NO784141L - HEAT INSULATION SHEET. - Google Patents
HEAT INSULATION SHEET.Info
- Publication number
- NO784141L NO784141L NO784141A NO784141A NO784141L NO 784141 L NO784141 L NO 784141L NO 784141 A NO784141 A NO 784141A NO 784141 A NO784141 A NO 784141A NO 784141 L NO784141 L NO 784141L
- Authority
- NO
- Norway
- Prior art keywords
- thermal insulation
- insulation board
- carbide
- silicon carbide
- boron
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 229910052580 B4C Inorganic materials 0.000 claims description 7
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000003605 opacifier Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 210000002268 wool Anatomy 0.000 claims description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 claims 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims 1
- 230000000717 retained effect Effects 0.000 claims 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 11
- 229910010271 silicon carbide Inorganic materials 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 239000000835 fiber Substances 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/68—Heating arrangements specially adapted for cooking plates or analogous hot-plates
- H05B3/74—Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/32—Carbides; Nitrides; Borides ; Silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B30/00—Compositions for artificial stone, not containing binders
- C04B30/02—Compositions for artificial stone, not containing binders containing fibrous materials
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C11/00—Shielding structurally associated with the reactor
- G21C11/08—Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation
- G21C11/081—Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation consisting of a non-metallic layer of insulating material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Civil Engineering (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Thermal Insulation (AREA)
- Ceramic Products (AREA)
- Building Environments (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
VarmeisolasjonsplateThermal insulation board
Description
Oppfinnelsen angår en varmeisolasjonsplate fremstilt ved pressing av en blanding av høydispers pyrogen kiselsyre (silica-aerogel) og aluminiumsilikat-ull under tilsetning av et opasitetsmiddel. For en definisjon av begrepet "pyrogen kiselsyre", se Rompps Chemie-Lexicon, 7.opplag, Bd. 5, side 3 2 20„ 1.S<p>alte., The invention relates to a thermal insulation board produced by pressing a mixture of highly dispersed fumed silicic acid (silica airgel) and aluminum silicate wool with the addition of an opacifying agent. For a definition of the term "pyrogenic silicic acid", see Rompp's Chemie-Lexicon, 7th edition, Vol. 5, page 3 2 20„ 1.S<p>alte.,
I de kjente varmeisolasjonsplater benyttes der som opasitetsmiddel TiC^, rutil, ilmenitt, kromoxyd, manganoxyd og jern-oxyd, men også grafitt eller kjønrøk. In the known thermal insulation boards TiC^, rutile, ilmenite, chromium oxide, manganese oxide and iron oxide are used as opacifiers, but also graphite or carbon black.
Av de oppregnede opasitetsmidler kan grafitt og kjønrøk anvendes ved høyere temperaturer kun i konstant fravær av oxygen. I motsatt fall vil nemlig grafitten og kjønrøken omdannes og de-res opasitetsbefordrende egenskaper gå tapt. Tilsvarende gjelder for enkelte av de ovennevnte oxyder, spesielt manganoxyd. Of the opacity agents listed, graphite and carbon black can only be used at higher temperatures in the constant absence of oxygen. Otherwise, the graphite and carbon black will be converted and their opacity-promoting properties will be lost. The same applies to some of the above-mentioned oxides, especially manganese oxide.
Men heller ikke de øvrige opasitetsmidler som anvendes, såsom Ti02, rutil og ilmenitt, gir så gode resultater som man But neither do the other opacity agents used, such as Ti02, rutile and ilmenite, give as good results as
kunne ønske. Ved atmosfæretrykk er nemlig varmeledningsevnen for varmeisolasjonsplater som inneholder slike opasitetsmidler, could wish. Namely, at atmospheric pressure, the thermal conductivity of thermal insulation boards containing such opacifiers,
sterkt avhengig av middeltemperaturen.strongly dependent on the mean temperature.
Her kommer oppfinnelsen inn. Ved hjelp av denne til-veiebringes en varmeisolasjonsplate hvis varmeledningsevne er vesentlig mindre avhengig av middeltemperaturen, og.for hvilken det dessuten kan ventes bedre opasitetsegenskaper, spesielt i høyere temperaturområder fra ca. 400°C og oppover. This is where the invention comes in. With the help of this, a thermal insulation board is provided whose thermal conductivity is significantly less dependent on the average temperature, and for which better opacity properties can also be expected, especially in higher temperature ranges from approx. 400°C and above.
Oppgaven som ligger til grunn for oppfinnelsen løses ved at der som opasitetsmiddel anvendes et carbid av silicium, bor, tantal eller wolfram, alene eller i blanding. The task underlying the invention is solved by using a carbide of silicon, boron, tantalum or tungsten, alone or in a mixture, as an opacifying agent.
Naturligvis er såvel siliciumcarbid som borcarbid dyre-re ved samme finhetsgrad- enn eksempelvis de ovennevnte hittilanvendte opasitetsmidler. Dog har det vist seg, når det gjelder carbider, og spesielt siliciumcarbid, at det kan gjøres bruk av filterstøv fra maleanlegg, som vanligvis ellers ikke finner.noen anvendelse. Dermed har det lykkedes å skaffe industriell anvendelse for et produkt som hittil er blitt betraktet som et av-fallsprodukt, 'og som det forøvrig ikke var helt problemfritt å kvitte seg med på grunn av materialets dårlige evne til å ta opp vann. Gjennom anvendelsen av slike carbider skaffes derved, ved siden av de tekniske forbedringer, også et nyttig bidrag til mil-jøvernet, i og med at disse carbider nu kan føres tilbake til Naturally, both silicon carbide and boron carbide are more expensive at the same degree of fineness than, for example, the above-mentioned opacity agents used so far. However, it has been shown, when it comes to carbides, and especially silicon carbide, that filter dust from painting plants can be used, which normally does not otherwise find any use. Thus, it has been possible to obtain an industrial application for a product which has hitherto been regarded as a waste product, and which was otherwise not entirely problem-free to get rid of due to the material's poor ability to absorb water. Through the use of such carbides, in addition to the technical improvements, a useful contribution to the environment is also obtained, in that these carbides can now be returned to
nyttig produksjon.useful production.
De angitte carbider utmerker seg ved høy termisk og kje-misk stabilitet også ved høyere temperaturer og oppviser d'essuten den nødvendige lave transmisjon i et bredt IR-spektralområde. The indicated carbides are distinguished by high thermal and chemical stability also at higher temperatures and also exhibit the necessary low transmission in a wide IR spectral range.
I den vedføyede grafiske fremstilling vises den typiske ytelse av varmeisolasjonsplater hvor det er anvendt Ti02(kurve 1), siliciumcarbid (kurve 2) og borcarbid (kurve 3). In the attached graphic presentation, the typical performance of thermal insulation boards is shown where Ti02 (curve 1), silicon carbide (curve 2) and boron carbide (curve 3) have been used.
Det vil uten videre sees av den grafiske fremstilling at anvendelse av siliciumcarbid, og spesielt av borcarbid, re-sulterer i tydelig forbedring av varmeledningsevnens -A avhengighet av middeltemperaturen t m, spesielt ved de høyere middeltem-peraturer over 100°C. It will readily be seen from the graphic representation that the use of silicon carbide, and especially boron carbide, results in a clear improvement in the dependence of the thermal conductivity -A on the mean temperature t m, especially at the higher mean temperatures above 100°C.
Selvsagt kan man for varmeisolasjonsplater, som inneholder TiC>2som opasitetsmiddel, forbedre varmeledningsevnen i det øvre temperaturområde ved å øke varmeisolasjonsplatens tett-het. Også her frembyr imidlertid anvendelsen av carbider som opasitetsmiddel en fordel, for så vidt som varmeisolasjonsplater av samme tykkelse blir ca. 60 % lettere', hvilket i mange tilfel-ler er ønskelig. Selvfølgelig kan også varmeisolasjonsplater som er fremstilt under anvendelse av siliciumcarbid eller borcarbid som opasitetsmiddel, forbedres med hensyn til varmeledningsevnens -A avhengighet av middeltemperaturen t , ved at tett-heten økes. Of course, for thermal insulation boards, which contain TiC>2 as an opacifier, the thermal conductivity in the upper temperature range can be improved by increasing the density of the thermal insulation board. Here too, however, the use of carbides as an opacifier offers an advantage, insofar as thermal insulation boards of the same thickness become approx. 60% lighter', which is desirable in many cases. Of course, thermal insulation boards produced using silicon carbide or boron carbide as opacifier can also be improved with respect to the dependence of the thermal conductivity -A on the mean temperature t by increasing the density.
Opasitetsmidlene som anvendes i henhold til oppfinnelsen, bør ha en slik kornstørrelse at den rest som blir tilbake på en DIN-sikt av 10/xm maskevidde, utgjør mindre enn 5 %. The opacity agents used according to the invention should have such a grain size that the residue remaining on a DIN sieve of 10/xm mesh size is less than 5%.
For isolasjonsformål på atomområdet, dvs. for varmeisolasjon av kjernereaktorer av de forskjelligste konstruksjoner i kjernetekniske anlegg og for varmeisolasjon av deler av oppred-ningsanlegg, spesielt når neutronstråling med termisk energi gjør seg gjeldende, oppnåes ytterligere fordeler ved anvendelse av borcarbid, som følge av dets brede virkningsspektrum overfor ter-miske neutroner. For insulation purposes in the nuclear area, i.e. for thermal insulation of nuclear reactors of the most diverse constructions in nuclear engineering facilities and for thermal insulation of parts of reprocessing facilities, especially when neutron radiation with thermal energy is used, further advantages are achieved by using boron carbide, as a result of its broad spectrum of action against thermal neutrons.
To utførelseseksempler skal gies:Two execution examples shall be given:
En varmeisolasjonsplate av følgende sammensetning ble fremstilt: A thermal insulation board of the following composition was produced:
59,6 vekt% pyrogen:. kiselsyre59.6 wt% pyrogen:. silicic acid
34,8 " siliciumcarbid34.8" silicon carbide
5,6 " mineralull5.6" mineral wool
I en annen utførelsesform ble det anvendt:In another embodiment, it was used:
68,4 vekt% pyrogen .kisélsyre68.4% by weight pyrogen .silicic acid
26,04 " borcarbid26.04" boron carbide
5,6 " mineralull5.6" mineral wool
Å anvende carbider i ildfaste isolasjonsmaterialer er i og for seg kjent. Således er det fra US patentskrift nr. 4.014.704 kjent å tilsette siliciumcarbid til et ildfast fiberisolasjonsmateriale bestående i det vesentlige av aluminiumsili-katfibre. Denne masse skal spesielt anvendes for fremstilling av støpetrakter for metallsmelter. Bortsett fra at kornstørrel-sen av det der anvendte siliciumcarbid er vesentlig større enn den som anvendes i henhold til oppfinnelsen, blir det i dette fiberisolasjonsmateriale heller ikke brukt pyrogenkiselsyre eller silika-aerogel som vesentlige bestanddeler. Using carbides in refractory insulation materials is known per se. Thus, it is known from US Patent No. 4,014,704 to add silicon carbide to a refractory fiber insulation material consisting essentially of aluminum silicate fibers. This mass is to be used in particular for the production of casting funnels for metal smelters. Apart from the fact that the grain size of the silicon carbide used there is significantly larger than that used according to the invention, fumed silica or silica airgel are not used as essential components in this fiber insulation material either.
Fra DT-OS nr. 20 05 838 er det kjent et beskyttelses-over trekk for romfartøyer, som er ment å skulle skalle av ved termisk belastning. Her tilsettes siliciumcarbid, siliciumdi-oxyd og høytemperaturbestandige fibre til organo-polyxyloxaner, men siliciumcarbidet skal kun tjene til å forbedre overtrekkets avskallingsegenskaper. Forøvrig er i dette tilfelle silicium-carbidets kornstørrelse vesentlig høyere enn i varmeisolasjons-platen ifølge oppfinnelsen. From DT-OS No. 20 05 838, a protective cover for space vehicles is known, which is intended to peel off in the event of thermal stress. Here, silicon carbide, silicon dioxide and high-temperature-resistant fibers are added to organo-polyxyloxanes, but the silicon carbide should only serve to improve the peeling properties of the coating. Incidentally, in this case the grain size of the silicon carbide is significantly higher than in the thermal insulation plate according to the invention.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19772754956 DE2754956A1 (en) | 1977-12-09 | 1977-12-09 | THERMAL INSULATION PLATE |
Publications (1)
Publication Number | Publication Date |
---|---|
NO784141L true NO784141L (en) | 1979-06-12 |
Family
ID=6025741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO784141A NO784141L (en) | 1977-12-09 | 1978-12-08 | HEAT INSULATION SHEET. |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0002487B2 (en) |
AT (1) | AT356342B (en) |
BR (1) | BR7808090A (en) |
DD (1) | DD140573A5 (en) |
DE (1) | DE2754956A1 (en) |
DK (1) | DK544578A (en) |
ES (1) | ES475809A1 (en) |
GR (1) | GR66460B (en) |
IT (2) | IT1160957B (en) |
NO (1) | NO784141L (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU529558B2 (en) * | 1978-12-20 | 1983-06-09 | Consortium Fur Elektrochemische Industrie Gmbh | Agglomereted mixtures of metel oxides |
DE2942180C2 (en) * | 1979-10-18 | 1985-02-21 | Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen | Process for the production of a heat insulating body |
DE2946476A1 (en) * | 1979-11-17 | 1981-05-27 | Consortium für elektrochemische Industrie GmbH, 8000 München | THERMAL INSULATION BODY AND METHOD FOR THE PRODUCTION THEREOF |
DE3000542A1 (en) * | 1980-01-09 | 1981-08-27 | Degussa Ag, 6000 Frankfurt | HEAT INSULATION MIXTURE AND METHOD FOR PRODUCING THE SAME |
DE3008505C2 (en) * | 1980-03-05 | 1983-08-25 | Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen | Device for the thermal insulation of a heat source |
DE3034775C2 (en) * | 1980-09-15 | 1983-08-18 | Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen | Process for the production of a device for the thermal insulation of a heat source |
DE3036422A1 (en) * | 1980-09-26 | 1982-05-13 | Wacker-Chemie GmbH, 8000 München | ADHESIVE INSULATION PLATE |
DE3102935A1 (en) * | 1981-01-29 | 1982-09-02 | Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen | DEVICE FOR THE HEAT-INSULATING STORAGE OF AN ELECTRIC HEATER, IN PARTICULAR FOR A RADIATION-HEATED COOKING PLATE, AND A HEAT-INSULATING PLATE THEREFOR AND METHOD FOR THE PRODUCTION THEREOF |
DE3125875A1 (en) * | 1981-07-01 | 1983-01-27 | Degussa Ag, 6000 Frankfurt | HEAT INSULATION BLEND |
DE3219392A1 (en) * | 1982-05-24 | 1983-12-01 | Gruenzweig Hartmann Glasfaser | THERMAL INSULATION PLATE FOR THE STORAGE OF AN ELECTRIC HEATER, AND METHOD FOR THE PRODUCTION THEREOF |
EP1988228B1 (en) * | 2007-05-03 | 2020-04-15 | Evonik Operations GmbH | Building blocks and building systems with hydrophobic, microporous heat insulation and method of fabrication |
DE102015225714A1 (en) * | 2015-12-17 | 2017-06-22 | Evonik Degussa Gmbh | Insulation composite with diffusion-open edge bond |
CN114149245B (en) * | 2021-11-26 | 2022-11-11 | 中国船舶重工集团公司第七一九研究所 | Heat-insulation shielding aerogel, heat-insulation shielding material, and preparation method and application thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1205572A (en) * | 1966-09-29 | 1970-09-16 | Atomic Energy Authority Uk | Improvements in or relating to thermal insulation materials and to a method of making such materials |
US3752683A (en) * | 1969-10-06 | 1973-08-14 | Foseco Int | Protection of turbine casings |
FR2102491A5 (en) * | 1970-08-05 | 1972-04-07 | Atomic Energy Authority Uk | Refractory insulation material |
ZA731537B (en) * | 1972-03-10 | 1973-11-28 | Foseco Int | Refractory heat insulating materials |
DE2524096B2 (en) * | 1975-05-30 | 1979-06-21 | Gruenzweig + Hartmann Und Glasfaser Ag, 6700 Ludwigshafen | High temperature resistant thermal insulation material |
DE2557741C3 (en) * | 1975-12-20 | 1978-06-15 | Johns-Manville Corp., Denver, Col. (V.St.A.) | Fireproof insulating fiber composition and an article manufactured using this insulating fiber composition |
-
1977
- 1977-12-09 DE DE19772754956 patent/DE2754956A1/en active Granted
-
1978
- 1978-11-27 AT AT847578A patent/AT356342B/en not_active IP Right Cessation
- 1978-11-29 GR GR57770A patent/GR66460B/el unknown
- 1978-11-30 DK DK544578A patent/DK544578A/en not_active Application Discontinuation
- 1978-12-05 EP EP78101567A patent/EP0002487B2/en not_active Expired
- 1978-12-07 DD DD78209583A patent/DD140573A5/en unknown
- 1978-12-07 IT IT69808/78A patent/IT1160957B/en active
- 1978-12-07 IT IT7853957U patent/IT7853957V0/en unknown
- 1978-12-07 ES ES475809A patent/ES475809A1/en not_active Expired
- 1978-12-08 NO NO784141A patent/NO784141L/en unknown
- 1978-12-08 BR BR7808090A patent/BR7808090A/en unknown
Also Published As
Publication number | Publication date |
---|---|
BR7808090A (en) | 1979-08-07 |
DD140573A5 (en) | 1980-03-12 |
ES475809A1 (en) | 1979-04-16 |
AT356342B (en) | 1980-04-25 |
EP0002487A1 (en) | 1979-06-27 |
IT7853957V0 (en) | 1978-12-07 |
EP0002487B1 (en) | 1981-02-18 |
DK544578A (en) | 1979-06-10 |
ATA847578A (en) | 1979-09-15 |
IT7869808A0 (en) | 1978-12-07 |
EP0002487B2 (en) | 1987-06-24 |
IT1160957B (en) | 1987-03-11 |
DE2754956A1 (en) | 1979-06-13 |
DE2754956C2 (en) | 1987-11-26 |
GR66460B (en) | 1981-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO784141L (en) | HEAT INSULATION SHEET. | |
CA2547674C (en) | Free flowing dry back-up insulating material | |
US5906799A (en) | Chlorosilane and hydrogen reactor | |
Hanu et al. | Development of polymer–ceramic composites for improved fire resistance | |
Krasnovskih et al. | Thermal stability of mineral-wool heat-insulating materials | |
NO123641B (en) | ||
Wandji et al. | Xenoliths of dunites, wehrlites and clinopyroxenites in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): petrogenetic implications | |
Wang et al. | The role of residual char on ash flow behavior, Part 1: The effect of graphitization degree of residual char on ash fusibility | |
GB2029319A (en) | Composite panels for use as non-combustible building components | |
WO2009146306A1 (en) | Biomass combustion chamber and refractory components | |
GB2167060A (en) | Fire resistant material | |
Bernardo et al. | Sintered glass–ceramics and glass–ceramic matrix composites from CRT panel glass | |
DE3824598A1 (en) | INSERT FOR FIRE PROTECTION DOORS WITH PEBBLE SOL | |
JPH08169791A (en) | Non-explosive crushed composition | |
Titiladunayo et al. | Selection of appropriate clay for furnace lining in a pyrolysis process | |
Ghaly et al. | Study of agglomeration characteristics of silica sand-straw ash mixtures using scanning electronic microscopy and energy dispersion X-ray techniques | |
JPS5849682A (en) | Heat insulating mixture | |
US4579592A (en) | Insulator | |
CN213359194U (en) | Plate with extremely high flame retardant property | |
US5834120A (en) | Fire protection material | |
Wise et al. | Fluorine bomb calorimetry. III. The heat of formation of boron trifluoride1-3 | |
Ab Wahab et al. | Estimation of corrugated cardboard strength using tensile test | |
Herbell et al. | Effect of hydrogen on the strength and microstructure of selected ceramics | |
GB1225970A (en) | ||
JP2001122670A (en) | Anhydrous inorganic fiber-containing adiabatic refractory |