NO20210393A1 - Method for calculating the distance to a blockage in a tight pipe - Google Patents
Method for calculating the distance to a blockage in a tight pipe Download PDFInfo
- Publication number
- NO20210393A1 NO20210393A1 NO20210393A NO20210393A NO20210393A1 NO 20210393 A1 NO20210393 A1 NO 20210393A1 NO 20210393 A NO20210393 A NO 20210393A NO 20210393 A NO20210393 A NO 20210393A NO 20210393 A1 NO20210393 A1 NO 20210393A1
- Authority
- NO
- Norway
- Prior art keywords
- pressure
- measuring instrument
- pressure vessel
- pipe
- instrument according
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
- G01M3/28—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
- G01M3/2807—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
- G01M3/2815—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D5/00—Protection or supervision of installations
- F17D5/02—Preventing, monitoring, or locating loss
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L2101/00—Uses or applications of pigs or moles
- F16L2101/30—Inspecting, measuring or testing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
Patentbeskrivelse Patent description
Oppfinnelsen angår et måleinstrument ved bruk av metode er å beregne avstanden til en blokkering i et tett rør. The invention relates to a measuring instrument using the method of calculating the distance to a blockage in a tight pipe.
Bakgrunn Background
Tette rør er et problem som ofte fører til store kostnader. Det er ikke uvanlig at røret må graves opp for å løse problemet. Mange rør har ligget ubrukt i bakken i mange år, og mangel på ende propper på rørene kan gjerne resultere i et tilstoppet rør over tid, eller is om vinteren. Av og til dukker det opp en gammel klemskade eller avgravde rør i forbindelse med tidligere arbeider. Den dagen et rør skal tas i bruk, så er det ikke ukjent at man møter på en slik utfordring, som må løses før røret kan tas i bruk. Metodene for å lokalisere tette rør i dag blir gjort ved såkalt 'rodding', det vil si å dytte inn en søkefjær, stiv kabel eller lignende inn i røret til det stopper. Søkefjæren dras ut og legges på bakken over rør traseen for å lokalisere hvor det eventuelt må graves opp. Clogged pipes are a problem that often leads to large costs. It is not uncommon for the pipe to have to be dug up to solve the problem. Many pipes have lain unused in the ground for many years, and a lack of end plugs on the pipes can easily result in a clogged pipe over time, or ice in the winter. Occasionally, old crushing damage or excavated pipes appear in connection with previous works. On the day a pipe is to be put into use, it is not unknown to encounter such a challenge, which must be solved before the pipe can be put into use. The methods for locating clogged pipes today are done by so-called 'rodding', that is, pushing a search spring, rigid cable or similar into the pipe until it stops. The search spring is pulled out and placed on the ground above the pipe route in order to locate where it may need to be excavated.
Det finnes også en elektronisk sonde, som festes i enden av søkefjæren og dyttes inn i røret til det stopper. Med en elektronisk mottaker lokaliseres signalet som sonden sender ut. Det er ikke alltid man når helt frem til blokkeringen, hverken fra den ene eller andre enden av røret. Da må røret avdekkes og deles på et tilfeldig sted rundt om kring på midten. Trykkluft etableres i en ende for å lokalisere i hvilken retning man skal foreta videre feilsøking. Prosessen gjentas. Dette kan være tidkrevende, slitsomt, og noen ganger resurskrevende. Tynne fiber rør / kabel rør med indre diameter på mindre enn 4mm, kan være vanskelig å feilsøke på ved bruk av denne metoden. There is also an electronic probe, which is attached to the end of the search spring and pushed into the pipe until it stops. With an electronic receiver, the signal emitted by the probe is located. It is not always possible to reach the blockage, either from one or the other end of the pipe. Then the pipe must be uncovered and split in a random place around the middle. Compressed air is established at one end to locate in which direction further troubleshooting is to be carried out. The process is repeated. This can be time-consuming, tiring, and sometimes resource-intensive. Thin fiber pipes / cable pipes with an inner diameter of less than 4mm can be difficult to troubleshoot using this method.
Søk i patent databasen Espacenet avslører et patent, EP0300647A1, som ligner på oppfinnelsen i oppbygging, men kan ikke sammenlignes da metodene er forskjellige. Dette patentet krever at det foreligger referansemålinger fra tidligere, slik at de nye målingene kan sammenlignes med disse. Patentet viser en grafisk kurve, som kan indikere om en eventuell feil er nærmere den ene eller andre enden. Search in the patent database Espacenet reveals a patent, EP0300647A1, which is similar to the invention in structure, but cannot be compared as the methods are different. This patent requires that there be reference measurements from earlier, so that the new measurements can be compared with these. The patent shows a graphic curve, which can indicate whether a possible error is closer to one end or the other.
Løsning Solution
Måleinstrument ifølge oppfinnelsen er vist på tegninger der Figur.1 viser skjematikken til komponenter, og Figur.2 viser koblingsskjema til elektronikk. The measuring instrument according to the invention is shown in drawings where Figure 1 shows the schematic of components, and Figure 2 shows the connection diagram for electronics.
Med dette måleinstrument ved bruk av metode ifølge oppfinnelsen kan man raskt og enkelt måle avstanden til en blokkering i et tett rør (h). Avhengig av rørets dimensjon, avstand til blokkering og hvor stort trykk det er i trykkbeholder (a), vil tiden på en måling variere fra 30 sekunder til 3 minutter. With this measuring instrument, using the method according to the invention, one can quickly and easily measure the distance to a blockage in a tight pipe (h). Depending on the pipe's dimensions, the distance to the blockage and how much pressure there is in the pressure vessel (a), the time for a measurement will vary from 30 seconds to 3 minutes.
Dette oppnås ifølge oppfinnelsen ved hjelp av komponenter (Figur.1) som består av: - Trykkbeholder (a), hvor hensikt er å lagre gass under trykk til bruk ved måling. This is achieved according to the invention with the help of components (Figure 1) which consist of: - Pressure vessel (a), the purpose of which is to store gas under pressure for use during measurement.
- Stoppekran (b), hvor hensikt er å stenge / åpne for trykket i trykkbeholder (a). - Stopcock (b), where the purpose is to close / open the pressure in the pressure vessel (a).
- Rørkobling (c), hvor hensikt er å ha en forbindelse mellom måleinstrument og rør (h). - Trykksensor (d), hvor hensikt er å måle trykket i trykkbeholder (a). - Pipe connection (c), where the purpose is to have a connection between the measuring instrument and pipe (h). - Pressure sensor (d), whose purpose is to measure the pressure in the pressure vessel (a).
- Mikrokontroller (e), hvor hensikt er å foreta de matematiske beregningene. - Microcontroller(s), where the purpose is to make the mathematical calculations.
- Display (f), hvor hensikt er å vise konfigurasjon og måleresultat. - Display (f), where the purpose is to show configuration and measurement results.
- Trykknapper (g), hvor hensikt er å betjene måleinstrument. - Push buttons (g), where the purpose is to operate the measuring instrument.
- Batteri (m), hvor hensikt er å forsyne mikrokontroller (e) med strøm. - Battery (m), where the purpose is to supply microcontrollers (e) with power.
En måling utføres ifølge oppfinnelsen ved å fylle trykkbeholder (a) med gass, og etablere en forbindelse mellom trykkbeholder (a) og rør (h) via rørkobling (c). Mikrokontroller (e) aktiveres ved å slå på strømmen. I menyen, som vises i display (f), velges riktige parametere ved å betjene trykknapper (g). Målingen startes, og stoppekran (b) åpnes. Etter at trykket i trykkbeholder (a) er utlignet med rør (h), så vises måleresultatet i display (f). Denne metoden krever at rørets (h) indre diameter er den samme hele veien, og at rørets (h) geografiske beliggenhet er kjent. A measurement is carried out according to the invention by filling pressure vessel (a) with gas, and establishing a connection between pressure vessel (a) and pipe (h) via pipe connection (c). Microcontroller(s) are activated by turning on the power. In the menu, which appears in the display (f), the correct parameters are selected by operating push buttons (g). The measurement is started, and stopcock (b) is opened. After the pressure in the pressure vessel (a) has been equalized with the pipe (h), the measurement result is shown in the display (f). This method requires that the inner diameter of the pipe (h) is the same throughout, and that the geographical location of the pipe (h) is known.
Metoden i følge oppfinnelsen egner seg veldig godt for tynnere rør med indre diameter på mellom 2mm og 50mm, og gjelder spesielt fiber rør / kabel rør hvor lengde kan være på mange hundre meter. Tester som er gjort viser at denne metoden i følge oppfinnelsen er mere akkurat enn forventet, og røper at målingene har et avvik på ca.1% på lengder mellom 20m og 500m. Dette gjelder rør med indre diameter på 3.5mm, 4.4mm, 8mm og 10mm. Ved større diameter på rør, så kreves etter hvert en større trykkbeholder. The method according to the invention is very suitable for thinner pipes with an inner diameter of between 2mm and 50mm, and particularly applies to fiber pipes / cable pipes where the length can be many hundreds of meters. Tests that have been carried out show that this method according to the invention is more accurate than expected, and reveals that the measurements have a deviation of approx. 1% on lengths between 20m and 500m. This applies to pipes with an inner diameter of 3.5mm, 4.4mm, 8mm and 10mm. With larger pipe diameters, a larger pressure vessel is eventually required.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20210393A NO20210393A1 (en) | 2021-03-25 | 2021-03-25 | Method for calculating the distance to a blockage in a tight pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20210393A NO20210393A1 (en) | 2021-03-25 | 2021-03-25 | Method for calculating the distance to a blockage in a tight pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
NO20210393A1 true NO20210393A1 (en) | 2022-09-26 |
Family
ID=83744642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20210393A NO20210393A1 (en) | 2021-03-25 | 2021-03-25 | Method for calculating the distance to a blockage in a tight pipe |
Country Status (1)
Country | Link |
---|---|
NO (1) | NO20210393A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3903729A (en) * | 1970-12-30 | 1975-09-09 | Taft Broadcasting Corp | Method and apparatus for detecting a break or other occurrence in a pipeline containing gas under pressure |
US5139044A (en) * | 1991-08-15 | 1992-08-18 | Otten Bernard J | Fluid control system |
DE20014625U1 (en) * | 2000-08-24 | 2001-11-15 | Samman, Reda Adam Fawy, Alexandria | Device for testing pipelines |
KR20130118679A (en) * | 2012-04-20 | 2013-10-30 | 인천도시가스주식회사 | A pressure control device for gas drop test and leakage test |
KR20160011859A (en) * | 2014-07-23 | 2016-02-02 | 한전케이피에스 주식회사 | A test for hydraulic pressure facility |
US20190063689A1 (en) * | 2016-04-29 | 2019-02-28 | Jinyu Liu | Leak detection device and method |
-
2021
- 2021-03-25 NO NO20210393A patent/NO20210393A1/en not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3903729A (en) * | 1970-12-30 | 1975-09-09 | Taft Broadcasting Corp | Method and apparatus for detecting a break or other occurrence in a pipeline containing gas under pressure |
US5139044A (en) * | 1991-08-15 | 1992-08-18 | Otten Bernard J | Fluid control system |
DE20014625U1 (en) * | 2000-08-24 | 2001-11-15 | Samman, Reda Adam Fawy, Alexandria | Device for testing pipelines |
KR20130118679A (en) * | 2012-04-20 | 2013-10-30 | 인천도시가스주식회사 | A pressure control device for gas drop test and leakage test |
KR20160011859A (en) * | 2014-07-23 | 2016-02-02 | 한전케이피에스 주식회사 | A test for hydraulic pressure facility |
US20190063689A1 (en) * | 2016-04-29 | 2019-02-28 | Jinyu Liu | Leak detection device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11823805B2 (en) | Acousto-optic leakage monitoring system for nuclear power plant main steam pipeline | |
CN101206168B (en) | Method for checking SF6 gas density relay | |
CN204177537U (en) | A kind of container helium mass spectrum leak detection device | |
EP3198252A1 (en) | Gas detector and operating method | |
CN102519513A (en) | Ground vacuum calibration test method of satellite-borne passive microwave remote sensing instrument by use of three calibration sources | |
CN106845437A (en) | Leakage of City Gas Pipeline localization method based on Support vector regression | |
CN105299462A (en) | High-precision liquid nitrogen liquid-level measurement system | |
CN111316075B (en) | Plant growth control system and plant growth analysis method | |
NO20210393A1 (en) | Method for calculating the distance to a blockage in a tight pipe | |
CN103926324A (en) | Method for detecting creep damage of main steam pipeline through ultrasonic surface waves | |
JPWO2017086150A1 (en) | Apparatus and method for measuring deposit thickness using ultrasonic waves | |
CN115791891A (en) | Structural damage identification method and system based on piezoelectric impedance technology | |
CN107884364A (en) | Temperature and humidity compensation method when being detected available for laser methane | |
CN103033561A (en) | Apparatus and method for inspection of tubes in a boiler | |
CN111781304A (en) | Calibration method of natural gas on-line water dew point instrument | |
CN205898732U (en) | But bluetooth formula soil moisture apparatus of layering survey | |
EP4481369A3 (en) | Measurement device, calibration curve generation system, spectrum measurement method, calibration curve generation method, analysis device, liquefied gas production plant, and property analysis method | |
CN109991606B (en) | Wave height measuring device and method for ice water mixing environment | |
CN207133275U (en) | PH value for intermittent draining monitors pipeline on-line | |
CN207742033U (en) | Triaxial tests instrument test specimen apparatus for measuring quality | |
CN203940888U (en) | A kind of fiber grating sensing system for oil tank level monitoring | |
CN107807229A (en) | The cryogenic property detecting system and its detection method of a kind of Gases Dissolved in Transformer Oil on-Line Monitor Device | |
JP2003044124A (en) | Magnet float type level indicator fault diagnostic device | |
Knepp | Chemistry and Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) | |
CN104748849A (en) | Field remote spectrum detection device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FC2A | Withdrawal, rejection or dismissal of laid open patent application |