisation temperature will then be longer, and the microstructure obtained will have a lower bainite content. Elongation at break A5> 20%; too low C + Si content leads to too low amount of residual austenite, stronger but more brittle bainite which regulates the properties. This is the case with the steel according to example 1, so C + Si must be JL2.80.

For høyt C- + Si-innhold fører på den annen side til for Too high a C + Si content, on the other hand, leads to too

høyt resterende austenittinnhold. Resterende austenitt regulerer således de mekaniske.egenskaper for mye, slik at den resterende fasthet blir lavere. Resterende autenitt er således også mekanisk mer ustabilt, noe som skader bruddforlengelsen. Dette er tilfellet med stålet i eksempel 4, slik at C + 'Si må være <_ 3, 5. high residual austenite content. Residual austenite thus regulates the mechanical properties too much, so that the remaining strength is lower. Residual autenite is thus also mechanically more unstable, which damages fracture elongation. This is the case with the steel in Example 4, so that C + 'Si must be <_ 3.5.

Ifølge prøveresultatene er det mest egnete område for According to the test results, it is the most suitable area for

summen av C + Si = 2,90 - 3,40%, imidlertid med C>0,8% og Si A 2,0%. Bruddforlengelsen er således 30 - 40% og utgjør hovedsakelig jevn forlengelse som er en indikasjon på deforma-sjons-herdingskapasitet som bare finnes hos austenitisk Hadfield-manganstål og rustfritt stål. Men i ubearbeidet tilstand er den konvensjonelle flytegrense for begge disse stål <L50% av flytegrensen for stålet ifølge den foreliggende oppfinnelse. the sum of C + Si = 2.90 - 3.40%, however with C>0.8% and Si A 2.0%. The elongation at break is thus 30 - 40% and constitutes mainly uniform elongation which is an indication of deformation-hardening capacity which is only found in austenitic Hadfield-manganese steel and stainless steel. But in the unprocessed state, the conventional yield strength for both of these steels is <L50% of the yield strength for the steel according to the present invention.

For å bedre dets varmebehandlingsegenskaper kan stålet To improve its heat treatment properties, the steel can

ifølge oppfinnelsen legeres med austenittstabiliserende legeringselementer, såsom mangan og nikkel, opptil ca. 1%. Når det gjelder C-innholdet er det derved nødvendig å ta i betraktning virkningen av den ytterligere legering på stabiliteten til austenitt. Karbiddannende krom og niob kan også anvendes for legeringsdannelse. Det førstnevnte bedrer herdbarheten for barrer med større diametre, og det kan anvendes i mengder på according to the invention is alloyed with austenite stabilizing alloying elements, such as manganese and nickel, up to approx. 1%. As regards the C content, it is therefore necessary to take into account the effect of the additional alloy on the stability of austenite. Carbide-forming chromium and niobium can also be used for alloying. The former improves the hardenability of ingots with larger diameters, and it can be used in quantities on

1%, fortrinnsvis f^.0,5%. Niob kan på den annen side anvendes 1%, preferably f^.0.5%. Niobium, on the other hand, can be used

for regulering av kornvekstegenskaper. Den mengde som er nød-vendig for dette er ^. 0,1%. Legeringsdannelse med Al fore-trekkes for binding av fritt nitrogen i ferritt-bainitt som er fordelaktig for seighet, særlig ved lavere temperaturer. Legeringsmengden som er nødvendig for dette er _^L0,1%. for regulation of grain growth characteristics. The quantity necessary for this is ^. 0.1%. Alloy formation with Al is preferred for binding of free nitrogen in ferrite-bainite, which is advantageous for toughness, particularly at lower temperatures. The amount of alloy required for this is _^L0.1%.

Stålet ifølge oppfinnelsen har en kombinasjon av fasthets-og seighetsegenskaper som det er umulig å oppnå med kjente stål-typer. Idet disse egenskaper oppnås ved enkel, isoterm varmebehandling og rimelig legeringsdannelse kan stålet ifølge den' foreliggende oppfinnelse dessuten forventes å bli godt mot-tatt og å bli mye anvendt ved anvendelser som krever høy fasthet og god slitestyrke. The steel according to the invention has a combination of strength and toughness properties that it is impossible to achieve with known steel types. Since these properties are achieved by simple, isothermal heat treatment and reasonable alloy formation, the steel according to the present invention can also be expected to be well received and to be widely used in applications that require high strength and good wear resistance.

Claims (5)

1. Stål med høy fasthet, omfattende en bainitt-austenitt-mikrostruktur som er frembrakt ved isoterm varmebehandling,karakterisert vedat stålet inneholder for-skjellige legeringselementer i følgende mengder i vektsprosent: 1. Steel with high strength, comprising a bainite-austenite microstructure produced by isothermal heat treatment, characterized in that the steel contains different alloying elements in the following quantities in percentage by weight: mens resten består av jern og vanlige forurensninger.while the rest consists of iron and common impurities. 2. Stål i samsvar med krav 1,karakterisertved at summen av legeringselementene C + Si = 2,9 - 3,4%.2. Steel in accordance with claim 1, characterized in that the sum of the alloying elements C + Si = 2.9 - 3.4%. 3. Stål i samsvar med krav 1,karakterisertved at det inneholder ett eller flere følgende legeringselementer i følgende mengder: 3. Steel in accordance with claim 1, characterized in that it contains one or more of the following alloying elements in the following amounts: 4. Stål i samsvar med krav 1,karakterisertved at det har en dobbeltfase-mikrostruktur frembrakt ved isoterm varmebehandling som er utført ved en temperatur på 350-450°C, idet mikrostrukturen hovedsakelig består av øvre bainitt og resterende austenitt og hvor andelen resterende austenitt er 30-40%. 4. Steel in accordance with claim 1, characterized in that it has a double-phase microstructure produced by isothermal heat treatment carried out at a temperature of 350-450°C, the microstructure mainly consisting of upper bainite and residual austenite and where the proportion of residual austenite is 30-40%. 5. Stål i samsvar med krav 1,karakterisertved at det inneholder en dobbeltfasé-mikrostruktur frembrakt ved isoterm varmebehandling utført ved en temperatur på 280-350°C, hvor mikrostrukturen hovedsakelig består av lavere bainitt og andelen resterende austenitt er 3 0-40%.5. Steel in accordance with claim 1, characterized in that it contains a double-phase microstructure produced by isothermal heat treatment carried out at a temperature of 280-350°C, where the microstructure mainly consists of lower bainite and the proportion of remaining austenite is 30-40%.
NO790013A 1978-01-05 1979-01-03 SILICONE ALLOY STEEL. NO790013L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI780026A FI780026A (en) 1978-01-05 1978-01-05 KISELLEGERAT STAOL

Publications (1)

Publication Number Publication Date
NO790013L true NO790013L (en) 1979-07-06

Family

ID=8511375

Family Applications (1)

Application Number Title Priority Date Filing Date
NO790013A NO790013L (en) 1978-01-05 1979-01-03 SILICONE ALLOY STEEL.

Country Status (6)

Country Link
EP (1) EP0003208A1 (en)
CA (1) CA1130617A (en)
DK (1) DK583778A (en)
FI (1) FI780026A (en)
IT (1) IT1110730B (en)
NO (1) NO790013L (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006038670B4 (en) * 2006-08-17 2010-12-09 Federal-Mogul Burscheid Gmbh High silicon steel material for the production of piston rings and cylinder liners
KR101067896B1 (en) * 2007-12-06 2011-09-27 주식회사 포스코 High carbon steel plate with excellent strength and ductility and its manufacturing method
EP2410070B1 (en) * 2008-07-31 2014-11-05 The Secretary Of State For Defence Bainite steel and methods of manufacture thereof
WO2011023988A2 (en) * 2009-08-24 2011-03-03 The Secretary Of State For Defence Armour

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1924099A (en) * 1931-11-20 1933-08-29 United States Steel Corp Thermally hardening steel
CH311324A (en) * 1952-03-12 1955-11-30 Gussstahlwerk Witten Aktienges Process for producing a workpiece from a steel alloy.
FR1286077A (en) * 1961-01-20 1962-03-02 Renault Steel and treatment to obtain parts with a high thermal expansion coefficient
DE1558505A1 (en) * 1967-01-23 1970-04-16 Hilti Ag Anchoring means
US3860457A (en) * 1972-07-12 1975-01-14 Kymin Oy Kymmene Ab A ductile iron and method of making it

Also Published As

Publication number Publication date
CA1130617A (en) 1982-08-31
DK583778A (en) 1979-07-06
FI780026A (en) 1979-07-06
EP0003208A1 (en) 1979-07-25
IT7919100A0 (en) 1979-01-05
IT1110730B (en) 1986-01-06

Similar Documents

Publication Publication Date Title
CA2633153C (en) Steel for springs, process of manufacture for spring using this steel, and spring made from such steel
US4765953A (en) High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability
CA2604428C (en) Low alloy steel
JPS5817820B2 (en) High temperature chrome steel
GB1564244A (en) Austenitic stainless steel
US5167731A (en) Martensitic stainless steel for an oil well
CA2621014C (en) Low alloy steel
US5985209A (en) Martensitic steel for line pipe having excellent corrosion resistance and weldability
US5141705A (en) Austenitic stainless steel
NO790013L (en) SILICONE ALLOY STEEL.
GB1564243A (en) Austenitic stainless steel
AU758316B2 (en) High Cr steel pipe for line pipe
JPS625986B2 (en)
JPH07138708A (en) Austenitic steel with good high temperature strength and hot workability
US6096262A (en) Martensitic heat resisting steel
JPH0770700A (en) High proof stress and high corrosion resistant austenitic stainless cast steel
JPS6358892B2 (en)
JPH04120249A (en) Martensitic stainless steel and its manufacturing method
JP2990963B2 (en) High strength bolt steel with excellent delayed fracture resistance
JP3381011B2 (en) Precipitation hardening stainless steel
JP3289947B2 (en) Manufacturing method of stainless steel for high strength spring with excellent stress corrosion cracking resistance used in hot water environment
JPH05302151A (en) Duplex stainless steel having high corrosion resistance, high strength and high toughness
JP2001234276A (en) Cr-Mo STEEL HAVING HIGH TOUGHNESS AND EXCELLENT IN REHEAT CRACKING RESISTANCE
JP3392639B2 (en) Low Cr ferritic steel with excellent weldability and high temperature strength
JPS60149744A (en) High-chromium steel having superior toughness