NO752310L - - Google Patents
Info
- Publication number
- NO752310L NO752310L NO752310A NO752310A NO752310L NO 752310 L NO752310 L NO 752310L NO 752310 A NO752310 A NO 752310A NO 752310 A NO752310 A NO 752310A NO 752310 L NO752310 L NO 752310L
- Authority
- NO
- Norway
- Prior art keywords
- cathode
- specified
- core
- filler metal
- nickel
- Prior art date
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 37
- 239000000945 filler Substances 0.000 claims description 31
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 239000000956 alloy Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 22
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 239000011651 chromium Substances 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 239000010953 base metal Substances 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000004411 aluminium Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 239000011135 tin Substances 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000003518 caustics Substances 0.000 claims description 4
- 238000009713 electroplating Methods 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- -1 hodium Chemical compound 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001297 Zn alloy Inorganic materials 0.000 claims 2
- QUQFTIVBFKLPCL-UHFFFAOYSA-L copper;2-amino-3-[(2-amino-2-carboxylatoethyl)disulfanyl]propanoate Chemical compound [Cu+2].[O-]C(=O)C(N)CSSCC(N)C([O-])=O QUQFTIVBFKLPCL-UHFFFAOYSA-L 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 229910052845 zircon Inorganic materials 0.000 claims 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims 1
- 239000011162 core material Substances 0.000 description 20
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical class Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Catalysts (AREA)
Description
Ved drift av elektrolytiske' celler, som ved fremstilling av klorIn the operation of electrolytic cells, such as in the production of chlorine
og hydrogen ved elektrolyse av saltopplosninger, oppstår et problem som er særskilt brysomt, nemlig spenningsfall (d.v.s. hydrogen-overspenning) ved katoden og dermed forbunden lavere effektivitet. and hydrogen during the electrolysis of salt solutions, a problem arises which is particularly troublesome, namely voltage drop (i.e. hydrogen overvoltage) at the cathode and thus associated lower efficiency.
En overspenningsforbedring på bare 0,1 volt kan forenkle cellens konstruksjon betraktelig og i hoy grad forbedre det okonomiske resultat. Det er kjent at en stor del av denne hydrogen-overspenning avhenger av katodens konstruksjon, særlig da av de materialer som blir brukt. Elektro-katalytisk aktivitet i katodens kjerne er viktig når det gjelder å redusere hydrogen-overspenning. Men okonomiske betraktninger gjor det vanskelig å bruke de elektro-katalytisk mest aktive metaller, som platina og andre edle metaller, eller legeringer av disse. De ""er dyrere å anskaffe, og tap som fremkommer ved at de utsettes for et korroderende medium, bidrar til hoyere driftsomkostninger. Innen industrien blir det derfor et viktig anliggende med hensyn til driftomkostninger å kunne redusere overspenningen i en elektrolytisk celle ved bruk av katoder som har lavest mulig overspenninger og er rimelige å produsere. Av denne grunn er eksperimentelle forsok blitt konsentrert rundt undersokelser hvorvidt relativt billige kjernematerialer, som jern, stål, grafitt, kobber, eller deres legeringer, kan modifiseres slik at de gir lavere overspenninger. An overvoltage improvement of just 0.1 volts can simplify the cell's construction considerably and greatly improve the economic result. It is known that a large part of this hydrogen overvoltage depends on the construction of the cathode, particularly on the materials used. Electro-catalytic activity in the cathode's core is important when it comes to reducing hydrogen overvoltage. But economic considerations make it difficult to use the most electro-catalytically active metals, such as platinum and other noble metals, or their alloys. They are more expensive to acquire, and losses arising from exposure to a corrosive medium contribute to higher operating costs. Within the industry, it therefore becomes an important matter with regard to operating costs to be able to reduce the overvoltage in an electrolytic cell by using cathodes which have the lowest possible overvoltages and are reasonable to produce. For this reason, experimental efforts have been concentrated around investigating whether relatively cheap core materials, such as iron, steel, graphite, copper, or their alloys, can be modified so that they produce lower overvoltages.
Senkning av hydrogen-overspenning ved modifikasjon av katoden er blitt foreslått, på grunnlag av forskjellige metoder, som omfatter å kle eller dekke en kjerne av vanlig metall med et lag av et metall som har storre overflateaktivitet. Reduction of hydrogen overvoltage by modification of the cathode has been proposed, on the basis of various methods, which include cladding or covering a core of common metal with a layer of a metal having greater surface activity.
U.S. Patent nr. 3.291.714 viser at visse legeringer kan legges på kjerner av titanium hvis disse er passende preparert, slik at der fremkommer katoder med lavere hydrogen-overspenning, og samme patent viser også at visse legeringer kan legges på visse andre metalliske katoder, særlig stål, for å redusere overspenning. Bruk av palladium eller platina i form av et fint pulverbelegg på en kjerne av jern, er også velkjent innen faget. Alle disse metodene har en viss reduserende effekt hva hydrogen-overspenning angår, men i de fleste tilfeller er reduksjonen minimal, og de metodene som bruker sjeldne metaller er meget kostbare. U.S. Patent No. 3,291,714 shows that certain alloys can be placed on cores of titanium if these are suitably prepared, so that cathodes with a lower hydrogen overvoltage appear, and the same patent also shows that certain alloys can be placed on certain other metallic cathodes, in particular steel, to reduce overvoltage. The use of palladium or platinum in the form of a fine powder coating on an iron core is also well known in the art. All of these methods have a certain reducing effect as far as hydrogen overvoltage is concerned, but in most cases the reduction is minimal, and the methods that use rare metals are very expensive.
Det er derfor et formål med foreliggende oppfinnelse å fremskaffe en katode som utviser storre motstand mot korrosjon enn eksisterende katoder. Et andre formål med oppfinnelsen er å fremskaffe en katode med redusert hydrogen-overspenning. Et tredje formål er å anvise en enkel fremgangsmåte for fremstilling av en katode som har storre motstand mot korrosjon og lavere hydrogen-overspenning. Et fjerde formål er å anvise en rimelig fremgangsmåte for preparering av en katode som har storre motstand mot korrosjon og lavere hydrogen-overspenning. Disse formål, og andre formål med oppfinnelsen, vil tre klarere frem gjennom den folgende fremstilling. It is therefore an object of the present invention to provide a cathode which exhibits greater resistance to corrosion than existing cathodes. A second object of the invention is to provide a cathode with reduced hydrogen overvoltage. A third purpose is to provide a simple method for producing a cathode which has greater resistance to corrosion and lower hydrogen overvoltage. A fourth purpose is to provide a reasonable method for preparing a cathode which has greater resistance to corrosion and lower hydrogen overvoltage. These purposes, and other purposes of the invention, will emerge more clearly through the following description.
I overensstemmelse med foregående bakgrunrsbetraktninger er der fremskaffet en ny type katode og en fremgangsmåte for dens fremstilling. Katoden omfatter en kjerne fremstilt .at et materiale utvalgt på grunnlag av den periodiske tabell over grunnstoffer (Handbook of Chemistry, N.A. Lange, 10th oédition 1961), nemlig blandt elementene i gruppene IB, IVB, VB, VIIB og VIII, samt karbon, og blandinger eller legeringer derav, idet kjernens overflate er helt eller delvis dekket med et elektrisk ledende og meget fint porost (mikroporost) lag, bestående av minst ett av metallene nikkel, kobolt, krom, mangan, kobber og jern. Nevnte lag blir fremstilt ved en fremgangsmåte som omfatter å belegge kjernen med en legering av minst ett av nevnte metaller og et annet fyllmetall, og derpå å fjerne minst en del av nevnte fyllmetall fra det pålagte legering. In accordance with the preceding background considerations, a new type of cathode and a method for its production have been provided. The cathode comprises a core made of a material selected on the basis of the periodic table of elements (Handbook of Chemistry, N.A. Lange, 10th edition 1961), namely among the elements in groups IB, IVB, VB, VIIB and VIII, as well as carbon, and mixtures or alloys thereof, the surface of the core being completely or partially covered with an electrically conductive and very fine porous (microporous) layer, consisting of at least one of the metals nickel, cobalt, chromium, manganese, copper and iron. Said layer is produced by a method which comprises coating the core with an alloy of at least one of said metals and another filler metal, and then removing at least part of said filler metal from the applied alloy.
Det er videre fremskaffet en elektrolytisk celle med en katode som er fremstilt ved ovennevnte fremgangsmåte, hvori kjernen er av jern, og hvorpå hele eller en del av overflaten er belagt med et ledende og mikroporost lag av minst ett av metallene innen gruppen nikkel, kobber, kobolt, krom, mangan og jern. Med mikroporost menes at overflaten er nesten fullstendig poros, og at minst 50% av porene, helst 90% av dem, er mindre enn 10 mikron. An electrolytic cell has also been provided with a cathode produced by the above-mentioned method, in which the core is made of iron, and on which all or part of the surface is coated with a conductive and microporous layer of at least one of the metals within the group of nickel, copper, cobalt, chromium, manganese and iron. Microporous means that the surface is almost completely porous, and that at least 50% of the pores, preferably 90% of them, are smaller than 10 microns.
Katoder fremstilt ved nevnte fremgangsmåte har vist seg å haCathodes produced by the aforementioned method have been shown to have
lavere hydrogen-overspenning. De tilsvarende elektrolytiske celler har storre effektivitet, og katodene selv har vist seg mere motstandsdyktige mot korrosjon. lower hydrogen overvoltage. The corresponding electrolytic cells have greater efficiency, and the cathodes themselves have proven to be more resistant to corrosion.
Selve kjernen i katoden ka ha enhver storrelse og fasong som passer til den cellen der den skal brukes. Den kan være en tråd, The core of the cathode itself can have any size and shape that suits the cell in which it is to be used. It can be a thread,
et ror, en stang, plan eller boyd plate, perforert plate, strekk-metall, pocost metall, metallisk duk, porose blandinger, som sintret metallisk pulver. Det kan bestå av passende elektriske ledende materialer, som titan,-zirkon, vanadium, niob, tantal, krom,-molybden, wolfram, mangan, rhenium, jern, rutenium, osmium, kobolt, rhodium, iridium, nikkel, palladium, platina, kobber, solv, gull, karbon,eller blandinger av disse. Materialet bor velges med henblikk på katodens utformning. De foretrukne kjernematerialer omfatter jern, kobber, nikkel, krom, grafitt, og blandinger eller legeringer av disse. Av disse er jern spesielt å foretrekke, samt dets legeringer,, spesielt stål som karbonstål, jern/nikkel legeringer, og rustfritt stål som jern/krom og jern/nikkel/krom legeringer. Andre foretrukne kjernematerialer er blandinger av forskjellige legeringer basert på jern, kobber eller nikkel, så som legeringer av nikkel/kobber, nikkel/jern, nikkel/kobolt og nikkel/krom. a rudder, a rod, plane or boyd plate, perforated plate, stretched metal, pocost metal, metallic cloth, porous mixtures, such as sintered metallic powder. It may consist of suitable electrically conductive materials, such as titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, carbon, or mixtures of these. The material should be chosen with a view to the design of the cathode. The preferred core materials include iron, copper, nickel, chromium, graphite, and mixtures or alloys thereof. Of these, iron and its alloys are particularly preferred, especially steels such as carbon steel, iron/nickel alloys, and stainless steels such as iron/chromium and iron/nickel/chromium alloys. Other preferred core materials are mixtures of different alloys based on iron, copper or nickel, such as alloys of nickel/copper, nickel/iron, nickel/cobalt and nickel/chromium.
I samsvar med foreliggende oppfinnelse blir katodens kjerne forst preparert ved å påfore et lag av en legering som omfatter minst ett av de onskeverdige basismetaller innen gruppen kobber, nikkel, kobolt, mangan, krom og jern, sammen med et sekundært fyllmetall. Dette sekundære fyllmetall må være slik at det senere kan fjerne selektivt fra nevnte legeringslag, fortrinnsvis uten at vesentlige mengder av basismetallet folger med. Denne selektive fjerning kan utfores ved å utnytte forskjeller i opploselighet og elektrokjemisk aktivitet. Folgelig omfatter de brukbare sekundære fyllmetaller slike metaller som kan danne en legering med det utvalgte basismetall, som kan fjernes selektivt fra det påforte lag, og som ikke i nevneverdig grad vil oke det katodiske spenningsfall hvis noe av fyllmetallet blir igjen på katoden etter at prosessen med selektiv fjerning er avsluttet. Typiske slike fyllmetaller som kan anvendes sammen med de nevnte basismetaller, er aluminium, sink, magnesium, gallium, tinn, bly, kadmium, vismut og antimon. In accordance with the present invention, the cathode's core is first prepared by applying a layer of an alloy comprising at least one of the desirable base metals within the group of copper, nickel, cobalt, manganese, chromium and iron, together with a secondary filler metal. This secondary filler metal must be such that it can later be selectively removed from said alloy layer, preferably without significant amounts of the base metal being included. This selective removal can be accomplished by exploiting differences in solubility and electrochemical activity. Accordingly, the usable secondary filler metals include those metals which can form an alloy with the selected base metal, which can be selectively removed from the deposited layer, and which will not appreciably increase the cathodic voltage drop if some of the filler metal remains on the cathode after the process of selective removal has ended. Typical such filler metals which can be used together with the aforementioned base metals are aluminium, zinc, magnesium, gallium, tin, lead, cadmium, bismuth and antimony.
Til ovenstående skal bemerkes athhvert av disse fyllmetaller må selektivt tilpasses hvert av nevnte basismetaller, med hensyn til den prosess som er påtenkt for fjerning av fyllmetall, og med hensyn til katodens effektivitet. Ett eller flere fyllmetaller kan være brukbare med ett ellerfflere basismetaller. Foretrukne fyllmetaller omfatter aluminium, sink, magnesium og tinn. To the above, it should be noted that each of these filler metals must be selectively adapted to each of the mentioned base metals, with regard to the process intended for the removal of filler metal, and with regard to the efficiency of the cathode. One or more filler metals may be usable with one or more base metals. Preferred filler metals include aluminium, zinc, magnesium and tin.
Blandt legeringene er nikkel/aluminium og nikkel/sink å foretrekke. Av disse er igjen nikkel/sink særlig fordelaktig, og aller mest gamma-nikkel/sink. Among the alloys, nickel/aluminum and nickel/zinc are preferable. Of these, nickel/zinc is again particularly advantageous, and most gamma nickel/zinc.
Det belegg eller lag som foreliggende oppfinnelse omfatter, kan påfores kjernen på forskjellig vis, slik at den onskede blanding oppnås. Legeringen kan, f.eks., oppblandes med en kommersielt tilgjengelig harpiks, og blandingen sproytes på kjernen eller anbringes på denne på annen måte. Den kan så gjennomgå visse prosesser som baking o.l., for at den skal sitte godt fast på kjernen. U.S. Patent nr. 3.649.485 beskriver forskjellige pålegningsmetoder som kan anvendes i denne forbindelse. Metall-legeringen kan påfores ved elektrisk plettering, ved sintring av The coating or layer that the present invention comprises can be applied to the core in different ways, so that the desired mixture is achieved. The alloy can, for example, be mixed with a commercially available resin and the mixture sprayed onto the core or otherwise applied to it. It can then go through certain processes such as baking etc., so that it is firmly attached to the core. U.S. Patent No. 3,649,485 describes various application methods that can be used in this connection. The metal alloy can be applied by electroplating, by sintering
blandinger av pulveriserte legeringer under oppvarming med eller uten overtrykk, ved pårulling, ved vakuum-deposi sjon, ved termisk dekomposisjon av organiske metallforbindélser, ved metallsproyting, eller ved å rulle pulveriserte legeringer og blandinger på katoden, samt ved å male passende opplosninger av legeringene på kjernen og deretter brenne dem. Disse metodene, og visse andre, er beskrevet i U.S. Patent nr. 3.291.714 og er anvendbare i denne sammenheng. mixtures of powdered alloys under heating with or without excess pressure, by rolling, by vacuum deposition, by thermal decomposition of organic metal compounds, by metal spraying, or by rolling powdered alloys and mixtures on the cathode, as well as by painting suitable solutions of the alloys on core and then burn them. These methods, and certain others, are described in U.S. Pat. Patent No. 3,291,714 and are applicable in this context.
Andre metoder, som pålegg fra dampfase, jone-plettering eller "sputtering" kan også anvendes. De foretrukne metoder er imidlertid elektrisk plettering, kjemisk pålegning, Other methods, such as deposition from the vapor phase, ion plating or "sputtering" can also be used. However, the preferred methods are electroplating, chemical deposition,
sproytepålegning, eller dypping i smeltet metall.spray application, or dipping in molten metal.
Innen fagområdet finnes mange fremgangsmåter for belegging av katoder, som er anvendbare i denne sammenheng. For å oppnå Within the field there are many methods for coating cathodes, which are applicable in this context. To achieve
maksimum reduksjon av overspenning er det onskelig at katode-belegget er fullstendig,slik at katodens kjerne ikke utsettes for det korroderende medium i den elektrolytiske cellen. Blottlegging av kjernen kan frembringe et blandet elektrisk potential, som kan redusere beleggets effektivitet ved at det frembringer en batteri-effekt. Det er imidlertid klart at selv et ufullstendig belegg på katoden, d.v.s. flekker, vil medfore redusert overspenning. maximum reduction of overvoltage, it is desirable that the cathode coating is complete, so that the core of the cathode is not exposed to the corrosive medium in the electrolytic cell. Exposing the core can produce a mixed electrical potential, which can reduce the effectiveness of the coating by producing a battery effect. However, it is clear that even an incomplete coating on the cathode, i.e. stains, will result in reduced overvoltage.
Når katoden er blitt belagt med den onskede legering, så kanWhen the cathode has been coated with the desired alloy, it can
den mikroporose overflaten fremkomme ved at i det minste en del av fyllmetallet fjernes fra legeringen. Den foretrukne fremgangsmåte for dette er å behandle den belagte kjernen med en alkalisk opplosning som vil fjerne fyllmetallet uten å angripe basismetallet, skjont litt av basismetallet kan: nok også fjernes uten at dette gir noen reduksjon av beleggets effektivitet. Overraskende nok har det vist seg at det. mikroporose belegget som derved er blitt ; the microporous surface is produced by removing at least part of the filler metal from the alloy. The preferred method for this is to treat the coated core with an alkaline solution which will remove the filler metal without attacking the base metal, although some of the base metal may also be removed without reducing the effectiveness of the coating. Surprisingly, it has been found that. the microporous coating that has thereby become;
i oppnådd, fremdeles uten betydelig motstand mot korrosj onsangrep på kjernen, og samtidig reduserer det hydrogen-overspenning. Fyllmetallet kan fjernes med enhver passende opplosning som er selektiv nok, men det har vist seg særlig fordelaktig å anvende en sterk kaustisk opplosning. Montering av en ubehandlet legert katode direkte i den elektrolytiske cellen vil i seg selv resultere i opplosning av fyllmetallet og derfor gi en gradvis reduksjon av hydrogen-overspenning ettersom legeringslagets porositet stiger. Ennvidere kan fyllmetallet fjernes ved selektiv reversert elektrolytisk plettering. Disse metodene er vanligvis langsomme og kostbare, og derfor i de fleste tilfeller uokonomiske. For visse selektive fyllmetaller, slik som magnesium, kan en syre bli anvendt for fremstilling av den mikroporose overflate ved selektiv opplosning av disse. i achieved, still without significant resistance to corrosion attack on the core, and at the same time it reduces hydrogen overvoltage. The filler metal can be removed with any suitable solution which is selective enough, but it has been found particularly advantageous to use a strong caustic solution. Mounting an untreated alloy cathode directly in the electrolytic cell will in itself result in dissolution of the filler metal and therefore provide a gradual reduction of hydrogen overvoltage as the porosity of the alloy layer increases. Furthermore, the filler metal can be removed by selective reversed electrolytic plating. These methods are usually slow and expensive, and therefore in most cases uneconomical. For certain selective filler metals, such as magnesium, an acid can be used to produce the microporous surface by selectively dissolving them.
Utvalgte kjemisk inerte materialer kan også tilsettes belegget for å oke overflatens areal. Slike materialer er, blandt andre, sulfater, fosfater, silikater, borater, hydroksyder, grafitt, karbon, teflon, inorganisk oksyd/ magnetitter, o.s.v. En fagmann vil ikke finne det vanskelig å velge et passende pore-frembringende medium blandt dem som her er angitt. De kan påfores elektroforetisk eller på annen måte. Fyllmetallet kan imidlertid fjernes med forsiktighet slik at deaandre materialer ikke folger med. Selected chemically inert materials can also be added to the coating to increase the surface area. Such materials are, among others, sulphates, phosphates, silicates, borates, hydroxides, graphite, carbon, Teflon, inorganic oxide/magnetites, etc. A person skilled in the art will not find it difficult to select a suitable pore-producing medium from among those indicated herein. They can be applied electrophoretically or by other means. However, the filler metal can be removed with care so that the other materials do not follow.
Folgende.eksempler presenteres herved for å beskrive oppfinnelsen nærmere, og er ikke ment som noen begrensning av denne. The following examples are hereby presented to describe the invention in more detail, and are not intended as any limitation thereof.
Eksempel I.Example I.
To så å si identiske katoder ble fremstilt av en duk av mild ståltråd, 75 x 75 mm, og deretter avfettet, renset, skyllet og torket. En av katodene ble så plettert elektrolytisk ved å anbringe den i ca. 60 minutter i en opplosning, som inneholder 1 mol/l av NiCl3.6H20, 1 mol/l av ZnCl2 og 30 g/l av H3B03, med en Two virtually identical cathodes were prepared from a sheet of mild steel wire, 75 x 75 mm, and then degreased, cleaned, rinsed and dried. One of the cathodes was then plated electrolytically by placing it for approx. 60 minutes in a solution containing 1 mol/l of NiCl3.6H20, 1 mol/l of ZnCl2 and 30 g/l of H3B03, with a
pH = 4.0, idet stromtettheten var 0,775 A/dm^"og temperaturen ca. 40°C. Den pletterte katoden ble så anbragt i en 0,5 M NaOH pH = 4.0, the current density being 0.775 A/dm^" and the temperature about 40°C. The plated cathode was then placed in a 0.5 M NaOH
opplosning i vann i omtrent 24 timer, hvorav 2 timer ved ca. 90°C og resten ved romtemperatur, for a fjerne fyllmaterialet Zn. dissolution in water for approximately 24 hours, of which 2 hours at approx. 90°C and the rest at room temperature, to remove the filler material Zn.
Dernest fulgte en sammenlikning av halv-cellespenningen for katodene, ved å teste begge i.en liten glass-celle under samme betingelser. Glass-cellen hadde to kammere som var adskilt med en perfluoro-sulfonsyre membran. Anoden var av titan belagt med rutenium oksyd, og anolytten var mettet saltopplosning med pH = 3/2. Katolytten var 150 g/l NaOH i vann, og cellens temperatur ble holdt konstant på 84°C. Halv-cellespenninger ble målt med et Luggin kapillar montert på en mettet merkuroklorid referanse-elektrode i et adskilt kammer. TABELL I viser halv-cellespenninger for en rekke stromnivåer. Next followed a comparison of the half-cell voltage for the cathodes, by testing both in a small glass cell under the same conditions. The glass cell had two chambers that were separated by a perfluorosulfonic acid membrane. The anode was made of titanium coated with ruthenium oxide, and the anolyte was saturated salt solution with pH = 3/2. The catholyte was 150 g/l NaOH in water, and the temperature of the cell was kept constant at 84°C. Half-cell voltages were measured with a Luggin capillary mounted on a saturated mercuric chloride reference electrode in a separate chamber. TABLE I shows half-cell voltages for a range of current levels.
Eksempel II Example II
To så å si identiske katoder av blot stålduk, 152 x 127 mm, ble avfettet, renset, spylt og torket. En av katodene ble derpå plettert elektrolytisk, og kaustisk fjerning av fyllmetall ble utfort, som i eksempel I. Two virtually identical bare steel cloth cathodes, 152 x 127 mm, were degreased, cleaned, rinsed and dried. One of the cathodes was then plated electrolytically, and caustic removal of filler metal was carried out, as in Example I.
To. så å si identiske klorceller, 152 x 127 mm, ble fremstilt av glass, hvorav den ene fikk katoden av ubehandlet stål, mens den andre fikk den mikroporose nikkelbelagte katoden. Et system med sirkulerende katolytt ble brukt, hvorved hver celle anvendte den samme katolytt. Denne var ;150 g/l NaOH opplost i vann, og celletemperaturen ble holdt konstant på 84°C. Hver anolytt bestod av mettet saltopplosning med pH =3,2, og hver anode var fremstilt av titan belagt med rutenium oksyd. Et Luggin kapillar ble montert i hver celle og katodeoverflatens potensial ble målt som i eksempel I TABELL II viser halv-celle spenninger målt ved hver av katode-overf låtene, ved forskjellige strømtettheter (ASI= ampere pr. kavdrattomme) . Two. virtually identical chlorine cells, 152 x 127 mm, were made of glass, one of which received the untreated steel cathode, while the other received the microporous nickel-plated cathode. A circulating catholyte system was used whereby each cell used the same catholyte. This was 150 g/l NaOH dissolved in water, and the cell temperature was kept constant at 84°C. Each anolyte consisted of saturated salt solution with pH = 3.2, and each anode was made of titanium coated with ruthenium oxide. A Luggin capillary was mounted in each cell and the potential of the cathode surface was measured as in example I TABLE II shows half-cell voltages measured at each of the cathode-over tracks, at different current densities (ASI= amperes per square inch).
Eksempel III Example III
To så å si identiske katoder ble fremstilt av blot stålduk,Two virtually identical cathodes were made from bare steel cloth,
10 x 50 mm, samt en tredje lik de to forste med unntak at materialet var nikkel, derpå avfettet, renset, spylt og torket. En av stålkatodene ble plettert, og fyllmetall fjernet ved samme fremgangsmåte som i eksempel I. Tre så å si identiske klorceller ble laget av glass, en for hver av de tre katoder. £en katolytiske opplosning var 2,5 M NaOH opplost i vann og anolytten en mettet saltopplosning med pH = 4,0. Anoden var av platina i alle celler. Liiggin prober ble satt ned i hver celle og potensialet på hver katode-overflate målt som i eksempel I. TABELL III viser halv-celle spenningene ved hver katode-overflate, som funksjon av stromtetthet og celletemperatur. 10 x 50 mm, as well as a third similar to the first two except that the material was nickel, then degreased, cleaned, rinsed and dried. One of the steel cathodes was plated, and filler metal removed by the same method as in Example I. Three, so to speak, identical chlorine cells were made of glass, one for each of the three cathodes. A catholytic solution was 2.5 M NaOH dissolved in water and the anolyte a saturated salt solution with pH = 4.0. The anode was platinum in all cells. Liiggin probes were placed in each cell and the potential on each cathode surface measured as in example I. TABLE III shows the half-cell voltages at each cathode surface, as a function of current density and cell temperature.
Claims (16)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48928474A | 1974-07-17 | 1974-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO752310L true NO752310L (en) | 1976-01-20 |
Family
ID=23943190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO752310A NO752310L (en) | 1974-07-17 | 1975-06-26 |
Country Status (12)
Country | Link |
---|---|
JP (1) | JPS5154877A (en) |
AR (1) | AR205039A1 (en) |
AU (1) | AU8210575A (en) |
BE (1) | BE831346A (en) |
BR (1) | BR7504462A (en) |
CA (1) | CA1072915A (en) |
DE (1) | DE2527386A1 (en) |
FI (1) | FI751937A (en) |
FR (1) | FR2278798A1 (en) |
NL (1) | NL7507550A (en) |
NO (1) | NO752310L (en) |
SE (1) | SE7508154L (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53102279A (en) * | 1977-02-18 | 1978-09-06 | Asahi Glass Co Ltd | Electrode body |
US4184941A (en) * | 1978-07-24 | 1980-01-22 | Ppg Industries, Inc. | Catalytic electrode |
JPS55115984A (en) * | 1979-03-01 | 1980-09-06 | Osaka Soda Co Ltd | Activated iron cathode |
DE2914094C2 (en) * | 1979-04-07 | 1983-02-10 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Porous nickel electrode for alkaline electrolysis, process for producing the same and its use |
BE883886A (en) * | 1979-07-02 | 1980-10-16 | Olin Corp | LOW SURGE ELECTRODE AND ITS PREPARATION |
US4221643A (en) * | 1979-08-02 | 1980-09-09 | Olin Corporation | Process for the preparation of low hydrogen overvoltage cathodes |
DE3102306A1 (en) * | 1980-02-02 | 1982-01-14 | Basf Ag, 6700 Ludwigshafen | Electrodes |
EP0074431A1 (en) * | 1981-09-16 | 1983-03-23 | The Dow Chemical Company | Corrosion resistant electrolytic cell |
US4871703A (en) * | 1983-05-31 | 1989-10-03 | The Dow Chemical Company | Process for preparation of an electrocatalyst |
SE8303788L (en) * | 1983-07-01 | 1985-01-02 | Elektrocell Ab | ENERGY SAVING ELECTROLYTIC ELECTRODE |
-
1975
- 1975-01-01 AR AR259552A patent/AR205039A1/en active
- 1975-06-13 AU AU82105/75A patent/AU8210575A/en not_active Expired
- 1975-06-19 DE DE19752527386 patent/DE2527386A1/en active Pending
- 1975-06-25 NL NL7507550A patent/NL7507550A/en unknown
- 1975-06-26 NO NO752310A patent/NO752310L/no unknown
- 1975-07-02 FI FI751937A patent/FI751937A/fi not_active Application Discontinuation
- 1975-07-03 CA CA230,713A patent/CA1072915A/en not_active Expired
- 1975-07-14 BR BR7504462*A patent/BR7504462A/en unknown
- 1975-07-14 BE BE158281A patent/BE831346A/en unknown
- 1975-07-15 FR FR7522053A patent/FR2278798A1/en not_active Withdrawn
- 1975-07-16 JP JP50087173A patent/JPS5154877A/ja active Pending
- 1975-07-16 SE SE7508154A patent/SE7508154L/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
FI751937A (en) | 1976-01-18 |
AR205039A1 (en) | 1976-03-31 |
SE7508154L (en) | 1976-01-19 |
BR7504462A (en) | 1976-07-06 |
FR2278798A1 (en) | 1976-02-13 |
JPS5154877A (en) | 1976-05-14 |
CA1072915A (en) | 1980-03-04 |
AU8210575A (en) | 1976-12-16 |
NL7507550A (en) | 1976-01-20 |
BE831346A (en) | 1976-01-14 |
DE2527386A1 (en) | 1976-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hayfield | Development of the noble metal/oxide coated titanium electrode | |
CA2050458C (en) | Electrode | |
US4618404A (en) | Electrode for electrochemical processes, method for preparing the same and use thereof in electrolysis cells | |
US3732157A (en) | Electrolytic cell including titanium hydride cathodes and noble-metal coated titanium hydride anodes | |
JP2006515389A5 (en) | ||
NO142314B (en) | ELECTRODE FOR ELECTROCHEMICAL PROCESSES. | |
US3236756A (en) | Electrolysis with precious metalcoated titanium anode | |
US4323595A (en) | Nickel-molybdenum cathode | |
GB2040312A (en) | Nickel-molybdenum cathode | |
US4354915A (en) | Low overvoltage hydrogen cathodes | |
US3350294A (en) | Electrodes | |
US5954928A (en) | Activated cathode and method for manufacturing the same | |
KR870001769B1 (en) | Electrochemical Electrolyzer Electrode and its Manufacturing Method | |
US4414064A (en) | Method for preparing low voltage hydrogen cathodes | |
NO752310L (en) | ||
RU1838450C (en) | Method of anode making | |
US4444642A (en) | Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture | |
JP2019119930A (en) | Chlorine generating electrode | |
US4221643A (en) | Process for the preparation of low hydrogen overvoltage cathodes | |
US4250004A (en) | Process for the preparation of low overvoltage electrodes | |
NO790997L (en) | PROCEDURES FOR ELECTROLYSIS OF A WATER, HALOGENIC SOLUTION | |
AU2009299918B2 (en) | Cathode member and bipolar plate for hypochlorite cells | |
US4132620A (en) | Electrocatalytic electrodes | |
KR910000916B1 (en) | Metal electrolytic treatment method | |
JPH0841671A (en) | Electrolytical reduction of disulfide compound |