NO330475B1 - Wind turbine foundation and method of building a variable water depth wind turbine foundation - Google Patents
Wind turbine foundation and method of building a variable water depth wind turbine foundation Download PDFInfo
- Publication number
- NO330475B1 NO330475B1 NO20092311A NO20092311A NO330475B1 NO 330475 B1 NO330475 B1 NO 330475B1 NO 20092311 A NO20092311 A NO 20092311A NO 20092311 A NO20092311 A NO 20092311A NO 330475 B1 NO330475 B1 NO 330475B1
- Authority
- NO
- Norway
- Prior art keywords
- wind turbine
- truss
- foundation
- truss tower
- nodes
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 7
- 230000007704 transition Effects 0.000 claims abstract description 10
- 238000009434 installation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- IWYGVDBZCSCJGT-UHFFFAOYSA-N 1-(2,5-dimethoxy-4-methylphenyl)-n-methylpropan-2-amine Chemical compound CNC(C)CC1=CC(OC)=C(C)C=C1OC IWYGVDBZCSCJGT-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B17/02—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
- E02B17/027—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto steel structures
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
- E02D27/52—Submerged foundations, i.e. submerged in open water
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B17/0004—Nodal points
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
- F03D13/25—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B2017/0056—Platforms with supporting legs
- E02B2017/006—Platforms with supporting legs with lattice style supporting legs
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B2017/0056—Platforms with supporting legs
- E02B2017/0069—Gravity structures
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B2017/0091—Offshore structures for wind turbines
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H12/00—Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
- E04H2012/006—Structures with truss-like sections combined with tubular-like sections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2230/00—Manufacture
- F05B2230/60—Assembly methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/912—Mounting on supporting structures or systems on a stationary structure on a tower
- F05B2240/9121—Mounting on supporting structures or systems on a stationary structure on a tower on a lattice tower
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/95—Mounting on supporting structures or systems offshore
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/727—Offshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Wind Motors (AREA)
- Foundations (AREA)
Abstract
Vindturbinfundament for variabelt vanndyp omfattende: en bunnfundamentering, et fagverkstårn anordnet på bunnfundamenteringen idet fagverkstårnet omfatter minst tre parallelle rørformede legger med lik senteravstand mellom nabolegger og et fagverksystem av stag anordnet mellom og forbundet til leggene, og en overgangskonstruksjon anordnet på fagverkstårnets øvre område.A variable water depth wind turbine foundation comprising: a bottom foundation, a truss tower arranged on the bottom foundation, the truss tower comprising at least three parallel tubular bearings with equal center spacing between neighboring legs and a truss system of stays arranged between and connected to the trusses, and a transition structure truss structure arranged on the truss structure.
Description
Foreliggende oppfinnelse angår et vindturbinfundament for variabelt vanndyp. The present invention relates to a wind turbine foundation for variable water depth.
Nærmere bestemt angår oppfinnelsen et fundament for vindturbiner til havs som står fast på sjøbunnen og som strekker seg over vannoverflaten hvor fundamentet understøtter et vertikalt rørformet tårn med en vindturbin anordnet på toppen. More specifically, the invention relates to a foundation for wind turbines at sea which is fixed on the seabed and which extends above the water surface, where the foundation supports a vertical tubular tower with a wind turbine arranged on top.
Videre angår oppfinnelsen en fremgangsmåte for oppbygging av et vindturbinfundament og for variabelt vanndyp. Furthermore, the invention relates to a method for constructing a wind turbine foundation and for variable water depth.
Tidligere ble vindturbiner normalt plassert på land på enkle fundamenter forankret i fjell eller på støpte fundamentplater med tilstrekkelig tyngde til å gi en stabil understøttelse for tårn med turbin. In the past, wind turbines were normally placed on land on simple foundations anchored in rock or on cast foundation plates with sufficient weight to provide a stable support for towers with turbines.
I den senere tid er det blitt vanlig å plassere vindturbiner til havs for å kunne få øket tilgang til areal og bedre vindforhold. Det er allerede mange eksempler på vindparker installert i Danmark, Tyskland, Holland og England. In recent times, it has become common to place wind turbines offshore in order to gain increased access to land and better wind conditions. There are already many examples of wind farms installed in Denmark, Germany, Holland and England.
De første vindparkene til havs er plassert på grunt vann med fundamentering som ligner de på land. Det er blant annet benyttet betongfundamenter som står stabilt ved hjelp av sin tyngde og det er benyttet en enkelt sentral pel som er drevet tilstrekkelig langt ned i bunnen til å gi tilfredsstillende stabilitet og stivhet for understøtning av vindturbinen. The first offshore wind farms are located in shallow water with foundations similar to those on land. Among other things, concrete foundations have been used which are stable with the help of their weight and a single central pile has been used which has been driven sufficiently far into the bottom to provide satisfactory stability and stiffness for supporting the wind turbine.
Disse løsningene er egnet for små vanndyp under ca 20m og for turbiner opp til ca 2-3MW. Med større vanndyp og tyngre turbiner med høyere tårn vil de kjente løsningene for små vanndyp være uegnet fordi de generelt blir for fleksible og dermed gir for høye strukturelle svingeperioder. Det vil være strenge krav til å oppnå en 1. svingeperiode innen et område under turbinens rotasjons periode og over 1/3 av rotasjonsperioden for å unngå uheldige svingninger og belastninger i strukturen og turbinen. These solutions are suitable for small water depths below approx. 20m and for turbines up to approx. 2-3MW. With greater water depths and heavier turbines with higher towers, the known solutions for small water depths will be unsuitable because they generally become too flexible and thus give too high structural swing periods. There will be strict requirements to achieve a 1st swing period within an area below the turbine's rotation period and over 1/3 of the rotation period in order to avoid unfavorable swings and loads in the structure and the turbine.
Det er forsøksvis installert turbiner på vanndyp opp til ca 45m. Eksempler her er Alpha Ventus prosjektet med ca 30m vanndyp og Beatrice med ca 45m vanndyp. På Alpha Ventus er det installert to typer fundamenter, det ene er en såkalt tripodløsning og den andre en rørfagverksløsning tilsvarende det man i oljebransjen kaller "jacket". Begge fundamentene er festet til bunnen med stålpeler som er drevet ned med undervannshammer, tilsvarende metoden benyttet for offshore plattformer. På Beatrice er det installert to turbiner som har jacket fundament som også er festet med peler til bunnen. Turbines have been experimentally installed at water depths of up to approx. 45m. Examples here are the Alpha Ventus project with approx. 30m water depth and Beatrice with approx. 45m water depth. Two types of foundations have been installed on Alpha Ventus, one is a so-called tripod solution and the other a pipe truss solution corresponding to what is called a "jacket" in the oil industry. Both foundations are attached to the bottom with steel piles that have been driven down with an underwater hammer, similar to the method used for offshore platforms. On Beatrice, two turbines have been installed which have jacked foundations which are also attached to the bottom with piles.
Med hensyn til bruk av stålløsninger viser erfaring og analyser at fundament av typen jacket har store fordeler når vanndypet blir litt større, det vil si i området 30-60m. I forhold til materialmengde har konseptet generelt høy stivhet og det er enkelt å oppnå riktig svingeperiode også for større vanndyp. Løsningen gir også lave bølgekrefter pga sin åpne struktur med slanke struktur-elementer. Kombinasjonen av høy stivhet og små bølgekrefter er gunstig da det medfører små bølgeinduserte bevegelser i konstruksjonen og dermed mini-maliserer overføring av dynamiske effekter fra bølger til tårn og turbin. With regard to the use of steel solutions, experience and analyzes show that foundations of the jacket type have major advantages when the water depth is slightly greater, that is in the range of 30-60m. In relation to the amount of material, the concept generally has high stiffness and it is easy to achieve the correct swing period even for greater water depths. The solution also provides low wave forces due to its open structure with slim structural elements. The combination of high stiffness and small wave forces is beneficial as it results in small wave-induced movements in the construction and thus minimizes the transfer of dynamic effects from waves to the tower and turbine.
Innen fagmiljøene er det etablert en generell forståelse for at jacket konseptet teknisk sett er en gunstig løsning for fundamentering av vindturbiner i sjøen. Within the professional circles, a general understanding has been established that the jacket concept is technically a favorable solution for the foundation of wind turbines in the sea.
Den største utfordringen med hensyn til vindturbiner på større vanndyp er kostnader. Generelt vil fundamenteringskostnadene, p.g.a. størrelse, kompleksitet og omfattende installasjonsarbeid bli større enn på land og det øker med økende vanndyp. The biggest challenge with regard to wind turbines at greater water depths is cost. In general, the foundation costs, due to size, complexity and extensive installation work become greater than on land and this increases with increasing water depth.
Offshoreindustrien har vist at bygging og installasjon av et enkelt plattform-fundament er ekstremt kostbart fordi all engineering, planlegging, administrasjon og bruk av offshore installasjonsutstyr etc. er relatert kun til en enkelt installasjon. Ved produksjon av et stort antall vindturbiner til en vindpark er det mulig å fordele enkelte kostnader på mange enheter, videre er det mulig å effektivisere fabrikasjonen dersom løsningene er enkle og i stor grad egner seg for bruk av automa-tiske arbeidsoperasjoner. Med hensyn til installasjon vil kostbart utstyr som kran-fartøy, lektere etc. kunne brukes effektivt på mange installasjoner samt at ratene også vil bli mye gunstigere ved lengre engasjement. The offshore industry has shown that the construction and installation of a single platform foundation is extremely expensive because all engineering, planning, administration and use of offshore installation equipment etc. are related only to a single installation. When producing a large number of wind turbines for a wind farm, it is possible to distribute certain costs over many units, and it is also possible to make manufacturing more efficient if the solutions are simple and largely suitable for the use of automatic work operations. With regard to installation, expensive equipment such as crane vessels, barges etc. can be used effectively on many installations and the rates will also be much more favorable for longer engagements.
Et mål med foreliggende oppfinnelse er derfor å utvikle et vindturbinfundament med teknisk gode løsninger og med lavest mulig kostnad. Det vil i praksis si at de beste løsningene vil bli et kompromiss mellom teknologi og økonomi. De viktigste kostnadselementene er fabrikasjon av fundamentet på land og kostnader knyttet til transport og installasjon. Disse kostnadene vil også være relatert til muligheten til å effektivisere fabrikasjon og installasjon når det produseres vindturbiner i stor skala for vindparker. An aim of the present invention is therefore to develop a wind turbine foundation with technically sound solutions and at the lowest possible cost. In practice, this means that the best solutions will be a compromise between technology and economics. The most important cost elements are fabrication of the foundation on land and costs related to transport and installation. These costs will also be related to the possibility of making manufacturing and installation more efficient when wind turbines are produced on a large scale for wind farms.
Et annet mål er at vindturbinfundamentet kan tilpasses forskjellige vanndyp ved å endre tårnets høyde mens andre hovedmål og konstruksjonsløsninger holdes uendret. Vindturbinfundamentet er videre i stor grad også standardisert uavhengig av vanndyp slik at både detaljprosjektering og administrasjon blir enkel samt at spesialutviklet fabrikasjonsutstyr og den tekniske løsningen kan benyttes på flest mulig enheter. Another goal is that the wind turbine foundation can be adapted to different water depths by changing the height of the tower, while keeping other main goals and construction solutions unchanged. The wind turbine foundation is also standardized to a large extent, regardless of water depth, so that both detailed planning and administration are easy and that specially developed fabrication equipment and the technical solution can be used on as many units as possible.
Et ytterligere mål er at vindturbinfundamentet skal ha meget gode stivhets-egenskaper samtidig som det er meget godt egnet for effektiv og til stor del auto-matisert fabrikasjon. A further goal is that the wind turbine foundation should have very good stiffness properties while at the same time being very well suited for efficient and largely automated fabrication.
Målene med foreliggende oppfinnelse oppnås ved et vindturbinfundament for variabelt vanndyp, omfattende: en bunnfundamentering, et fagverkstårn anordnet på bunnfundamenteringen i det fagverkstårnet omfatter minst tre parallelle rørformede legger og et fagverksystem av stag med stagknutepunkter og leggknutepunkter anordnet mellom og forbundet til leggene, og en overgangskonstruksjon anordnet på fagverkstårnets øvre område, kjennetegnet av at fagverkstårnet består av minst ett standardisert fagverkstårnelement hvor senteravstanden mellom de minst tre parallelle rørformede legger er konstant, stagenes diameter er konstant og stagknutepunktene og leggknutepunktene har standardiserte utforminger. The objectives of the present invention are achieved by a wind turbine foundation for variable water depth, comprising: a bottom foundation, a truss tower arranged on the bottom foundation in which the truss tower comprises at least three parallel tubular legs and a truss system of braces with brace nodes and leg nodes arranged between and connected to the legs, and a transition structure arranged on the truss tower's upper area, characterized by the fact that the truss tower consists of at least one standardized truss tower element where the center distance between the at least three parallel tubular legs is constant, the diameter of the struts is constant and the strut nodes and the leg nodes have standardized designs.
Foretrukne utførelsesformer av vindturbinfundamentet er videre utdypet i kravene 2 til og med 6. Preferred embodiments of the wind turbine foundation are further elaborated in claims 2 to 6 inclusive.
Målet med foreliggende oppfinnelse oppnås videre med en fremgangsmåte for oppbygging av et vindturbinfundament for variabelt vanndyp, omfattende en bunnfundamentering, et fagverkstårn omfattende minst tre parallelle rørformede legger og et fagverkssystem av stag med stagknutepunkter og leggknutepunkter og en overgangskonstruksjon, kjennetegnet ved at fagverkstårnet anordnes på bunnfundamenteringen og overgangskonstruksjonen anordnes på fagverktårnets øvre område, idet fagverkstårnet tilveiebringes som minst et standardisert fagverkstårnelement hvor senteravstanden mellom de minst tre parallelle rørformede legger holdes konstant, stagenes diameter holdes konstant og stagknutepunktene og leggknutepunktene tilveiebringes som standardiserte utforminger. The aim of the present invention is further achieved with a method for constructing a wind turbine foundation for variable water depth, comprising a bottom foundation, a truss tower comprising at least three parallel tubular legs and a truss system of braces with brace nodes and leg nodes and a transition structure, characterized by the fact that the truss tower is arranged on the bottom foundation and the transition structure is arranged on the upper area of the truss tower, the truss tower being provided as at least one standardized truss tower element where the center distance between the at least three parallel tubular legs is kept constant, the diameter of the struts is kept constant and the strut nodes and the leg nodes are provided as standardized designs.
En foretrukket utførelsesform av fremgangsmåten for oppbygging av et vindturbinfundament for variabelt vanndyp er videre utdypet i krav 8. A preferred embodiment of the method for building a wind turbine foundation for variable water depth is further elaborated in claim 8.
Oppfinnelsen skal nå videre utdypes med henvisning til de vedføyde tegninger, hvor: figur 1 viser en utførelse av et vindturbinfundament med en tyngdebasert bunnfundamentering, The invention shall now be further elaborated with reference to the attached drawings, where: figure 1 shows an embodiment of a wind turbine foundation with a gravity-based bottom foundation,
figur 2 viser en annen utførelse av vindturbinfundamentet med en bunnfundamentering som innbefatter peler, figure 2 shows another embodiment of the wind turbine foundation with a bottom foundation which includes piles,
figur 3 viser et knutepunkt for å forbinde stag i fagverkssystemet, og figure 3 shows a junction point for connecting struts in the truss system, and
figur 4a og 4b viser et knutepunkt for å forbinde stag til fagverktårnets rørformede legger. figures 4a and 4b show a junction point for connecting struts to the truss tower's tubular legs.
Med henvisning til figur 1 og figur 2 er det vist et vindturbinfundament 1 som bærer et vertikalt rørformet tårn med en vindturbin som er anordnet i sitt øvre tårn. Vindturbinfundamentet 1 omfatteren bunnfundamentering 5, et fagverkstårn 10 anordnet på bunnfundamenteringen 5 og en overgangskonstruksjon 25 anordnet på fagverkstårnets øvre område. With reference to Figure 1 and Figure 2, a wind turbine foundation 1 is shown which carries a vertical tubular tower with a wind turbine arranged in its upper tower. The wind turbine foundation 1 comprises the bottom foundation 5, a truss tower 10 arranged on the bottom foundation 5 and a transition structure 25 arranged on the upper area of the truss tower.
Figur 1 viser en første utførelse av bunnfundamenteringen 5 i form av et tyngdebasert fundament 6, fortrinnsvis i betong, og eventuelt med tilleggsballast i form av grus og stein. Figur 2 viser en annen utførelse av bunnfundamenteringen 5 hvor det anvendes peler 7 for å sikre en innfesting i sjøbunnen. I en tredje utførelse kan bunnfundamenteringen 5 være anordnet med sylinderformede dype stålfundamenter i hvert av hjørnene og som videre er drevet ned delvis med egenvekt av installasjonen og i tillegg bruk av vakuum for å oppnå tilstrekkelig penetrering i sjøbunnen. Det skal nevnes at valg av bunnfundamentering 5 vil være avhengig av de gitte bunnforhold og andre forhold som kan ha kostnads-messig betydning. Figure 1 shows a first embodiment of the bottom foundation 5 in the form of a weight-based foundation 6, preferably in concrete, and optionally with additional ballast in the form of gravel and stone. Figure 2 shows another embodiment of the bottom foundation 5 where piles 7 are used to secure an attachment to the seabed. In a third embodiment, the bottom foundation 5 can be arranged with cylindrical deep steel foundations in each of the corners and which are further driven down partly with the own weight of the installation and in addition the use of a vacuum to achieve sufficient penetration into the seabed. It should be mentioned that the choice of bottom foundation 5 will depend on the given bottom conditions and other conditions that may have cost implications.
Videre med henvisning til figur 1 og figur 2 omfatter fagverkstårnet 10 tre parallelle rørformede legger 12 med lik senteravstand mellom nabolegger. De tre parallelle rørformede legger 12 har konstant diameter fra bunn til topp. Et fagverksystem 15 av stag 16 er anordnet mellom og forbundet til leggene 12. Alle fagverksystemets stag 16 har lik diameter. Stagene 16 er anordnet i et X-system. Dette gjør at det kan benyttes en standardisert type knutepunkt av lik dimensjon både i krysningen mellom stagene 16 og for stagenes forbindelse til leggene 12, henholdsvis stagknutepunkt 20 og leggknutepunkt 21. Det vises i denne forbindelse til figur 3, figur 4a og figur 4b. Stagknutepunktet 21 som forbinder stagene 16 mot leggene 12 er da et såkalt K-knutepunkt som utgjør en halvdel av X-knutepunktet mellom stagene 16. Eventuelle variable styrke- og stivhetsgrad som krever variabelt tverrsnittsareal oppnås ved å variere veggtykkelsen til leggene 12 og stagene 16 mens alle knutepunktene fortrinnsvis utføres med samme tykkelse for å forenkle fabrikasjonen av disse. Furthermore, with reference to Figure 1 and Figure 2, the truss tower 10 comprises three parallel tubular layers 12 with equal center distance between neighboring layers. The three parallel tubular beds 12 have a constant diameter from bottom to top. A truss system 15 of stays 16 is arranged between and connected to the legs 12. All of the truss system's stays 16 have the same diameter. The struts 16 are arranged in an X system. This means that a standardized type of joint of equal dimensions can be used both in the crossing between the struts 16 and for the connection of the struts to the legs 12, respectively strut joint 20 and leg joint 21. Reference is made in this connection to figure 3, figure 4a and figure 4b. The strut node 21 which connects the struts 16 to the legs 12 is then a so-called K-node which makes up half of the X-node between the struts 16. Any variable degree of strength and stiffness that requires a variable cross-sectional area is achieved by varying the wall thickness of the legs 12 and the struts 16 while all the nodes are preferably made with the same thickness to simplify their manufacture.
Igjen med henvisning til figur 1 og figur 2 er overgangskonstruksjonen 25 vist anordnet på fagverkstårnets øvre område. Det forutsettes videre at samme leggavstand og leggdiameter benyttes for variable vanndyp slik at overgangskonstruksjonen 25 mellom fagverkstårnet 10 og leggene 12, som er den strukturelt mest kompliserte delen, kan standardiseres for en type vindturbinder uavhengig av vanndypet. Again with reference to Figure 1 and Figure 2, the transition structure 25 is shown arranged on the upper area of the truss tower. It is further assumed that the same leg distance and leg diameter is used for variable water depths so that the transition structure 25 between the truss tower 10 and the legs 12, which is the structurally most complicated part, can be standardized for one type of wind turbine tie regardless of the water depth.
Stagene 16 og stagknutepunktene 20 og leggknutepunktene 21 vil også da få samme dimensjoner for forskjellige vanndyp. Stagenes vinkel med horisontal-planet skal fortrinnsvis være 45 grader, men med avvik som er nødvendig for å tilpasse et helt antall stagsystem mellom bunnivå og toppnivå. The stays 16 and the stay nodes 20 and the leg nodes 21 will then also have the same dimensions for different water depths. The struts' angle with the horizontal plane should preferably be 45 degrees, but with deviations that are necessary to adapt a whole number of strut systems between bottom level and top level.
Claims (8)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20092311A NO330475B1 (en) | 2009-06-16 | 2009-06-16 | Wind turbine foundation and method of building a variable water depth wind turbine foundation |
CN2010800268922A CN102803720A (en) | 2009-06-16 | 2010-06-16 | Wind turbine foundation for variable water depth |
KR1020127000582A KR20120034723A (en) | 2009-06-16 | 2010-06-16 | Wind turbine foundation for variable water depth |
EP10789786.0A EP2443342A4 (en) | 2009-06-16 | 2010-06-16 | Wind turbine foundation for variable water depth |
PCT/NO2010/000233 WO2010147481A1 (en) | 2009-06-16 | 2010-06-16 | Wind turbine foundation for variable water depth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20092311A NO330475B1 (en) | 2009-06-16 | 2009-06-16 | Wind turbine foundation and method of building a variable water depth wind turbine foundation |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20092311L NO20092311L (en) | 2010-12-17 |
NO330475B1 true NO330475B1 (en) | 2011-04-26 |
Family
ID=43356586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20092311A NO330475B1 (en) | 2009-06-16 | 2009-06-16 | Wind turbine foundation and method of building a variable water depth wind turbine foundation |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2443342A4 (en) |
KR (1) | KR20120034723A (en) |
CN (1) | CN102803720A (en) |
NO (1) | NO330475B1 (en) |
WO (1) | WO2010147481A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202011101599U1 (en) * | 2011-05-12 | 2011-09-23 | Emilio Reales Bertomeo | Offshore foundation for wind turbines |
CA2867927C (en) | 2012-03-24 | 2018-09-04 | Owlc Holdings Ltd | Structures for offshore installations |
GB201206400D0 (en) * | 2012-04-11 | 2012-05-23 | Offshore Group Newcastle Ltd | Offshore structure installation |
KR101237983B1 (en) * | 2012-05-07 | 2013-02-27 | 건국대학교 산학협력단 | Offshore structure and structure method thereof |
JP6461789B2 (en) * | 2012-06-10 | 2019-01-30 | エムエイチアイ ヴェスタス オフショア ウィンド エー/エス | Nodal structure for lattice frames |
CN102758446B (en) * | 2012-07-30 | 2015-03-18 | 江苏金风科技有限公司 | Semi-submersible type offshore floating wind turbine foundation |
DE202012009681U1 (en) * | 2012-10-10 | 2014-01-13 | Maritime Offshore Group Gmbh | Support structure for offshore installations |
EP2728179A1 (en) * | 2012-10-30 | 2014-05-07 | Alstom Wind, S.L.U. | Wind farm and method for installing a wind farm |
US10767632B2 (en) * | 2016-09-09 | 2020-09-08 | Siemens Gamesa Renewable Energy A/S | Transition piece for a wind turbine |
DE202019104155U1 (en) | 2019-07-29 | 2019-09-18 | Thyssenkrupp Steel Europe Ag | Support structure, in particular for on- and / or offshore wind turbines |
WO2022144471A1 (en) * | 2020-12-29 | 2022-07-07 | Nabrawind Technologies. Sl | Offshore tower and assembly method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO320948B1 (en) * | 2004-07-01 | 2006-02-20 | Owec Tower As | Device for low torque linkage |
US20070243063A1 (en) * | 2006-03-17 | 2007-10-18 | Schellstede Herman J | Offshore wind turbine structures and methods therefor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1503208A (en) * | 1975-06-11 | 1978-03-08 | Hansen F | Offshore marine structures and methods for the construction thereof |
US4648750A (en) * | 1985-03-25 | 1987-03-10 | Horton Edward E | Jacket tower structure and method of installation |
DE102005014868A1 (en) * | 2005-03-30 | 2006-10-05 | Repower Systems Ag | Offshore wind turbine with non-slip feet |
EP2185816B2 (en) * | 2007-08-29 | 2021-11-03 | Vestas Offshore Wind A/S | Monopile foundation for offshore wind turbine |
EP2067915A2 (en) * | 2007-12-04 | 2009-06-10 | WeserWind GmbH | Grid structure for an offshore construction, in particular an offshore wind energy converter |
EP2067914A2 (en) * | 2007-12-04 | 2009-06-10 | WeserWind GmbH | Grid structure for an offshore construction, in particular an offshore wind energy converter, and method for manufacture thereof |
-
2009
- 2009-06-16 NO NO20092311A patent/NO330475B1/en unknown
-
2010
- 2010-06-16 CN CN2010800268922A patent/CN102803720A/en active Pending
- 2010-06-16 WO PCT/NO2010/000233 patent/WO2010147481A1/en active Application Filing
- 2010-06-16 EP EP10789786.0A patent/EP2443342A4/en not_active Withdrawn
- 2010-06-16 KR KR1020127000582A patent/KR20120034723A/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO320948B1 (en) * | 2004-07-01 | 2006-02-20 | Owec Tower As | Device for low torque linkage |
US20070243063A1 (en) * | 2006-03-17 | 2007-10-18 | Schellstede Herman J | Offshore wind turbine structures and methods therefor |
Also Published As
Publication number | Publication date |
---|---|
NO20092311L (en) | 2010-12-17 |
KR20120034723A (en) | 2012-04-12 |
CN102803720A (en) | 2012-11-28 |
WO2010147481A1 (en) | 2010-12-23 |
EP2443342A1 (en) | 2012-04-25 |
EP2443342A4 (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO330475B1 (en) | Wind turbine foundation and method of building a variable water depth wind turbine foundation | |
TWI656281B (en) | Floating wind turbine platform structure with optimized transfer of wave and wind loads | |
JP5745688B2 (en) | Floating wind power generation facility with energy storage equipment | |
DK2522780T3 (en) | Offshore foundation for wind power plants | |
GB2583244A (en) | Self-aligning to wind facing floating platform supporting multi-wind turbines and solar for wind and solar power generation and the construction method | |
US20120139255A1 (en) | Technology for combined offshore floating wind power generation | |
US20170218919A1 (en) | Wind tracing, rotational, semi-submerged raft for wind power generation and a construction method thereof | |
NO329946B2 (en) | Foundation for an offshore wind turbine generator as well as methods for building and installing the foundation | |
ES2387232B2 (en) | Semi-submersible platform for open sea applications | |
ES2387342B2 (en) | Semi-submersible triangular platform for open sea applications | |
NO334535B1 (en) | Liquid, semi-submersible hull for storage of preferably one or more wind turbines | |
NO145444B (en) | PROCEDURE FOR BUILDING THE TIRE CONSTRUCTION AND EXECUTION OF THE SAME. | |
DK2828436T3 (en) | Offshore foundation for wind energy systems with arcuate bent nodes | |
JP2011157971A (en) | Support structure for supporting offshore wind turbine | |
US20170159260A1 (en) | Offshore support structure, offshore tower installation with the offshore support structure and offshore wind power plant with the offshore tower installation | |
CN206971250U (en) | A kind of offshore wind farm engineering jacket basis | |
WO2010117289A3 (en) | Truss tower | |
Zaaijer | Comparison of monopile, tripod, suction bucket and gravity base design for a 6 MW turbine | |
DK153960B (en) | DRILLING AND PRODUCTION CONSTRUCTION FOR OFFSHORE OPERATIONS | |
CN105178347A (en) | Offshore anemometer tower foundation, offshore anemometer platform and application method of offshore anemometer platform | |
NO20110235A1 (en) | Methods and systems for optimized wind turbine park configuration with special focus on modular (offshore) wind turbine foundations. | |
CN105442899B (en) | Offshore anemometer tower and its pedestal | |
Abanades et al. | The application of caisson-type solutions to the current offshore wind energy market | |
Jeong et al. | Shape dependent wave force and bending moment of offshore wind substructure system | |
NO329902B1 (en) | Stabilizing buoyancy device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CHAD | Change of the owner's name or address (par. 44 patent law, par. patentforskriften) |
Owner name: FLOATING WIND SOLUTIONS AS, NO |
|
CHAD | Change of the owner's name or address (par. 44 patent law, par. patentforskriften) |
Owner name: DR TECHN OLAV OLSEN AS, NO |