NO340425B1 - Tomotor pump for underwater use - Google Patents
Tomotor pump for underwater use Download PDFInfo
- Publication number
- NO340425B1 NO340425B1 NO20140275A NO20140275A NO340425B1 NO 340425 B1 NO340425 B1 NO 340425B1 NO 20140275 A NO20140275 A NO 20140275A NO 20140275 A NO20140275 A NO 20140275A NO 340425 B1 NO340425 B1 NO 340425B1
- Authority
- NO
- Norway
- Prior art keywords
- motor
- pump
- motors
- shaft
- barrier fluid
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims description 28
- 230000004888 barrier function Effects 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 230000006698 induction Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 210000003954 umbilical cord Anatomy 0.000 description 4
- 239000013535 sea water Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/08—Units comprising pumps and their driving means the pump being electrically driven for submerged use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/08—Units comprising pumps and their driving means the pump being electrically driven for submerged use
- F04D13/086—Units comprising pumps and their driving means the pump being electrically driven for submerged use the pump and drive motor are both submerged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/12—Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
- H02K5/132—Submersible electric motors
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Motor Or Generator Frames (AREA)
- Rotary Pumps (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Description
Oppfinnelsens område Field of the invention
Foreliggende oppfinnelse vedrører en pumpe primært for bruk i undervannsoperasjoner, spesielt i olje- og gassindustrien. The present invention relates to a pump primarily for use in underwater operations, especially in the oil and gas industry.
Bakgrunn for oppfinnelsen Background for the invention
Leting etter olje- og gassreserver under havbunnen blir stadig mer viktig etter hvert som lagrene av mer tilgjengelige naturressurser tømmes og det blir nødvendig å lete i dypere og mer utfordrende områder. Ekstreme dyp og lengre avstander krever pumpeanordninger med høyere kapasitet, som også må være robuste og tåle de høye trykkene de utsettes under vannet og de vanskelige forholdene som møtes på store havdyp. I de senere år har det vært en tendens mot bruk av større pumper som krever større og sterkere elektriske motorer, men det er en grense for hvor langt denne teknologien kan strekkes. Videre må enhver ny teknologi på dette området gjennom omfattende testing og må bestå kvalifiseringsregimer som er tidkrevende og således resulterer i forsinkelser med å ta teknologien i bruk på feltet. De tar også opp betydelige personalressurser og er således dyre. Searching for oil and gas reserves under the seabed is becoming increasingly important as the stocks of more accessible natural resources are depleted and it becomes necessary to search in deeper and more challenging areas. Extreme depths and longer distances require pumping devices with higher capacity, which must also be robust and withstand the high pressures they are exposed to underwater and the difficult conditions encountered at great ocean depths. In recent years, there has been a tendency towards the use of larger pumps that require larger and stronger electric motors, but there is a limit to how far this technology can be stretched. Furthermore, any new technology in this area must go through extensive testing and must pass qualification regimes which are time-consuming and thus result in delays in putting the technology into use in the field. They also take up significant personnel resources and are thus expensive.
Oppsummering av oppfinnelsen Summary of the invention
Ifølge foreliggende oppfinnelse tilveiebringes et apparat omfattende en pumpe med en pumpedrivaksel for å drive pumpen, en første motor tilkoblet via en første fleksibel kobling for å drive én ende av akselen og en andre motor tilkoblet via en andre fleksibel kobling for å drive den motsatte enden av akselen, og en drivenhet med variabel hastighet som forbinder hver av de første og andre motorene elektrisk for å drive pumpedrivakselen. According to the present invention there is provided an apparatus comprising a pump having a pump drive shaft for driving the pump, a first motor connected via a first flexible coupling for driving one end of the shaft and a second motor connected via a second flexible coupling for driving the opposite end of the shaft, and a variable speed drive unit electrically connecting each of the first and second motors to drive the pump drive shaft.
Fortrinnsvis er drivenheten med variabel hastighet felles for den første og den andre motoren. Elektriske ledere for motorene kan være anbragt i en navlestreng som kan være felles for begge motorene. Preferably, the variable speed drive unit is common to the first and second motors. Electrical conductors for the motors can be arranged in an umbilical cord which can be common to both motors.
De fleksible koblingene er fortrinnsvis tilpasset for å tillate aksial termisk ekspansjon uten påvirkning av pumpens drift. The flexible couplings are preferably adapted to allow axial thermal expansion without affecting the operation of the pump.
Oppfinnelsen kan tilveiebringe en pumpeenhet med høyere kapasitet ved anvendelse av utprøvd teknologi. Dette gjør pumpen mer akseptabel i bransjen og mer kostnadseffektiv å realisere siden den kan tas i bruk uten forsinkelsen og kostnaden forbundet med kompliserte lovpålagte kvalifiseringsprosesser. I tillegg vil pumpens pålitelighet trolig være høyere sammenliknet med en revolusjonært ny pumpe siden utprøvde og testede komponenter blir anvendt. Den har også den fordel at dersom én motor skulle svikte, den andre fortsatt vil drive pumpen, dog med redusert kapasitet. The invention can provide a higher capacity pump unit using proven technology. This makes the pump more acceptable in the industry and more cost-effective to realize since it can be put into use without the delay and cost associated with complicated statutory qualification processes. In addition, the reliability of the pump will probably be higher compared to a revolutionary new pump since tried and tested components are used. It also has the advantage that if one motor should fail, the other will still drive the pump, albeit with reduced capacity.
Kort beskrivelse av tegningen Brief description of the drawing
For en bedre forståelse av foreliggende oppfinnelse og for å vise hvordan denne kan realiseres, vil det nå bli henvist til den vedlagte tegningen, der: Figur 1 er et skjematisk tverrsnitt gjennom en pumpe ifølge foreliggende oppfinnelse. For a better understanding of the present invention and to show how it can be realized, reference will now be made to the attached drawing, where: Figure 1 is a schematic cross-section through a pump according to the present invention.
Detaljert beskrivelse av tegningen Detailed description of the drawing
En pumpe 1 omfatter en pumpeaksel 2 som driver impellere 3. Fluid som skal pumpes kommer inn i impellerdelen 3 gjennom et innløp 17 og føres ut gjennom et utløp 18. Pumpen 1 er inneholdt i et pumpehus 4. Pumpeakselen 2 er anordnet for aksial rotasjon på lagerenheter 5 og 6 plassert i motsatte ender av pumpeakselen 2. A pump 1 comprises a pump shaft 2 which drives impellers 3. Fluid to be pumped enters the impeller part 3 through an inlet 17 and is led out through an outlet 18. The pump 1 is contained in a pump housing 4. The pump shaft 2 is arranged for axial rotation on bearing units 5 and 6 located at opposite ends of the pump shaft 2.
En første elektrisk motor 7 driver en første motoraksel 27 som er koblet til den ene enden av pumpeakselen 2 via en første undervannsmotorkobling 8. Koblingen er fleksibel og beskyttet av en tetning 9. En andre elektrisk motor 10 driver en andre motoraksel 28 som er koblet til den andre enden av pumpeakselen 2 av en andre fleksibel kobling 11 beskyttet av en tetning 12. De fleksible koblingene 8, 11 overfører dreiemoment fra de respektive aksler til pumpeakselen 2, men tillater aksial bevegelse for å muliggjøre termisk ekspansjon. Passende fleksible koblinger kan oppnås på mange kjente måter. Ett eksempel er å anvende en ytre krage koblet til den ene akselen av låseringer og til den andre akselen av drevtenner som tillater aksial glidebevegelse. A first electric motor 7 drives a first motor shaft 27 which is connected to one end of the pump shaft 2 via a first underwater motor coupling 8. The coupling is flexible and protected by a seal 9. A second electric motor 10 drives a second motor shaft 28 which is connected to the other end of the pump shaft 2 by a second flexible coupling 11 protected by a seal 12. The flexible couplings 8, 11 transmit torque from the respective shafts to the pump shaft 2, but allow axial movement to enable thermal expansion. Suitable flexible couplings can be achieved in many known ways. One example is to use an outer collar connected to one shaft by locking rings and to the other shaft by gear teeth which allow axial sliding movement.
Hver av motorene 7 og 10 omfatter en stator 31 og en rotor 32 festet til de respektive aksler 27 og 28. Each of the motors 7 and 10 comprises a stator 31 and a rotor 32 attached to the respective shafts 27 and 28.
De elektriske motorene 7 og 10 kan være induksjonsmotorer eller permanentmagnetmotorer. De er fortrinnsvis væskekjølt av et barrierefluid som føres enten i enkelkrets eller en dobbelkrets (kapslet). Barrierefluidet beskytter motorene både mot det pumpede prosessfluidet og det aggressive omgivelsesmiljøet, som typisk vil være sjøvann med høyt trykk. Barrierefluidet isolerer motorene for å hindre inntrengning av sjøvann og hindre kontaminasjon fra fluidet som pumpes. Det sørger også for smøring til motorene og sørger for kjøling ved å transportere varme vekk fra de bevegelige motordelene, f.eks. lagrene. For dette formål sirkulerer barrierefluidet i en lukket krets rundt de bevegelige delene av motoren og lagrene, og deretter blir barrierefluiden selv kjølt ned ved at det føres gjennom rør 30 rundt hvilket det kan sirkulere sjøvann. Barrierefluidet føres så tilbake rundt de bevegelige motordelene igjen. Sirkulasjon av barrierefluidet bevirkes ved hjelp av en indre sirkulasjonspumpe (impellerpumpe). Barrierefluidet bidrar også til å forsegle de dynamiske tetningene i motorene og pumpen. Disse dynamiske tetningene har én stasjonær del og én roterende del og barrierefluidet holdes ved et trykk som er litt høyere enn trykket i prosessfluidet som pumpes slik at en liten mengde barrierefluid lekker inn i prosessfluidet. Dette hindrer skade på motorene eller pumpen som følge av inntrengning av prosessfluid. Dette krever en konstant tilførsel av barrierefluid til pumpen, som vanligvis tilføres via en navlestreng fra overflaten. The electric motors 7 and 10 can be induction motors or permanent magnet motors. They are preferably liquid-cooled by a barrier fluid which is carried either in a single circuit or a double circuit (encapsulated). The barrier fluid protects the motors both against the pumped process fluid and the aggressive surrounding environment, which will typically be high-pressure seawater. The barrier fluid isolates the motors to prevent the ingress of seawater and to prevent contamination from the fluid being pumped. It also provides lubrication for the engines and provides cooling by transporting heat away from the moving engine parts, e.g. the warehouses. For this purpose, the barrier fluid circulates in a closed circuit around the moving parts of the engine and the bearings, and then the barrier fluid itself is cooled by being passed through pipe 30 around which seawater can circulate. The barrier fluid is then fed back around the moving engine parts again. Circulation of the barrier fluid is effected by means of an internal circulation pump (impeller pump). The barrier fluid also helps to seal the dynamic seals in the motors and pump. These dynamic seals have one stationary part and one rotating part and the barrier fluid is held at a pressure slightly higher than the pressure in the process fluid being pumped so that a small amount of barrier fluid leaks into the process fluid. This prevents damage to the motors or the pump as a result of ingress of process fluid. This requires a constant supply of barrier fluid to the pump, which is usually supplied via an umbilical cord from the surface.
Barrierefluidet kan bli sirkulert i en dobbel krets dersom motoren inneholder en statorkapsling. Selv om den ikke er vist, er denne en mekanisk muffe mellom statoren og rotoren som muliggjør bruk av et eget statorfluid og isolerer statoren fra barrierefluidet. Magnetfluksen går gjennom statorkapslingen, men statorfluidet vil ikke slippe gjennom. En typisk dobbel kretsløsning er beskrevet i WO2008/127119. Den gjør det mulig å gjøre motor/pumpe-anordningen mer miljøvennlig siden den tillater mer fleksibilitet i valget av barrierefluid og et spesifikt statorfluid kan velges for å gi mer dielektriske egenskaper for statoren, dvs. gi isolasjon for statoren. Statorfluidet vil også bli kjølt ned i en egen kjølekrets. Bruk av en egen statorfluidkrets isolerer også motoren bedre siden det hindrer kontaminasjon gjennom navlestrengen. The barrier fluid can be circulated in a double circuit if the motor contains a stator casing. Although not shown, this is a mechanical sleeve between the stator and the rotor which enables the use of a separate stator fluid and isolates the stator from the barrier fluid. The magnetic flux passes through the stator casing, but the stator fluid will not pass through. A typical dual circuit solution is described in WO2008/127119. It makes it possible to make the motor/pump device more environmentally friendly since it allows more flexibility in the choice of barrier fluid and a specific stator fluid can be chosen to provide more dielectric properties for the stator, i.e. provide insulation for the stator. The stator fluid will also be cooled in a separate cooling circuit. Using a separate stator fluid circuit also insulates the motor better since it prevents contamination through the umbilical cord.
Akselen 27 til den første motoren 7 roterer i motsatt retning av akselen 28 til den andre motoren 10. The shaft 27 of the first motor 7 rotates in the opposite direction to the shaft 28 of the second motor 10.
Effekt blir tilført til den første motoren 7 av en kraftledning 13 via en elektrisk kobling 14, og til den andre motoren 10 av en kraftledning 15 via en elektrisk kobling 16. En felles effektforsyning (ikke vist) kan bli anvendt for å tilføre effekt til begge motorene 7 og 10, og kraftkablene er fortrinnsvis inneholdt i en navlestreng. Power is supplied to the first motor 7 by a power line 13 via an electrical connection 14, and to the second motor 10 by a power line 15 via an electrical connection 16. A common power supply (not shown) can be used to supply power to both the motors 7 and 10 and the power cables are preferably contained in an umbilical cord.
En drivenhet med variabel hastighet kan bli anvendt for å styre og endre effektforsyningens frekvens for å regulere pumpens hastighet, dvs. antallet omdreininger av pumpeakselen per minutt. Drivenheten med variabel hastighet kan befinne seg på toppsiden eller under vann og kan være separat for hver motor eller felles. A variable speed drive unit can be used to control and change the frequency of the power supply to regulate the speed of the pump, i.e. the number of revolutions of the pump shaft per minute. The variable speed drive can be topside or underwater and can be separate for each engine or shared.
De første og andre motorkoblingene 8 og 11 overfører dreiemoment fra de respektive motorene til pumpeakselen 2. Deres elastisitet er slik at de tillater aksial utvidelse og sammentrekning som følge av temperaturendringer og tar opp for forskjellige driftstrekk ved de to motorene. The first and second motor couplings 8 and 11 transmit torque from the respective motors to the pump shaft 2. Their elasticity is such that they allow axial expansion and contraction as a result of temperature changes and account for different operating characteristics of the two motors.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1114594.3A GB2493938B (en) | 2011-08-23 | 2011-08-23 | Double motor pump with variable speed drive |
PCT/EP2012/066043 WO2013026775A1 (en) | 2011-08-23 | 2012-08-16 | Dual motor pump for subsea application |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20140275A1 NO20140275A1 (en) | 2014-03-24 |
NO340425B1 true NO340425B1 (en) | 2017-04-18 |
Family
ID=44800796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20140275A NO340425B1 (en) | 2011-08-23 | 2014-03-04 | Tomotor pump for underwater use |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140205475A1 (en) |
AU (1) | AU2012298577B2 (en) |
BR (1) | BR112014004152A2 (en) |
GB (1) | GB2493938B (en) |
NO (1) | NO340425B1 (en) |
SG (1) | SG11201400121XA (en) |
WO (1) | WO2013026775A1 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9140110B2 (en) | 2012-10-05 | 2015-09-22 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
US11708752B2 (en) | 2011-04-07 | 2023-07-25 | Typhon Technology Solutions (U.S.), Llc | Multiple generator mobile electric powered fracturing system |
US11255173B2 (en) | 2011-04-07 | 2022-02-22 | Typhon Technology Solutions, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
US10020711B2 (en) | 2012-11-16 | 2018-07-10 | U.S. Well Services, LLC | System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources |
US10119381B2 (en) | 2012-11-16 | 2018-11-06 | U.S. Well Services, LLC | System for reducing vibrations in a pressure pumping fleet |
US10378335B2 (en) * | 2013-03-13 | 2019-08-13 | Schlumberger Technology Corporation | Pressure testing of well servicing systems |
US11085450B2 (en) | 2013-10-18 | 2021-08-10 | Regal Beloit America, Inc. | Pump having a housing with internal and external planar surfaces defining a cavity with an axial flux motor driven impeller secured therein |
US10087938B2 (en) * | 2013-10-18 | 2018-10-02 | Regal Beloit America, Inc. | Pump, associated electric machine and associated method |
NO337348B1 (en) * | 2014-08-18 | 2016-03-21 | Aker Subsea As | VARIETY SPEED OPERATING VARIABLE SPEED FOR LARGE PUMPS AND COMPRESSORS. |
US9995119B2 (en) | 2015-11-16 | 2018-06-12 | Ge Oil & Gas Esp, Inc. | Electric submersible pumping system with permanent magnet motor |
US12078110B2 (en) | 2015-11-20 | 2024-09-03 | Us Well Services, Llc | System for gas compression on electric hydraulic fracturing fleets |
US10859084B2 (en) * | 2016-04-26 | 2020-12-08 | Onesubsea Ip Uk Limited | Subsea process lubricated water injection pump |
WO2018089173A1 (en) * | 2016-11-14 | 2018-05-17 | Chevron U.S.A. Inc. | Subsea variable frequency drive and motor assembly |
US11162497B2 (en) * | 2017-11-13 | 2021-11-02 | Onesubsea Ip Uk Limited | System for moving fluid with opposed axial forces |
WO2020081313A1 (en) | 2018-10-09 | 2020-04-23 | U.S. Well Services, LLC | Electric powered hydraulic fracturing pump system with single electric powered multi-plunger pump fracturing trailers, filtration units, and slide out platform |
WO2020231483A1 (en) | 2019-05-13 | 2020-11-19 | U.S. Well Services, LLC | Encoderless vector control for vfd in hydraulic fracturing applications |
US11542786B2 (en) | 2019-08-01 | 2023-01-03 | U.S. Well Services, LLC | High capacity power storage system for electric hydraulic fracturing |
US12098796B2 (en) | 2020-07-02 | 2024-09-24 | Onesubsea Ip Uk Limited | System for dewatering a flowline including a multiphase pump connected at a lower end of the flowline |
US20220252071A1 (en) * | 2021-02-09 | 2022-08-11 | Onesubsea Ip Uk Limited | Subsea electric fluid processing machine |
CN115388015B (en) * | 2022-07-12 | 2025-02-14 | 青岛三利智能动力有限公司 | Intelligent dual-drive pump and water supply system |
WO2024012454A1 (en) * | 2022-07-12 | 2024-01-18 | 青岛三利智能动力有限公司 | Intelligent dual drive pump and water supply system |
US11955782B1 (en) | 2022-11-01 | 2024-04-09 | Typhon Technology Solutions (U.S.), Llc | System and method for fracturing of underground formations using electric grid power |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2172437A1 (en) * | 2000-11-03 | 2002-09-16 | Bogemar Sl | Submergible, multi cellular, electric pump |
WO2005057017A1 (en) * | 2003-12-09 | 2005-06-23 | Ebara Corporation | Fluid transportation machine |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3274795A (en) * | 1964-04-30 | 1966-09-27 | Little Inc A | Fluid operating apparatus |
DE4318707A1 (en) * | 1993-06-04 | 1994-12-08 | Sihi Gmbh & Co Kg | Displacement machine with electronic motor synchronization |
EP0846364B1 (en) * | 1995-08-24 | 1999-12-15 | Sulzer Electronics AG | Electric motor |
US7164242B2 (en) * | 2004-02-27 | 2007-01-16 | York International Corp. | Variable speed drive for multiple loads |
US20070110595A1 (en) * | 2004-12-06 | 2007-05-17 | Ebara Corporation | Fluid conveying machine |
NO330192B1 (en) | 2007-04-12 | 2011-03-07 | Framo Eng As | Fluid Pump System. |
US8777596B2 (en) * | 2008-05-06 | 2014-07-15 | Fmc Technologies, Inc. | Flushing system |
DE102008022618A1 (en) * | 2008-05-07 | 2009-12-31 | Siemens Aktiengesellschaft | Power supply means |
US8299646B2 (en) * | 2009-07-27 | 2012-10-30 | Rocky Research | HVAC/R system with variable frequency drive (VFD) power supply for multiple motors |
WO2012057885A1 (en) * | 2010-10-27 | 2012-05-03 | Dresser-Rand Company | Multiple motor drivers for a hermetically-sealed motor-compressor system |
-
2011
- 2011-08-23 GB GB1114594.3A patent/GB2493938B/en not_active Expired - Fee Related
-
2012
- 2012-08-16 SG SG11201400121XA patent/SG11201400121XA/en unknown
- 2012-08-16 WO PCT/EP2012/066043 patent/WO2013026775A1/en active Application Filing
- 2012-08-16 BR BR112014004152A patent/BR112014004152A2/en not_active IP Right Cessation
- 2012-08-16 AU AU2012298577A patent/AU2012298577B2/en not_active Expired - Fee Related
- 2012-08-16 US US14/239,989 patent/US20140205475A1/en not_active Abandoned
-
2014
- 2014-03-04 NO NO20140275A patent/NO340425B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2172437A1 (en) * | 2000-11-03 | 2002-09-16 | Bogemar Sl | Submergible, multi cellular, electric pump |
WO2005057017A1 (en) * | 2003-12-09 | 2005-06-23 | Ebara Corporation | Fluid transportation machine |
Also Published As
Publication number | Publication date |
---|---|
AU2012298577B2 (en) | 2017-02-23 |
NO20140275A1 (en) | 2014-03-24 |
BR112014004152A2 (en) | 2017-02-21 |
GB201114594D0 (en) | 2011-10-05 |
GB2493938A (en) | 2013-02-27 |
US20140205475A1 (en) | 2014-07-24 |
AU2012298577A1 (en) | 2014-03-13 |
SG11201400121XA (en) | 2014-03-28 |
GB2493938B (en) | 2014-08-13 |
WO2013026775A1 (en) | 2013-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO340425B1 (en) | Tomotor pump for underwater use | |
NO20110786A1 (en) | Subsea compressor directly driven by a permanent magnet motor with a stator and rotor immersed in liquid | |
US8632320B2 (en) | High-pressure compression unit for process fluids for industrial plant and a related method of operation | |
NO343629B1 (en) | Underwater pressure amplifier | |
NO330192B1 (en) | Fluid Pump System. | |
NO339510B1 (en) | Motor Compressor | |
US10428822B1 (en) | Between-bearing magnetic coupling | |
RU2670994C2 (en) | Rotary machine and method for the heat exchange in rotary machine | |
US20130195695A1 (en) | Hollow rotor motor and systems comprising the same | |
SG188057A1 (en) | Rotors | |
US10024296B2 (en) | Electric machine including a stator defining a flow channel | |
CN102549270A (en) | Underwater compressor arrangement and underwater process fluid conveying arrangement equipped therewith | |
GB2499114A (en) | Hollow rotor for a motor and an electrical generator | |
US20250043670A1 (en) | Neutral turbine gearbox system and method | |
GB2613810A (en) | Subsea axial flux electrical machine | |
RU2654299C1 (en) | Section electric motor | |
RU2712847C1 (en) | Submersible pumping plant with magnetic coupling | |
CA2721886A1 (en) | Liquid circulating pump for oil well heating | |
RU149168U1 (en) | ENVIRONMENTAL ENERGY CONVERTER DEVICE | |
Van Dam et al. | Electric machine including a stator defining a flow channel | |
RU130010U1 (en) | CENTRIFUGAL BILATERAL PUMP PUMP | |
US20170159415A1 (en) | Downhole Hydraulic Motor | |
NO325341B1 (en) | Dressing system for an electric motor, and a drive system for operating a impeller | |
NO328758B1 (en) | Electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |