[go: up one dir, main page]

NO332123B1 - Plant to recover BOG from LNG stored in tanks - Google Patents

Plant to recover BOG from LNG stored in tanks Download PDF

Info

Publication number
NO332123B1
NO332123B1 NO20093356A NO20093356A NO332123B1 NO 332123 B1 NO332123 B1 NO 332123B1 NO 20093356 A NO20093356 A NO 20093356A NO 20093356 A NO20093356 A NO 20093356A NO 332123 B1 NO332123 B1 NO 332123B1
Authority
NO
Norway
Prior art keywords
lng
bog
heat exchanger
recondenser
plant
Prior art date
Application number
NO20093356A
Other languages
Norwegian (no)
Other versions
NO20093356A1 (en
Inventor
Per Helge S Madsen
Original Assignee
Hamworty Gas Systems As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamworty Gas Systems As filed Critical Hamworty Gas Systems As
Priority to NO20093356A priority Critical patent/NO332123B1/en
Priority to PCT/NO2010/000419 priority patent/WO2011062505A1/en
Publication of NO20093356A1 publication Critical patent/NO20093356A1/en
Publication of NO332123B1 publication Critical patent/NO332123B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • F17C2227/0142Pumps with specified pump type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0123Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0126Buoys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Et anlegg for å gjenvinne BOG fra LNG lagret i tanker innbefattende en rekondenserer (SD1) anvendt til å mate LNG inn i pumper (A1, A2, A3) som trykk øker LNG for å føres gjennom fordampningsenheter (VU1, VU2, VU3) for å fremstille NG ved regassifisering av LNG, BOG komprimeres ved hjelp av kompressor (C1). I henhold til 5 den foreliggende oppfinnelse føres BOG gjennom varmevekslere (Bl, B2, B3) posisjonert nedstrøms pumpene (A1, A2, A3), i hvilken BOG i varmeutveksling med LNG kondenseres i hovedsak til væske og returneres til rekondensereren (SD1).A plant for recovering BOG from LNG stored in tanks including a recondenser (SD1) used to feed LNG into pumps (A1, A2, A3) which pressure increases LNG to pass through evaporation units (VU1, VU2, VU3) to produce NG by regasification of LNG, BOG is compressed using compressor (C1). In accordance with the present invention, BOG is passed through heat exchangers (B1, B2, B3) positioned downstream of the pumps (A1, A2, A3), in which BOG in heat exchange with LNG is condensed mainly to liquid and returned to the recondenser (SD1).

Description

Anlegg for å gjenvinne BOG fra LNG lagret i tanker Plant to recover BOG from LNG stored in tanks

Den foreliggende oppfinnese vedrører et anlegg for å gjenvinne naturlig avkoking av gass (BOG) (boil-off-gass) som stammer fra flytende naturgass (LNG), for eksempel, lagret i tanker, spesielt men ikke utelukkende sjøgående fartøy. The present invention relates to a plant for recovering natural boil-off gas (BOG) (boil-off gas) originating from liquefied natural gas (LNG), for example, stored in tanks, especially but not exclusively seagoing vessels.

En vanlig teknikk for å frakte naturgass fra produksjonssted er å kondensere naturgassen ved eller nær produksjonsstedene, og transportere NLG til markedet i spesielt konstru-erte lagringstanker, ofte plassert om bord på sjøgående fartøy. A common technique for transporting natural gas from the production site is to condense the natural gas at or near the production sites, and transport NLG to the market in specially designed storage tanks, often placed on board seagoing vessels.

Å kondensere naturgass omfatter komprimering og avkjølig av gass til kryogeniske temperaturer, f.eks. -160 °C. På denne måten kan LNG fraktefartøy transportere en betydelig mengde LNG til bestemmelsessteder der frakten losses til dedikerte tanker på land, før den blir transportert videre på vei eller jernbane på LNG transportkjøretøy eller re-gassifiseres og transporteres i f.eks. rørledninger. Condensing natural gas involves compressing and cooling gas to cryogenic temperatures, e.g. -160 °C. In this way, LNG cargo vessels can transport a significant amount of LNG to destinations where the cargo is unloaded into dedicated tanks on land, before being transported further by road or rail on LNG transport vehicles or re-gasified and transported in e.g. pipelines.

Det er ofte mer fordelaktig å regassifisere LNG om bord det sjøgående frakfartøyet før gassen losses inn i for eksempel rørledninger på land. US 6,089,022 beskriver et slikt system og fremgangmåte for å regassifisere LNG om bord et fraktfartøy før regassifisert gass overføres til land. LNG mates gjennom en eller flere fordampere plassert om bord på fartøyet. Sjøvann som omgir fraktfartøyet mates gjennom en fordamper for å varme og fordampe LNG til naturgass før lossing til installasjoner på land. It is often more advantageous to regasify LNG on board the seagoing freighter before the gas is unloaded into, for example, pipelines on land. US 6,089,022 describes such a system and procedure for regasifying LNG on board a cargo vessel before regasified gas is transferred ashore. LNG is fed through one or more evaporators placed on board the vessel. Seawater surrounding the cargo vessel is fed through an evaporator to heat and vaporize the LNG into natural gas before unloading to installations on land.

US 6,945,049 beskriver regassifisering av LNG transportert med et flytende frakte-fartøy før lasten losses innbefattende å trykkøke og strømme LNG inn i en LNG/kjøle-mediumvarmeveksler hvori LNG fordampes, og strømme fordampet naturgass (NG) inn i en NG/dampvarmeveksler hvori NG varmes før den føres til land som overhetet gass. LNG i LNG/kjølemediumvarmeveksleren fordampes ved hjelp av termisk utveksling med et kjølemedium som kommer inn i varmeveksleren som gass og forlater den samme i en flytende tilstand. Videre strømmes kjølemedium i en lukket sløyfe og gjennom i det minste én kjølemedium/sjøvannvarmeveksler hvori flytende kjølemedium fordampes før den kommer inn i LNG/kjølemediumvarmeveksleren, og trykket i fordampet kjølemedium kontrolleres. US 6,945,049 describes regasification of LNG transported by a floating cargo vessel before the cargo is unloaded including pressurizing and flowing the LNG into an LNG/refrigerant heat exchanger in which the LNG is vaporized, and flowing vaporized natural gas (NG) into a NG/steam heat exchanger in which the NG is heated before it is taken ashore as superheated gas. LNG in the LNG/refrigerant heat exchanger is vaporized by means of thermal exchange with a refrigerant that enters the heat exchanger as a gas and leaves it in a liquid state. Furthermore, coolant flows in a closed loop and through at least one coolant/seawater heat exchanger in which liquid coolant is vaporized before it enters the LNG/coolant heat exchanger, and the pressure in the vaporized coolant is controlled.

Ved atmosfærisk trykk koker LNG rett over -163 °C, og blir vanligvis lastet, transportert, og losset ved denne temperaturen. For å håndtere en slik lav temperatur og BOG, er det nødvendig med spesielle materialer, isolering og håndteringsutstyr. På grunn av var-melekkasje koker overflaten kontinuerlig og danner fordampet naturgass (BOG) fra LNG, f.eks. metan. At atmospheric pressure, LNG boils just above -163 °C, and is usually loaded, transported and unloaded at this temperature. To handle such a low temperature and BOG, special materials, insulation and handling equipment are required. Due to heat leakage, the surface continuously boils and forms vaporized natural gas (BOG) from LNG, e.g. methane.

Selv om mange LNG transportsystemer ikke er i stand til å utnytte eller gjenvinne BOG, og derved, inklusive et særskilt problem under lossing av LNG, er en løsning for å håndtere og kondensere BOG vist i figur 1. Anlegget innbefatter en rekondenserer i form av en sugetank (suction drum). BOG fra lastetankene komprimeres ved hjelp av en BOG kompressor og føres videre sammen med LNG inn i sugetanken. LNG fra lastetankene pumpes typisk ved en temperatur på -160 til -150 °C inn i sugetanken som typisk har et trykk på 500 kPa. Deretter føres LNG inklusive rekondensert BOG inn i det minste én fordamper for å losse av LNG i form av NG. Den i det minste ene fordampe-ren mates ved hjelp av en felles eller flere LNG høytrykkspumper. Sugetanken utgjør en buffertank for de andre komponentene i anlegget typisk anordnet på i det minste én skidd. I tillegg fungerer sugetanken som separatortank for å separere gass som fremstil-les ved ulike operasjonsmodus for anlegget. Although many LNG transport systems are unable to utilize or recover BOG, and thereby, including a particular problem during unloading of LNG, a solution to handle and condense BOG is shown in Figure 1. The facility includes a recondenser in the form of a suction tank (suction drum). BOG from the cargo tanks is compressed with the help of a BOG compressor and fed further together with LNG into the suction tank. LNG from the cargo tanks is typically pumped at a temperature of -160 to -150 °C into the suction tank, which typically has a pressure of 500 kPa. The LNG, including recondensed BOG, is then fed into at least one evaporator to unload the LNG in the form of NG. The at least one evaporator is fed using one or more LNG high-pressure pumps. The suction tank forms a buffer tank for the other components of the plant, typically arranged on at least one skid. In addition, the suction tank acts as a separator tank to separate gas produced by different operating modes for the plant.

Det finnes i hovedsak to typer LNG-fraktere, dvs. regassifiseringsfartøy for skytteltra-fikk (Shuttle Regasification Vessel, SRV) eller flytende regassifiseringsenheter for lag-ring (Floating Storage Regasification Units, FSRU). En SRV frakter til lands last fra en LNG terminal og losser høytrykksgass enten ved en mottakskai eller en undersjøisk bøye. Når den er tømt returnerer SRV til LNG terminalen for å få ny last. En FSRU er stasjonær leverer høytrykksgass til lands ved en mottakskai eller undersjøisk bøye. Når nødvendig fyller en LNG-frakter FSRU'en. There are mainly two types of LNG carriers, i.e. regasification vessels for shuttle traffic (Shuttle Regasification Vessel, SRV) or floating storage regasification units (Floating Storage Regasification Units, FSRU). An SRV transports ashore cargo from an LNG terminal and unloads high-pressure gas either at a receiving quay or an underwater buoy. When it is emptied, the SRV returns to the LNG terminal to receive new cargo. An FSRU is stationary delivering high-pressure gas ashore at a receiving quay or subsea buoy. When necessary, an LNG carrier fills the FSRU.

Regassifiseringsanlegg for slike fraktere har normalt en regassifiseringskapasitet på minimum 50 tonn/time og maksimalt 500-1000 tonn/time. Ettersom kapasiteten til en typisk regassifiseringsskidd utgjør omtrent 250 tonn/time, er antallet nødvendige skidder fra 1 til 4 for de respektive fraktere. Regasification facilities for such carriers normally have a regasification capacity of a minimum of 50 tonnes/hour and a maximum of 500-1000 tonnes/hour. As the capacity of a typical regasification skid is approximately 250 tonnes/hour, the number of required skids is from 1 to 4 for the respective carriers.

For typiske LNG-fraktere som har en lastekapasitet på 160 000 m3 er BOG-hastigheten 3-5 tonn/time. Under lasting av LNG-fraktere forårsaker fortrengning av gass på grunn av LNG fyllingen en øket mengde gass som må fjernes fra tankene. Således, under lasting, kan mengden fortrengte gasser utgjøre 10 tonn/time eller mer. BOG-hastigheten for en SRV er typisk 3-5 tonn/time, mens det beløper seg til nesten 10 tonn/time for en FSRU under lasting. For typical LNG carriers that have a cargo capacity of 160,000 m3, the BOG speed is 3-5 tonnes/hour. During loading of LNG carriers, the displacement of gas due to the LNG filling causes an increased amount of gas that must be removed from the tanks. Thus, during loading, the amount of displaced gases can amount to 10 tons/hour or more. The BOG speed for an SRV is typically 3-5 tonnes/hour, while it amounts to almost 10 tonnes/hour for an FSRU during loading.

Normalt overføres LNG fra lastetankene inn i sugetanken underkjølt ved 500 kPa, og har en temperatur med kokepunkt rett over atmosfærisk. LNG trykkøkt til 500 kPa er ved en temperatur nær omgivelsen, dvs. 0-20 °C. Når BOG og LNG blandes på vei inn i sugetanken, varmes LNG på grunn av kjøling og kondensering av BOG. Hvis BOG-masse utgjør 7-10% av LNG massen er resultatet at LNG når kokepunktet ved 500 kPa. I det følgende benevnes den flytende væsken av BOG og LNG til sugetanken for regass-føde. Normally, LNG is transferred from the cargo tanks into the suction tank subcooled at 500 kPa, and has a temperature with a boiling point just above atmospheric. LNG pressure increased to 500 kPa is at a temperature close to ambient, i.e. 0-20 °C. When BOG and LNG are mixed on the way into the suction tank, the LNG is heated due to cooling and condensation of the BOG. If BOG mass makes up 7-10% of the LNG mass, the result is that LNG reaches the boiling point at 500 kPa. In the following, the liquid liquid is referred to as BOG and LNG to the suction tank for regas feed.

LNG må trykkøkes for regassifisering for å underkjøle regassføden. Som allerede nevnt ovenfor utføres slik trykkøkning ved hjelp av høytrykkspumper plassert foran fordam-perne som produserer NG. Pumpene er for eksempel flertrinns sentrifugalpumper. Slike pumper er ofte, men ikke nødvendigvis, av en nedsenket kartype. I tilfelle dårlig under-kjølt LNG dannes gass, dette skyldes i hovedsak pumpekjøling. Noen regassifiseringsanlegg er uformet for å håndtere slik uønsket gass under oppstart av pumpen, og også når det dannes mindre kontinuerlige mengder gass i forbindelse med pumpehuset. Imidlertid, hvis uventede mengder gass dannes er det umulig å håndtere den uønskede gassen, hvilket resulterer i et redusert væskenivå, og endelig skadde pumper og motorer. I tillegg må gass som produseres inn i pumpene returneres til lastetankene, resulterende i økt BOG strøm. LNG must be pressurized for regasification to subcool the regas feed. As already mentioned above, such pressure increase is carried out by means of high-pressure pumps placed in front of the evaporators that produce NG. The pumps are, for example, multistage centrifugal pumps. Such pumps are often, but not necessarily, of the submerged vessel type. In the case of poorly under-cooled LNG, gas is formed, this is mainly due to pump cooling. Some regasification systems are not designed to handle such unwanted gas during start-up of the pump, and also when smaller continuous amounts of gas are formed in connection with the pump casing. However, if unexpected amounts of gas are formed it is impossible to handle the unwanted gas, resulting in a reduced liquid level, and ultimately damaged pumps and motors. In addition, gas produced into the pumps must be returned to the cargo tanks, resulting in increased BOG flow.

JP 2008309195 beskriver system der BOG fra LNG tank komprimeres og deretter sendes til en varmeveksler der den kjøles direkte med LNG fra LNG tanken, lagres i trom-mel, trykkøkes ved hjelp av en trykkøkningspumpe og til slutt sendes til fordamper. Via et pumpeinnløp i denne trykkøkningspumpen føres det også inn LNG direkte fra tanken. JP 2008309195 describes a system where BOG from an LNG tank is compressed and then sent to a heat exchanger where it is cooled directly with LNG from the LNG tank, stored in a drum, pressure increased using a pressure increase pump and finally sent to an evaporator. Via a pump inlet in this pressure boosting pump, LNG is also fed in directly from the tank.

WO 2007/011155 beskriver en anordning og fremgangsmåte for gjenvinning av BOG fra LNG tank hvor BOG komprimeres og deretter sendes til en kondensator der den kjøles ned ved hjelp av en nitrogensløyfeinnretning, for derved å returnere rekondensert BOG til LNG lager tanken. Temperaturen til BOG kan holdes innenfor et forbestemt område ved forkjøling av BOG før kondensatoren ved å åpne en ventil. WO 2007/011155 describes a device and method for recovering BOG from an LNG tank where the BOG is compressed and then sent to a condenser where it is cooled using a nitrogen loop device, thereby returning recondensed BOG to the LNG storage tank. The temperature of the BOG can be kept within a predetermined range by pre-cooling the BOG before the condenser by opening a valve.

JP 5118497 beskriver begrensning av fluktuasjonen av kondenseringstrykket til BOG uten styring av strømningsraten ved mating av BOG og LNG til en varmeveksler ved anbringelse av en lagerbeholder for kondensert BOG over varmeveksleren og tilforming og opprettholdelse av et væskenivå med kondensert BOG i varmeveksleren. Her økes trykket i BOG fra en LNG-lagertanken i en BOG-kompressor og mates deretter til varmeveksleren, der det skjer varmeveksling med LNG tømt fra LNG-lagertanken, og Trykket av LNG heves ved hjelp av en LNG-pump. Deretter lagres BOG i en beholder for kondensert BOG. Trykket av kondensert BOG i beholderen heves ved hjelp av en kondensert BOG-pumpe. Til slutt bevirkes trykksatt, kondensert BOG til å strømme sammen med LNG fra varmeveksleren til en LNG-fordamper. JP 5118497 describes limiting the fluctuation of the condensing pressure of BOG without controlling the flow rate when feeding BOG and LNG to a heat exchanger by placing a storage container for condensed BOG above the heat exchanger and forming and maintaining a liquid level of condensed BOG in the heat exchanger. Here, the pressure in the BOG is increased from an LNG storage tank in a BOG compressor and is then fed to the heat exchanger, where heat exchange takes place with LNG emptied from the LNG storage tank, and the pressure of the LNG is raised using an LNG pump. BOG is then stored in a container for condensed BOG. The pressure of condensed BOG in the container is raised using a condensed BOG pump. Finally, pressurized, condensed BOG is caused to flow together with LNG from the heat exchanger to an LNG vaporizer.

Hvis LNG ved kokepunktet mates til regassifiseringsanlegget er produksjonen av gass for stor. Således er det umulig å rekondensere 7-10% masse BOG/LNG, f.eks. hvis vi videre angir 8%, vil det si at omtrent 4 % BOG/LNG er mulig. If LNG at the boiling point is fed to the regasification plant, the production of gas is too great. Thus, it is impossible to recondense 7-10% mass BOG/LNG, e.g. if we further specify 8%, this means that approximately 4% BOG/LNG is possible.

For en SRV som har en BOG-hastighet på 3-5 tonn/time må det være tilgjengelig 75-125 tonn/time, hvilket er mer enn en vanlig minimum regassifiseringshastighet. En FSRU med en maksimal BOG-hastighet på 10 tonn/time må ha tilgjengelig 200 tonn/time hvilket er langt mer enn en typisk ragassifiseringshastighet. For an SRV that has a BOG rate of 3-5 tonnes/hour, 75-125 tonnes/hour must be available, which is more than a normal minimum regasification rate. An FSRU with a maximum BOG rate of 10 tonnes/hour must have 200 tonnes/hour available which is far more than a typical regasification rate.

Hovedformålet ved den foreliggende oppfinnelse er å løse problemer forbundet med kjente tekniske løsninger beskrevet ovenfor. Dette oppnås ved hjelp av et anlegg for å gjenvinne BOG fra LNG lagret i tanker, innbefattende en rekondenserer anvendt til å mate LNG inn i i det minste én pumpe som trykkøker LNG som sendes til i det minste én fordamper som fremstiller NG ved regassifisering av LNG, BOG komprimeres ved hjelp av en kompressor, der BOG føres gjennom i det minste én varmeveksler posisjonert nedstrøms den i det minste ene pumpen, i hvilken BOG i varmeutveksling med trykkøkt LNG kondenseres i hovedsak til væske og returneres til rekondensereren. The main purpose of the present invention is to solve problems associated with known technical solutions described above. This is achieved by means of a facility to recover BOG from LNG stored in tanks, including a recondenser used to feed LNG into at least one pump which pressurizes the LNG which is sent to at least one evaporator which produces NG by regasification of LNG, The BOG is compressed by means of a compressor, where the BOG is passed through at least one heat exchanger positioned downstream of the at least one pump, in which the BOG in heat exchange with pressurized LNG is essentially condensed to liquid and returned to the recondenser.

Fortrinnsvis er de respektive varmevekslerne i form av trykt krets varmeveksler og BOG forlater varmeveksleren ved en temperatur -145 til -135 °C. Videre er rekondensereren i formen kombinert med en sugetank, og pumpene er i formen av en flertrinns sentrifugalpumpe. Preferably, the respective heat exchangers are in the form of printed circuit heat exchangers and the BOG leaves the heat exchanger at a temperature of -145 to -135 °C. Furthermore, the recondenser is in the form combined with a suction tank, and the pumps are in the form of a multi-stage centrifugal pump.

Den foreliggende beskrivelse beskrives nå i større detalj med henvisning til de tilhør-ende tegningene, hvori: Figur 1 er et forenklet flyskjema av et kjent teknikk BOG gjenvinningsanlegg, vist i kombinasjon med at antall fordampere anvendt under regassifisering av NG fra LNG; Figur 2 er et forenklet flytskjema for en utførelsesform av den foreliggende oppfinnelse, hvori BOG kjøles i varmeutveksling med LNG innenfor varmevekslere og føres inn i en rekondenserer hovedsakelig i væskeform; og Figur 3 er et forenklet flytskjema for en utførelsesform av den foreliggende oppfinnelsen. The present description is now described in greater detail with reference to the associated drawings, in which: Figure 1 is a simplified schematic diagram of a prior art BOG recovery plant, shown in combination with the number of evaporators used during regasification of NG from LNG; Figure 2 is a simplified flow diagram for an embodiment of the present invention, in which BOG is cooled in heat exchange with LNG within heat exchangers and fed into a recondenser mainly in liquid form; and Figure 3 is a simplified flowchart for an embodiment of the present invention.

Aller først, den følgende LNG og BOG sammensetninger kan anses å være representa-tive eksempler: First of all, the following LNG and BOG compositions can be considered representative examples:

I likhet med anlegget i kjent teknikk inkluderer den foreliggende oppfinnelse en rekondenserer i form av en sugetank SD1, se Figur 2. LNG fra lastetanker, ikke illustrert, mates inn i rekondensereren. LNG føres videre fra rekondensereren og trykkøkes ved hjelp av i det minste én høytrykkspumpe Al, A2, A3, for eksempel en flertrinns sentrifugalpumpe, og i form av en nedsenket kartypepumpe. Trykkøkt LNG utsettes deretter for regassifisering innenfor i det minste én fordampningsenhet VU1, VU2, VU3 for å fremstille NG for vider transport til lands. Fordamperenheten kan være av en hvilken som helst egnet type, f.eks. en sjøvann/propan-sløyfe, sjøvann direkte, dampvarmet med en mellomliggende vann/glykol-sløyfe, damp direkte, etc. Like the plant in the prior art, the present invention includes a recondenser in the form of a suction tank SD1, see Figure 2. LNG from cargo tanks, not illustrated, is fed into the recondenser. LNG is passed on from the recondenser and pressure is increased by means of at least one high-pressure pump Al, A2, A3, for example a multi-stage centrifugal pump, and in the form of a submerged vessel type pump. Pressurized LNG is then subjected to regasification within at least one evaporation unit VU1, VU2, VU3 to produce NG for onward transport to land. The evaporator unit may be of any suitable type, e.g. a seawater/propane loop, seawater direct, steam heated with an intermediate water/glycol loop, steam direct, etc.

I motsetning til anlegget i kjent teknikk fremstilt i Figur 1, mates BOG fra lastetanker inn i rekondenserern SD1 sammen med LNG først etter BOG er blitt ført gjennom i det minste én varmeveksler Bl, B2, B3. BOG komprimert ved hjelp av kompressor Cl av-kjøles innenfor de respektive varmevekslere i varmeutveksling med LNG og føres inn i rekondensereren hovedsakelig i væskeform. Nedstrøms pumpene Al, A2, A3 har høy-trykks LNG typisk en temperatur på -150 til -140 °C. BOG som passeres varmevekslerne kjøles således i et intervall -145 til -135 °C. Ved 500 kPa og slike temperaturer har BOG en flytende andel på 70 - 100 % av masse avhengig av BOG sammensetningen. Når i det minste 70% BOG er kondensert og kjølt vesentlig, er den nødvendige LNG strømmen for rekondensereren betydelig redusert. BOG-hastigheter på In contrast to the prior art plant depicted in Figure 1, BOG is fed from cargo tanks into the recondenser SD1 together with LNG only after the BOG has been passed through at least one heat exchanger Bl, B2, B3. BOG compressed by compressor Cl is cooled within the respective heat exchangers in heat exchange with LNG and fed into the recondenser mainly in liquid form. Downstream of pumps Al, A2, A3, high-pressure LNG typically has a temperature of -150 to -140 °C. BOG that passes through the heat exchangers is thus cooled in an interval of -145 to -135 °C. At 500 kPa and such temperatures, BOG has a liquid proportion of 70 - 100% of mass, depending on the BOG composition. When at least 70% of the BOG is condensed and cooled significantly, the required LNG flow for the recondenser is significantly reduced. BOG speeds on

3-5 og 10 tonn/time kan håndteres av LNG i mengder på henholdsvis 20-30 og 50 tonn/- time. Selv ved de høyeste BOG-hastighetene er rekondensereren i stand til å fungere ved de laveste regassifiseringshastighetene i et anlegg med kapasitet på 50 - 1000 tonn/time for eksempel. Varmeveksleren er fortrinnsvis en kompakt trykt krets-varmeveksler (compact printed circuit heat exchanger). 3-5 and 10 tonnes/hour can be handled by LNG in quantities of 20-30 and 50 tonnes/hour respectively. Even at the highest BOG rates, the recondenser is capable of operating at the lowest regasification rates in a plant with a capacity of 50 - 1000 tonnes/hour for example. The heat exchanger is preferably a compact printed circuit heat exchanger.

Som vist i Figur 3 mates LNG inn i sugetanken ved - 155,0 °C og 550,0 kPa, mens re-gassføden, dvs. LNG inklusive BOG fra varmevekslerne, forlater sugetanken ved -151,3°C og 550 kPa. BOG kommer inn i den respektive varmeveksleren ved 0,0 °C og 600 kPa og føres videre inn i sugetanken ved -140 °C og 550 kPa. As shown in Figure 3, LNG is fed into the suction tank at - 155.0 °C and 550.0 kPa, while the re-gas feed, i.e. LNG including BOG from the heat exchangers, leaves the suction tank at -151.3°C and 550 kPa. BOG enters the respective heat exchanger at 0.0 °C and 600 kPa and is further fed into the suction tank at -140 °C and 550 kPa.

Beskrivelsen ovenfor i forhold til den foreliggende oppfinnelse skal kun anses som illu-strerende for prinsippene i henhold til oppfinnelsen, den sanne forståelse og omfang ifølge den foreliggende oppfinnelse er definert av patentkravene. Selv om LNG og NG er spesifikt nevnt i beskrivelsen av den foreliggende oppfinnelse og for enkelhets skyld også i kravene, utelukker dette faktum faktisk ikke at annen egnet type flytende gass, slik som etan, propan, N2, C02 er egnet. Som et alternativ skal det forstås at det foreliggende anlegget også kan installeres på land. The above description in relation to the present invention shall only be considered illustrative of the principles according to the invention, the true understanding and scope according to the present invention is defined by the patent claims. Although LNG and NG are specifically mentioned in the description of the present invention and for the sake of simplicity also in the claims, this fact does not in fact exclude that other suitable types of liquefied gas, such as ethane, propane, N2, CO2 are suitable. As an alternative, it should be understood that the present facility can also be installed on land.

Claims (5)

1. Anlegg for å gjenvinne BOG fra LNG lagret i tanker, innbefattende en rekondenserer (SD1) anvendt til å mate LNG inn i det minste én pumpe, (Al, A2, A3) som trykkøker LNG for å føres gjennom i det minste én fordampningsenhet (VU1, VU2, VU3) for å fremstille NG ved regassifisering av LNG, BOG komprimeres ved hjelp av kompressor (Cl), karakterisert vedat BOG føres gjennom i det minste én varmeveksler (Bl, B2, B3) posisjonert nedstrøms den i det minste éne pumpen (Al, A2, A3), i hvilken BOG i varmeutveksling med trykkøkt LNG kondenseres i hovedsak til væske og returneres inn i rekondensereren (SD1).1. Plant for recovering BOG from LNG stored in tanks, including a recondenser (SD1) used to feed LNG into at least one pump, (Al, A2, A3) which pressurizes the LNG to pass through at least one evaporation unit (VU1 , VU2, VU3) to produce NG by regasification of LNG, BOG is compressed using compressor (Cl), characterized in that BOG is passed through at least one heat exchanger (Bl, B2, B3) positioned downstream of the at least one pump (Al, A2, A3), in which BOG in heat exchange with pressurized LNG is essentially condensed to liquid and returned into the recondenser (SD1). 2. Anlegg ifølge krav 1, karakterisert vedat den i det minste éne varmeveksleren (Bl, B2, B3) er i form av en trykt krets varmeveksler (compact printed circuit heat exchanger).2. Installation according to claim 1, characterized in that the at least one heat exchanger (B1, B2, B3) is in the form of a printed circuit heat exchanger (compact printed circuit heat exchanger). 3. Anlegg ifølge krav 2, karakterisert vedat BOG forlater den i det minste éne varmeveksleren (Bl, B2, B3) ved en temperatur i området -145 til -135 °C.3. Plant according to requirement 2, characterized in that the BOG leaves the at least one heat exchanger (B1, B2, B3) at a temperature in the range -145 to -135 °C. 4. Anlegg ifølge krav i det minste et av de foregående krav,karakterisert vedat rekondensereren er i form av en sugetank(SDl).4. Plant according to claim at least one of the preceding claims, characterized in that the recondenser is in the form of a suction tank (SD1). 5. Anlegg ifølge i det minste et av de foregående krav 1,karakterisert vedat den i det minste éne pumpen (Al, A2, A3) er en sentrifugalpumpe.5. Installation according to at least one of the preceding claims 1, characterized in that the at least one pump (A1, A2, A3) is a centrifugal pump.
NO20093356A 2009-11-17 2009-11-17 Plant to recover BOG from LNG stored in tanks NO332123B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20093356A NO332123B1 (en) 2009-11-17 2009-11-17 Plant to recover BOG from LNG stored in tanks
PCT/NO2010/000419 WO2011062505A1 (en) 2009-11-17 2010-11-17 A plant for recovering bog from lng stored in tanks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20093356A NO332123B1 (en) 2009-11-17 2009-11-17 Plant to recover BOG from LNG stored in tanks

Publications (2)

Publication Number Publication Date
NO20093356A1 NO20093356A1 (en) 2011-05-18
NO332123B1 true NO332123B1 (en) 2012-07-02

Family

ID=44059811

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20093356A NO332123B1 (en) 2009-11-17 2009-11-17 Plant to recover BOG from LNG stored in tanks

Country Status (2)

Country Link
NO (1) NO332123B1 (en)
WO (1) WO2011062505A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165967A1 (en) 2011-05-30 2012-12-06 Hamworthy Oil & Gas Systems As Utilization of lng used for fuel to liquefy lpg boil off
FR3066249B1 (en) * 2017-05-12 2020-11-13 Gaztransport Et Technigaz DEVICE AND METHOD FOR COOLING LIQUEFIED GAS AND / OR LIQUEFIED GAS NATURAL EVAPORATION GAS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217499A (en) * 1985-07-16 1987-01-26 Ishikawajima Harima Heavy Ind Co Ltd Evaporative gas treatment equipment for low temperature storage tanks
JP3214709B2 (en) * 1991-04-30 2001-10-02 千代田化工建設株式会社 BOG liquefaction system for LNG storage facility and its apparatus
JP3656128B2 (en) * 1992-03-23 2005-06-08 大阪瓦斯株式会社 Method and apparatus for storing and effectively utilizing LNG cold energy
US20020073619A1 (en) * 2000-12-14 2002-06-20 William Perkins Method and apparatus for delivering natural gas to remote locations
US6945049B2 (en) * 2002-10-04 2005-09-20 Hamworthy Kse A.S. Regasification system and method
JP2009501896A (en) * 2005-07-19 2009-01-22 シンヨン ヘビー インダストリーズ カンパニー,リミティド LNGBOG reliquefaction equipment
NO328408B1 (en) * 2006-11-28 2010-02-15 Moss Maritime As Device, system and method for regeneration of LNG
JP4996987B2 (en) * 2007-06-12 2012-08-08 東京瓦斯株式会社 Reliquefaction device and reliquefaction method for BOG generated in LNG storage tank
JP2009191945A (en) * 2008-02-14 2009-08-27 Ihi Corp Liquefied gas storage system and operating method thereof

Also Published As

Publication number Publication date
WO2011062505A1 (en) 2011-05-26
NO20093356A1 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US10006589B2 (en) Method and system for storage and transport of liquefied petroleum gases
JP7301853B2 (en) Method and system for processing gas in gas storage facilities for gas tankers
US20090100844A1 (en) Apparatus and method for controlling temperature in a boil-off gas
KR20100102872A (en) Lng/lpg bog reliquefaction apparatus and method
US20240183495A1 (en) Method and apparatus for storing liquefied gas in and withdrawing evaporated gas from a container
US20080148771A1 (en) Process and apparatus for reducing the heating value of liquefied natural gas
NO333065B1 (en) Apparatus and method for keeping tanks for storing or transporting a liquid gas cold
CN111527024A (en) Apparatus and method for treating boil-off gas in liquefied gas regasification system
KR20190042161A (en) VOC recovery apparatus using LNG and vessel using the same
KR101858511B1 (en) Vessel Operating System and Method
KR20100124537A (en) Harbor for loading and unloading the cargo and carbon dioxide
KR101788744B1 (en) Vaporization type unloading apparatus and method for low temperature liquefied gas carriage ship
KR101763677B1 (en) Reliquefaction system
KR100839771B1 (en) Nitrogen production apparatus provided in the offshore structure and nitrogen production method in the offshore structure using the nitrogen production apparatus
NO332123B1 (en) Plant to recover BOG from LNG stored in tanks
CN113260811B (en) Gas treatment system equipped with a receiving terminal of a regasification unit and corresponding gas treatment method
KR101788760B1 (en) Floating vessel and method of manufacturing the floating vessel
KR101750890B1 (en) Apparatus for reliquefaction of boil off gas in liquefied gas carrier
KR102194618B1 (en) Regasification System of liquefied Gas and Ship Having the Same
KR102175555B1 (en) Regasification System of liquefied Gas and Ship Having the Same
KR101378796B1 (en) Unloading System For Carbon Dioxide Carrier
KR102553159B1 (en) Gas treatment system and ship having the same
KR20230072523A (en) Gas management system in ship
KR20240103934A (en) gas treatment system and ship having the same
KR20180010645A (en) LNG Offloading System And Method For FLNG