[go: up one dir, main page]

NO741691L - - Google Patents

Info

Publication number
NO741691L
NO741691L NO741691A NO741691A NO741691L NO 741691 L NO741691 L NO 741691L NO 741691 A NO741691 A NO 741691A NO 741691 A NO741691 A NO 741691A NO 741691 L NO741691 L NO 741691L
Authority
NO
Norway
Prior art keywords
copper
iron
arsenic
solution
precipitation
Prior art date
Application number
NO741691A
Other languages
Norwegian (no)
Inventor
H Junghanss
H Kudelka
K Dommain
Original Assignee
Duisburger Kupferhuette
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duisburger Kupferhuette filed Critical Duisburger Kupferhuette
Publication of NO741691L publication Critical patent/NO741691L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • C22B15/0091Treating solutions by chemical methods by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • C22B15/0093Treating solutions by chemical methods by gases, e.g. hydrogen or hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Treatment Of Sludge (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

Fremgangsmåte til utfelling ogProcedure for precipitation and

atskillelse av arsen fraseparation of arsenic from

kobberholdige oppløsninger.copper-containing solutions.

Oppfinnelsen vedrører en fremgangsmåte til utfelling og adskillelse av arsen fra arsen- og kobberholdige oppløsninger, slik de fremkommer ved oppberedning av bergverks- eller prosessprodukter på hydrometallurgisk måte. Oppløsningene kan ved siden av kobber og arsen inneholde vilkårlige mengder av ytterligere ikke-jernmetaller og som anioner klorid- eller sulfationer eller blandinger av disse. The invention relates to a method for the precipitation and separation of arsenic from arsenic- and copper-containing solutions, as they appear during the preparation of mining or process products in a hydrometallurgical manner. In addition to copper and arsenic, the solutions may contain arbitrary amounts of further non-ferrous metals and, as anions, chloride or sulphate ions or mixtures thereof.

Arsen- og kobberholdige oppløsninger fremkommer i løpet av den hydrometallurgiske oppberedning ved tallrike bergverks- eller, prosessfremgangsmåter. Eksempelvis foretas oppberedningen av kobberholdige, sulfidiske fIotasjonskonsentrater, spesielt såkalte bulk- Arsenic and copper-containing solutions appear during the hydrometallurgical preparation in numerous mining or processing methods. For example, the preparation of copper-containing, sulphidic flotation concentrates, especially so-called bulk

og midtkonsentrater, økende på hydrometallurgisk måte. Ved oksydativ trykklutning eller i kombinasjon av en sulfatiserende røsting med and middle concentrates, increasing in a hydrometallurgical manner. By oxidative pressure tilting or in combination with a sulphating roasting with

etterfølgende syrelutning fremkommer derved oppløsninger som ved siden av arsen og kobber dessuten inneholder sink, jern og eventuelt ytterligere metaller som nikkel, kobolt og lignende. Videre gjennom-føres eksempelvis.fjerning av forstyrrende forurensninger fra de vandige oppløsninger av sinksulfat, som skal tilføres en sinkelektro-lyse, således at man underkaster oppløsningen en sinkstøvsedimenta-sjon. Herved tilsettes arsenik (As^O^) og fåes et sementat, som ved siden av overskytende sink inneholder alle overfor sink elektropositive forurensninger, spesielt kobber, nikkel, bly og lignende i metallisk eller arsenidisk form. subsequent acid leaching results in solutions which, in addition to arsenic and copper, also contain zinc, iron and possibly further metals such as nickel, cobalt and the like. Furthermore, for example, the removal of disturbing contaminants from the aqueous solutions of zinc sulphate, which are to be added to a zinc electrolysis, is carried out, so that the solution is subjected to a zinc dust sedimentation. In this way, arsenic (As^O^) is added and a cementate is obtained, which, in addition to excess zinc, contains all zinc electropositive impurities, especially copper, nickel, lead and the like in metallic or arsenide form.

Et slikt sementat har eksempelvis følgende analyse: Such a cementate has, for example, the following analysis:

Ved blyprosessbehandlingen fremkommer i løpet av av-kobringen av materialblyet et likeledes kobber- og arsenholdig mellom-produkt, som betegnes som såkalt "kobberslikk". Alt etter fremgangsmåte (enten direkte utseigring av kobberet resp. ekstra innrøring av svovel) fremkommer analysen av kobberslikken eksempelvis som følger: During the lead process treatment, a copper- and arsenic-containing intermediate product, which is referred to as "copper lick", appears during the removal of copper from the material lead. Depending on the method (either direct removal of the copper or additional mixing of sulphur), the analysis of the copper lick appears, for example, as follows:

Por overføring av sistnevrte produkt i en sur vandig oppløsning og utvinning av kobberet fra denne oppløsning, er det i DOS 2.036.391 foreslått en fremgangsmåte som prinsippielt kan anvendes på tilsvarende materialer som f.eks. ovennevnte sementslam fra sink-lutrensning. En metode til arsenfjerning resp. til nedsettelse av As : Cu-forholdet er ikke angitt i nevnte DOS. Følgelig er det ved denne fremgangsmåte ved reduksjonselektrolyse utvunnede kobber meget urent og må underkastes en ekstra raffinasjonselektrolyse. Anleggs-kapitalfortjeneste og strømomkostninger må følgelig påføres to ganger, hvilket gjør denne kobberproduksjonens rentabilitet noe tvilsomt. Por transfer of the last-mentioned product in an acidic aqueous solution and extraction of the copper from this solution, a method is proposed in DOS 2,036,391 which can in principle be applied to similar materials such as e.g. above-mentioned cement sludge from zinc leaching. A method for arsenic removal resp. to the reduction of the As : Cu ratio is not stated in the said DOS. Consequently, the copper extracted by this method by reduction electrolysis is very impure and must be subjected to an additional refining electrolysis. Capital gains and electricity costs must therefore be applied twice, which makes the profitability of this copper production somewhat doubtful.

En for mange formål anvendbar fremgangsmåte til adskillelse av kobber og arsen på våt måte er for kort tid siden foreslått av MONTECATINI EDISON (DOS 2.032.417). Ifølge denne fremgangsmåte blandes arsen- og kobberholdige oppløsninger med Fe^<+->ioner av vilkårlig opprinnelse, idet det ved redokslikevekten inntrer en sterk, reduksjon av kobber til enverdig tilstand, i hvilke form kobberet forblir i oppløsning i den kloridioneholdige oppløsning som l_ CUCI2 _7 -kompleks. Ved delnøytralisering av. oppløsningen med et vilkårlig alkali utfelles ved pH-verdier fra 3,0 - 3,5 det samlede arsen, jern og eventuelt, foreliggende sulfationer av oppløsningen som jernarsenat resp. jern(III)-hydroksyd resp. gips. Fra den således rensede oppløsning kan kobberet fremstilles etter kjente fremgangsmåter, f.eks. ved sementering med jern som sementkobber eller ved luftoksydasjon som kobberoksyklorid. A method for separating copper and arsenic in a wet manner, which can be used for many purposes, was recently proposed by MONTECATINI EDISON (DOS 2,032,417). According to this method, arsenic- and copper-containing solutions are mixed with Fe^<+-> ions of arbitrary origin, as a strong reduction of copper to a univalent state occurs at the redox equilibrium, in which form the copper remains in solution in the chloride ion-containing solution as l_ CUCI2 _7 complex. By partial neutralization of. the solution with an arbitrary alkali precipitates at pH values from 3.0 - 3.5 the combined arsenic, iron and possibly, present sulphate ions of the solution as iron arsenate resp. iron(III) hydroxide resp. plaster. From the thus purified solution, the copper can be produced according to known methods, e.g. by cementing with iron as cement copper or by air oxidation as copper oxychloride.

Denne i og for seg elegante fremgangsmåte har to vesent-lige begrensninger, som begrenser dets anvendbarhet resp. umuliggjør den for det meget viktige område med elektrolytisk kobberutvinning: 1. Fremgangsmåten er begrenset til kloridiske oppløsninger, da i rere sulfatiske oppløsninger er ingen Cu<+->forbind-elser stabile, men underligger en disproporsjonering. Derved kommer ikke fremgangsmåten i betraktning for kobberholdige oppløsninger, som skal tilføres til en kobberelektrolyse. 2. I kloridiske oppløsninger er fremgangsmåten begrenset til slike relativt lave kobberinnhold. For den komplekse dannelse av kobber(I)-ionet, som danner et avgjørende punkt ved denne fremgangsmåte, er det nemlig nødvendig med betraktelig langt overstøkiometriske Cl -konsentrasjoner, som det også fremgår av de angitte eksempler. Blir kloridoverskuddet for lavt, så faller det ut kobber(I)-klorid (CuCl) og går tapt med den frafiltrerte jern- og arsenutfelling. Fremgangsmåten er følgelig begrenset til lave kobberkonsentrasjoner, da det for høyere konsentrasjoner ikke bringes i oppløsning resp. ikke kan holdes i oppløsning det. nødvendige kloridioneinnhold. Prak-sis er imidlertid av økonomiske grunner nettopp interessert i mest mulige høykonsentrerte oppløsninger. This inherently elegant method has two significant limitations, which limit its applicability or makes it impossible for the very important area of electrolytic copper extraction: 1. The method is limited to chloride solutions, as in pure sulphate solutions no Cu<+-> compounds are stable, but are subject to disproportionation. Thereby, the method does not come into consideration for copper-containing solutions, which are to be added to a copper electrolysis. 2. In chloride solutions, the method is limited to such relatively low copper contents. For the complex formation of the copper (I) ion, which forms a decisive point in this method, considerably over-stoichiometric Cl - concentrations are necessary, as is also evident from the examples given. If the excess chloride is too low, copper (I) chloride (CuCl) precipitates out and is lost with the filtered iron and arsenic precipitate. The method is therefore limited to low copper concentrations, as for higher concentrations it is not brought into solution or cannot be kept in dissolution it. required chloride ion content. However, for economic reasons, practice is precisely interested in the most highly concentrated solutions possible.

I det følgende omtales nå en våtmetallurgisk fremgangsmåte som ikke har de nevnte begrensninger og muliggjør en praktisk talt kvantitativ adskillelse av arsen fra verdimetallene, uavhengig av oppløsningens As-konsentrasjon, dens tilsetning samt aniontypen. In what follows, a wet metallurgical method is now described which does not have the aforementioned limitations and enables a practically quantitative separation of arsenic from the valuable metals, regardless of the As concentration of the solution, its addition and the type of anion.

Fremgangsmåten ifølge oppfinnelsen til utfelling og adskillelse av arsen fra arsen- og kobberholdige oppløsninger, som eventuelt dessuten kan inneholde ytterligere ikke-jernmetaller, på metallurgisk måte erkarakterisert vedat man behandler oppløsningen, såvidt de deri inneholdte ioner ikke allerede foreligger i det høyeste verdighetstrinn med oksydasjonsmidler til. oppnåelse av denne tilstand under opprettholdelse av en pH-verdi. lik eller mindre .enn 1, en i forhold til arsen overstøkiometrisk. mengde jern tilsettes i form av et syreoppløselig jernsalt og bringes i oppløsning, etteroksyderes eventuelt og ved tilsetning av alkali,. fortrinnsvis kalk, innstilles en pH-verdi på 1,9-2,0 i kloridholdige resp. på 2,7.-2,8 i rene sulfatholdige oppløsninger, den utfelte blanding bestående av jernarsenat, overskytende jernhydroksyd:, eventuelt gips og syreuoppløse-•lige residuer av det anvendte material adskilles. fra moderluten og denne opparbeides på kjent måte til kobber og eventuelt ennu tilstedeværende andre metaller. The method according to the invention for the precipitation and separation of arsenic from arsenic and copper-containing solutions, which may also contain additional non-ferrous metals, in a metallurgical manner is characterized by treating the solution, unless the ions contained therein are already present in the highest degree of dignity with oxidizing agents to . achieving this condition while maintaining a pH value. equal to or less than 1, one relative to arsenic superstoichiometrically. quantity of iron is added in the form of an acid-soluble iron salt and brought into solution, post-oxidised if necessary and by the addition of alkali. preferably lime, a pH value of 1.9-2.0 is set in chloride-containing or of 2.7.-2.8 in pure sulphate-containing solutions, the precipitated mixture consisting of iron arsenate, excess iron hydroxide:, possibly gypsum and acid-insoluble residues of the material used are separated. from the mother liquor and this is worked up in a known manner to copper and any other metals still present.

Oppløsningens sammensetning og opprinnelse er derved vilkårlig. Det kan derved dreie seg om en lut fra den sulfatiserende røsting av flotasjonskonsentrater, åen.klorerende røsting av kisav-branner, den oksyderende oppløsning av sementater,. kobberslikker, kobberblysten og lignende stoffer eller om oppløsninger for eller fra kobberelektrolysen. En eventuell behandling av oppløsningen med oksydasjonsmidler, f.eks. klor, oksygen, luft eller oksygen-luft-blandinger er nødvendig for å sikre at arsen foreligger i femverdig, jern i treverdig valenstilstand..Hvis det ikke i unntakstilfeller allerede er tilstede tilstrekkelig jern, tilsettes jern i form av et av dets syreoppløselige salter, feks.. Pe -(OH)-^, FeSO^^^O og lig- . nende. "Herved kan det finne anvendelse helt verdiløse, ofte sogar vanskelige fjernbare stoffer som beiseriavlut, utkrystalliserte jernsalter, f.eks. fra titanhvitproduksjon eller utfellingsslam fra lutrensningsprosesser også blandet med verdifulle stoffer. Foreligger jernet i de nevnte stoffer ennu ikke i det høyeste, treverdige oksydasjonstrinn, så er det nødvendig med en etteroksydasjon med en av de nevnte oksydasjonsmidler. Mengden tilsatt jern må støkbmetrisk minst tilsvare mengden av det .i oppløsningen tilstedeværende arsen, dvs. 56 kg.Fe/75 kg As. Hensiktsmessig anvender man det støkiome-triske overskudd på 1,5 - 3 Fe/lAs, dvs. 85 - 170 kg/Fe/75 kg As, for å nedsette restoppløseligheten. av arsen ved den etterfølgende utfelling. Utfellingen av arsen.foretas ved tilsetning av hydroksylione-avgivende stoffer, som alkali- eller jordalkalihydroksyd eller The composition and origin of the solution is therefore arbitrary. It can therefore be a lye from the sulphating roasting of flotation concentrates, the chlorinating roasting of kisav fires, the oxidising solution of cementates. copper licks, copper lead and similar substances or about solutions for or from copper electrolysis. Any treatment of the solution with oxidizing agents, e.g. chlorine, oxygen, air or oxygen-air mixtures are necessary to ensure that arsenic is present in the pentavalent, iron in the trivalent valence state..If in exceptional cases sufficient iron is not already present, iron is added in the form of one of its acid-soluble salts, e.g.. Pe -(OH)-^, FeSO^^^O and lig- . nende. "Hereby, completely worthless, often even difficult-to-remove substances such as emery liquor, crystallized iron salts, e.g. from titanium white production or precipitation sludge from lye cleaning processes can be used, also mixed with valuable substances. If the iron in the mentioned substances is not yet in the highest, trivalent oxidation state , then post-oxidation with one of the mentioned oxidizing agents is necessary. The amount of iron added must stoichiometrically at least correspond to the amount of arsenic present in the solution, i.e. 56 kg.Fe/75 kg As. Appropriately, the stoichiometric excess is used of 1.5 - 3 Fe/lAs, i.e. 85 - 170 kg/Fe/75 kg As, in order to reduce the residual solubility of the arsenic in the subsequent precipitation. The precipitation of the arsenic is carried out by the addition of hydroxyl ion-releasing substances, such as alkali - or alkaline earth hydroxide or

-karbonat..Av prismessige og teknologiske grunner er det å foretrekke anvendelsen av kalk, idet den fra sulfationeholdige oppløsning samtidig utfelt gips ved den etterfølgende faseadskillelse virker som filterhjelpemiddel.. Utfellingen av arsen foregår etter ligningen -carbonate..For price and technological reasons, it is preferable to use lime, as the gypsum simultaneously precipitated from the sulfate ion-containing solution during the subsequent phase separation acts as a filter aid.. The precipitation of arsenic takes place according to the equation

Overskytende jernsalt.utfelles samtidig etter ligningen resp. i sulfationeholdig oppløsning etter ligningen Excess iron salt is precipitated at the same time according to the equation resp. in sulfate ion-containing solution according to the equation

som hydroksyd resp. basisk jernsulfat. as hydroxide or basic ferrous sulfate.

Gjennomføres utfellingen med kalk, så faller det samtidig ut gips, tilsvarende ligningen If the precipitation is carried out with lime, then gypsum is precipitated at the same time, corresponding to the equation

pH-verdien er å overholde nøyaktig under den samlede utfelling, idet stillingen av utfellings-pH-verdien avhenger av typen anioner. I kloridholdige oppløsninger utgjør den optimale verdi nøyaktig 1,9-2,0, i rent.sulfatisk nøyaktig 2,7-2,8.. Underskrides de angitte pH-verdier, så forblir det utillatelig høye arseninnhold i oppløsning. Overskrides de så er riktignok arsenutfellingen full-stendig, imidlertid medutfelles med voksende pH-verdi økende kobber-mengder, nemlig ifølge ligningene The pH value is to be observed precisely during the overall precipitation, as the position of the precipitation pH value depends on the type of anions. In chloride-containing solutions, the optimum value is exactly 1.9-2.0, in pure sulphate solutions exactly 2.7-2.8. If the specified pH values fall below, the arsenic content in solution remains unacceptably high. If they are exceeded, the arsenic precipitation is indeed complete, however, increasing amounts of copper are also precipitated with increasing pH value, namely according to the equations

og går tapt med utfellingsslammet som går til deponering. Den dannede utfelling inneholder jernarsenat, jernhydroksyd resp. basisk jernsulfat, gips og syreuoppløselige residuer, av. det anvendte material og av utfellingsmidlet. Det blir på vanlig måte ved filterpressing, dreiefilter og lignende adskilt fra moderluten og denne opparbeides på kjent måte til deri inneholdte verdibærere kobber, sink osv. and is lost with the precipitation sludge that goes to landfill. The formed precipitate contains iron arsenate, iron hydroxide or basic ferrous sulphate, gypsum and acid-insoluble residues, of. the material used and of the precipitating agent. It is separated from the mother liquor in the usual way by filter pressing, rotary filters and the like, and this is processed in a known way into the value carriers copper, zinc etc. contained therein.

Resultatet av utfellingsfremgangsmåten. ifølge oppfinnelsen, hvor arsen og treverdig jern utfelles sterkt, kobber derimot praktisk talt ikke, er forsåvidt overraskende, da det ikke lar seg utlede av utfellingskurven av. FeAsO^og Cu-oksyklorid resp. -hydroksyd. Da nemlig de nevnte kurver skjærer hverandre finnes det strengt teoretisk overhodet intet pH-område, hvori begge komponenter kan ad-scilles kvantitativt. Ved fremgangsmåten ifølge oppfinnelsen for innstilling av en nøyaktig definert pH-verdi oppnås allikevel et teknologisk tilfredsstillende kompromi mellom best mulig As-utfelling med minimalt kobbertap. Denne pH-verdi ligger i kloridioneholdige oppløsninger som eventuelt også kan inneholde andre anioner, Seks. også sulfationer, ved nøyaktig 1,9-2,0.i rent sulfationeholdige opp-løsninger ved 2,7-2,8. Dette funn står i god overensstemmelse med den mindre komplekseringstendens av SO2^ - -ionene, sammenlignet med Cl -ioner. The result of the precipitation procedure. according to the invention, where arsenic and trivalent iron are strongly precipitated, but copper practically not, is certainly surprising, as it cannot be deduced from the precipitation curve of. FeAsO^ and Cu-oxychloride resp. -hydroxide. Since the aforementioned curves intersect, there is strictly theoretically no pH range in which both components can be separated quantitatively. With the method according to the invention for setting a precisely defined pH value, a technologically satisfactory compromise is nevertheless achieved between the best possible As precipitation with minimal copper loss. This pH value is found in solutions containing chloride ions which may also contain other anions, Seks. also sulfate ions, at exactly 1.9-2.0. in pure sulfate ion-containing solutions at 2.7-2.8. This finding is in good agreement with the smaller complexation tendency of the SO2^ - ions, compared to Cl - ions.

Det skal til slutt henvises til at det dannede utfellingsslam. inneholder arsen i deponeringsvennlig form... Den utfelte forbindelse FeAsO^^HgO (Skorodit) har av alle kjente arsenforbindelser med Finally, reference must be made to the fact that precipitation sludge was formed. contains arsenic in a deposit-friendly form... The precipitated compound FeAsO^^HgO (Skorodite) has of all known arsenic compounds with

(Chuklantev, J. Anal. Ch. (russisk), 11 (1956) 529) den laveste arsen-oppløselighet. I et arbeide av G. Zintl i "Erzmetall", 26 (1973), 2, side 141-147 påvises overbevisende denne forbindelses deponerings-ufarlighet. (Chuklantev, J. Anal. Ch. (Russian), 11 (1956) 529) the lowest arsenic solubility. In a work by G. Zintl in "Erzmetall", 26 (1973), 2, pages 141-147, the deposition safety of this compound is convincingly demonstrated.

De følgende eksempler skal forklare fremgangsmåten ifølge oppfinnelsen uten å begrense den. The following examples shall explain the method according to the invention without limiting it.

Eksempel 1.Example 1.

10 kg av et sementatslam med 37,77» Cu, 7, 85% As og 10,458 10 kg of a cementate slurry with 37.77" Cu, 7.85% As and 10.458

Zn (i tørr tilstand) ble suspendert i 50 liter av en fortynnet svovelsyre (85 g/liter HgSO^). Suspensjonen ble omrørt ved 60°C og elemen-tært klor innledet med 800 liter/time til opptreden av klorpotensialet på l800 mV (målt med thalamidelektrode).. Oppløsningen inneholdt 76,5 g/liter Cu og 17,2 g/liter As. Deretter ble det under ytterligere omrøring og svovelsyretilsetning til sammen innrørt 6 kg av en våt jerngips-utfellingsslam (ca. 50% HgO, ca. 24% Fe (i tørrvekt), ca. Zn (in the dry state) was suspended in 50 liters of a dilute sulfuric acid (85 g/liter HgSO 4 ). The suspension was stirred at 60°C and elemental chlorine introduced at 800 litres/hour until the appearance of the chlorine potential of 1800 mV (measured with a thalamide electrode). The solution contained 76.5 g/litre Cu and 17.2 g/litre As. Then, with further stirring and addition of sulfuric acid, a total of 6 kg of a wet iron gypsum precipitation sludge (approx. 50% HgO, approx. 24% Fe (in dry weight), approx.

30% CaO (i tørrvekt). Suspensjonen inneholder da 71,1 g/liter Cu, 14,0 g/liter As og 15,7 g/liter Fe, hvilket tilsvarer et støkiometrisk forhold Fe:As = 1,5:1. Suspensjonen ble fortynnet med vann i forholdet 1:1 og utfelt med en kalkmelksuspensjon inntil en pH-verdi på nøyaktig 2,0. Filtratet inneholdt 35,2 g/liter Cu, 0,06 g/liter As og 0,26 g/liter Pe, residuet 1,19$ Cu og 7,65% As. Under hensyntagen til oppløsningsmiddelvolumet resp. residumengden er dermed As bragt til utskillelse til over $ 9% i residuet, mens Cu forblir i oppløs-ningen til over 91%. 30% CaO (in dry weight). The suspension then contains 71.1 g/litre Cu, 14.0 g/litre As and 15.7 g/litre Fe, which corresponds to a stoichiometric ratio Fe:As = 1.5:1. The suspension was diluted with water in a ratio of 1:1 and precipitated with a milk of lime suspension until a pH value of exactly 2.0. The filtrate contained 35.2 g/liter Cu, 0.06 g/liter As and 0.26 g/liter Pe, the residue 1.19% Cu and 7.65% As. Taking into account the solvent volume or the amount of residue is thus As precipitated to more than $9% in the residue, while Cu remains in the solution to more than 91%.

Eksempel 2.Example 2.

1,5 kg av et sementat som i eksempel 1 ble suspendert i 20 liter av en CuCl2-oppløsning (38,8 g/liter Cu 2 +). Under tilsstning av fortynnet svovelsyre og opprettholdelse av en pH-verdi på ca. 0,5 ble suspensjonen oksydert med luft inntil det samlede kobber forelå i 1.5 kg of a cementate which in example 1 was suspended in 20 liters of a CuCl2 solution (38.8 g/liter Cu 2 +). Under the addition of dilute sulfuric acid and maintaining a pH value of approx. 0.5, the suspension was oxidized with air until the total copper was present in

toverdig form. Suspensjonen inneholdt 65,0 g/liter Cu og 5,4 g/liter As. Denne blanding ble blandet ytterligere med svovelsyre og jerngips-utfellingsslam til et molforhold på Fe:As = 2:1. bivalent form. The suspension contained 65.0 g/litre Cu and 5.4 g/litre As. This mixture was further mixed with sulfuric acid and iron gypsum precipitation sludge to a molar ratio of Fe:As = 2:1.

Etter utfelling med kalk ved pH = 2,0 inneholdt oppløs-ningen 63,6 g/liter Cu, 0,026 g/liter As og 0,185 g/liter Fe, residuet 0,71% Cu og 4,10% As. After precipitation with lime at pH = 2.0, the solution contained 63.6 g/liter Cu, 0.026 g/liter As and 0.185 g/liter Fe, the residue 0.71% Cu and 4.10% As.

Eksempel 3.Example 3.

10 kg av en kobberslikk med 56,7% Pb, 28,3% Cu, 1,45%10 kg of a copper lick with 56.7% Pb, 28.3% Cu, 1.45%

As, 4,45% Zn samt Sb, Sn, Fe, Ni, Ag og andre bestanddeler ble inn-ført i 50 liter fortynnet svovelsyre (17%-ig) ved 80°C. Under intens omrøring ble det innført teknisk oksygen (ca. 90%-ig) til kvantitativ oppløsning av kobberet. Det godt filtrerbare residuet inneholdt det samlede bly som PbSO^samt det samlede innhold av Sb, Sn, Ag og en del av arsenet. Oppløsningen inneholdt 99 g/liter Cu og 1,25 g/liter As. Deretter ble oppløsningen blandet med ca. 0,5 kg av et fra beiseriavlut stammende jernsulfat-heptahydrat (FeSO^.7H20) og jernet oksydert til treverdig trinn. Molforholdet Fe:As utgjorde ca. 1,9:1. Etter utfelling med kalkhydratsuspensjon ved pH 2,75 inneholdt oppløs-ningen 94,3 g/liter Cu, 0,014 g/liter As, 0,11 g/liter Fe, hvilket tilsvarer en As-atskillelse på over 99%. As, 4.45% Zn as well as Sb, Sn, Fe, Ni, Ag and other components were introduced into 50 liters of diluted sulfuric acid (17% strength) at 80°C. During intense stirring, technical oxygen (approx. 90%) was introduced to quantitatively dissolve the copper. The easily filterable residue contained the total lead as PbSO^ as well as the total content of Sb, Sn, Ag and part of the arsenic. The solution contained 99 g/litre Cu and 1.25 g/litre As. The solution was then mixed with approx. 0.5 kg of a ferric sulfate heptahydrate (FeSO^.7H20) originating from emery liquor and the iron oxidized to the trivalent stage. The Fe:As molar ratio was approx. 1.9:1. After precipitation with lime hydrate suspension at pH 2.75, the solution contained 94.3 g/litre Cu, 0.014 g/litre As, 0.11 g/litre Fe, which corresponds to an As separation of over 99%.

Claims (3)

1. Fremgangsmåte til utfelling og adskillelse av arsen fra kobberholdige oppløsninger, som eventuelt dessuten kan inneholde ytterligere ikke-jernmetaller på våtmetallurgisk måte, karakterisert ved at man behandler oppløsningen såvidt de deri inneholdte ioner ikke allerede foreligger i høyere verdighetstrinn med oksydasjonsmidler til oppnåelse av denne tilstand under opprettholdelse av en pH-verdi litt mindre enn 1, tilsetter en i forhold til arsen overstøkiometrisk mengde jern i form av et syreoppløselig jernsalt og bringer i oppløsning, eventuelt etteroksyderer med tilsetning av alkali, fortrinnsvis kalk, innstiller en pH-verdi på 1,9-2,0 i kloridholdige resp. på 2,7-2,8 i rere sulfatholdige oppløsninger, ad-skiller den utfelte blanding bestående av jernarsenat og overskytende jernhydroksyd, eventuelt gips og syreoppløselige residuer av det anvendte materiale, fra moderluten og opparbeider denne på kjent måte på kobber og eventuelt ennu tilstedeværende andre metaller.1. Process for the precipitation and separation of arsenic from copper-containing solutions, which may also contain additional non-ferrous metals in a wet metallurgical manner, characterized by treating the solution unless the ions contained therein are already present in a higher rank with oxidizing agents to achieve this state while maintaining a pH value slightly less than 1, relative to the arsenic, one adds an overstoichiometric amount of iron in the form of an acid-soluble iron salt and brings it into solution, possibly post-oxidizing with the addition of alkali, preferably lime, setting a pH value of 1, 9-2.0 in chloride-containing resp. of 2.7-2.8 in pure sulphate-containing solutions, separates the precipitated mixture consisting of iron arsenate and excess iron hydroxide, possibly gypsum and acid-soluble residues of the material used, from the mother liquor and processes this in a known manner on copper and possibly still present other metals. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at man som jernsalter anvender avfallsstoffer, f.eks. beiseriavlut, utkrystallisert jernsulfatheptahydrat eller fortrinnsvis tre verdig jernhydroksyd fra utrensnings- eller utfellingsprosesser.2. Method according to claim 1, characterized in that waste substances are used as iron salts, e.g. emery liquor, crystallized ferric sulfate heptahydrate or preferably trivalent ferric hydroxide from purification or precipitation processes. 3. Fremgangsmåte ifølge krav 1 og 2,. karakterisert ved at man som oksydasjonsmiddel anvender klor, oksygen, luft resp. en oksygen-luftblanding.3. Method according to claims 1 and 2. characterized by using chlorine, oxygen, air or an oxygen-air mixture.
NO741691A 1973-08-24 1974-05-10 NO741691L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2342729A DE2342729C2 (en) 1973-08-24 1973-08-24 Process for the precipitation and separation of arsenic from solutions containing copper

Publications (1)

Publication Number Publication Date
NO741691L true NO741691L (en) 1975-03-24

Family

ID=5890577

Family Applications (1)

Application Number Title Priority Date Filing Date
NO741691A NO741691L (en) 1973-08-24 1974-05-10

Country Status (9)

Country Link
AT (1) AT338004B (en)
BE (1) BE814007A (en)
DE (1) DE2342729C2 (en)
ES (1) ES429518A1 (en)
FI (1) FI179674A (en)
IT (1) IT1019086B (en)
NL (1) NL7410897A (en)
NO (1) NO741691L (en)
SE (1) SE7408109L (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118243A (en) * 1977-09-02 1978-10-03 Waste Management Of Illinois, Inc. Process for disposal of arsenic salts
JPS5482307A (en) * 1977-12-14 1979-06-30 Dowa Mining Co Arsenic removing method
CA1176062A (en) * 1980-12-08 1984-10-16 Hayden Monk Recovery of copper from arsenical drosses
DE3633066C2 (en) * 1986-09-29 1993-12-02 Fraunhofer Ges Forschung Process for removing arsenic from process water in the glass industry
DE3908491A1 (en) * 1989-03-15 1990-09-20 Fraunhofer Ges Forschung METHOD FOR REMOVING ARSEN AND / OR ANTIMON FROM SOLUTIONS CONTAINING ARSEN AND / OR ANTIMON AS ANIONIC FLUOROCOMPLEXES
AUPN439395A0 (en) * 1995-07-25 1995-08-17 Bactech (Australia) Pty Limited Process for the removal of arsenic from bacterial leach liquors and slurries
SE514338C2 (en) * 1999-06-01 2001-02-12 Boliden Mineral Ab Process for the purification of acidic saline solution
DE10056079A1 (en) * 2000-11-07 2002-05-08 Volkswagen Ag Twin slush skin molding tool has spacers on the punch to maintain a set thickness of a foam backing layer
FI126884B (en) * 2013-11-29 2017-07-14 Outotec Finland Oy Method and arrangement for separating arsenic from starting material
CN111118288A (en) * 2020-03-24 2020-05-08 烟台市金奥环保科技有限公司 Method for recovering copper, zinc and arsenic in acid immersion liquid
CN112108485A (en) * 2020-08-25 2020-12-22 锡矿山闪星锑业有限责任公司 Harmless treatment method of arsenate

Also Published As

Publication number Publication date
ATA569774A (en) 1976-11-15
FI179674A (en) 1975-02-25
NL7410897A (en) 1975-02-26
DE2342729B1 (en) 1975-01-30
DE2342729C2 (en) 1975-09-11
ES429518A1 (en) 1976-09-01
SE7408109L (en) 1975-02-25
BE814007A (en) 1974-08-16
IT1019086B (en) 1977-11-10
AT338004B (en) 1977-07-25

Similar Documents

Publication Publication Date Title
US4244734A (en) Process for recovering metal values from materials containing arsenic
US4244735A (en) Chloride leach process for recovering metal values in the presence of arsenic
US3985857A (en) Process for recovering zinc from ferrites
NO161510B (en) PROCEDURE FOR THE RECOVERY OF ZINC FROM SINCULATED SULPHIDIC MATERIALS.
NO162772B (en) PROCEDURE FOR THE EXCLUSION OF SULPHIDS CONTAINING ZINC AND IRON.
US4219354A (en) Hydrometallurgical process for the treatment of oxides and ferrites which contain iron and other metals
NO741691L (en)
US4389248A (en) Method of recovering gold from anode slimes
FI74046B (en) TILLVARATAGANDE AV ZINK UR ZINK INNEHAOLLANDE SULFIDMATERIAL.
US3434798A (en) Process for recovering zinc from ferrites
US5126116A (en) Method for forming copper arsenate
NO161509B (en) PROCEDURE FOR THE RECOVERY OF ZINC FROM ZINCULPHIDE ORE CONCENTRATES.
US4874429A (en) Hydrometallurgical process for the recovery of silver from copper electrolysis anode sludge
US5002748A (en) Method for the preparation of copper arsenate
DE2528989A1 (en) PROCESS FOR ENHANCING SILVER FROM SILVER AND LEAD-CONTAINING RESIDUES
US3684492A (en) Process for the preparation of arsenic-free copper cement from arsenical acid solutions
GB1534171A (en) Process for the recovery of metals contained in sludges containing metal sulphates resulting from the processing of ores
US2576445A (en) Recovery of vanadium values from an alkali metal vanadate solution
US1992060A (en) Process for treating cyanide solutions
US4457897A (en) Process for the selective dissolution of cobalt from cobaltite-pyrite concentrates
DE2714262C2 (en) Process for the precipitation and separation of arsenic from solutions containing copper
US4341742A (en) Cuprous chloride production from chalcopyrite
US4959203A (en) Preparation of copper arsenate
RU2136768C1 (en) Method of processing bismuth-containing sulfide ores and concentrates of such ores
US2162091A (en) Manufacture of cupric oxychloride