NO20111763A1 - System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) - Google Patents
System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) Download PDFInfo
- Publication number
- NO20111763A1 NO20111763A1 NO20111763A NO20111763A NO20111763A1 NO 20111763 A1 NO20111763 A1 NO 20111763A1 NO 20111763 A NO20111763 A NO 20111763A NO 20111763 A NO20111763 A NO 20111763A NO 20111763 A1 NO20111763 A1 NO 20111763A1
- Authority
- NO
- Norway
- Prior art keywords
- energy
- water
- vvx
- heat
- rhp
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 10
- 230000009182 swimming Effects 0.000 title claims description 6
- 238000011084 recovery Methods 0.000 title description 4
- 238000009825 accumulation Methods 0.000 claims abstract description 8
- 238000007791 dehumidification Methods 0.000 claims abstract description 6
- 239000005457 ice water Substances 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 238000009423 ventilation Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 2
- 239000008280 blood Substances 0.000 claims 1
- 210000004369 blood Anatomy 0.000 claims 1
- 239000002826 coolant Substances 0.000 claims 1
- 239000010797 grey water Substances 0.000 claims 1
- 238000004064 recycling Methods 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002918 waste heat Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/02—Domestic hot-water supply systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/06—Heat pumps characterised by the source of low potential heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/02—Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Other Air-Conditioning Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Primært er oppfinnelsen akkumulering av energi fra et tidspunkt på døgnet når avfuktningen må gjennomføres med dertil store mengder av overskuddsenergi. RHP's systemløsning ivaretar med dette alle svingninger av energiforbruket over hele døgnet. Systemet fanger opp og lagrer energi, som tradisjonell gjenvinning ikke ivaretar.Primarily, the invention is the accumulation of energy from a time of day when dehumidification must be carried out with large amounts of surplus energy. With this, RHP's system solution takes care of all fluctuations in energy consumption throughout the day. The system captures and stores energy, which traditional recycling does not safeguard.
Description
Oppfinnelsens område Field of the invention
Den foreliggende oppfinnelse vedrører en systemløsning med akkumulatortanker på begge sider av varmepumpen, samt opptak og avgivelse av energi fra flere ulike kilder. The present invention relates to a system solution with accumulator tanks on both sides of the heat pump, as well as absorption and release of energy from several different sources.
Som akkumuleringstank på varmesiden annvennes primært egne akkumuleringstanker, sekundært akkumuleres det mot utgjevningstank inklusiv svømmebaseng. As an accumulation tank on the heating side, separate accumulation tanks are primarily used, secondarily it is accumulated against an equalization tank including a swimming pool.
Løsning baserer seg på en varmepumpe som kjøler ned buffertank med isvann (min. +0 °C,) som igjen sirkulerer gjennom vekslere i forbindelse med gjenvinning av energi fra blødervannet, avløpsvann fra dusj og andre varmekilder, før det slippes ut i sluk. The solution is based on a heat pump that cools down the buffer tank with ice water (min. +0 °C), which in turn circulates through exchangers in connection with the recovery of energy from the bleed water, waste water from showers and other heat sources, before it is released into the drain.
Vidre sirkulerer isvannet opp til batteri i avtrekksluftkanalen for avfuktning,deretter retunere den avfuktende luften tilbake til svømmehallen. Isvannet sirkulerer også til batteri plasert i avkastkanalen (Fig 2, aggregat 3602) og opptar den energimengden den mekaniske gjennvinnern ikke tar før avkastluftcn går ut i det fri. (+ 8°C til + 1 °C) Vidre circulates the ice water up to the battery in the exhaust air duct for dehumidification, then returns the dehumidifying air back to the swimming pool. The ice water also circulates to the battery placed in the exhaust duct (Fig 2, unit 3602) and absorbs the amount of energy that the mechanical recuperator does not take before the exhaust air goes out into the open. (+ 8°C to + 1°C)
Buffertanker (fig 1 A og B) fra varmepumpen opptre som magasin for energimengder hentet fra isvannsbuffertank via varmepumpen. Buffer tanks (fig 1 A and B) from the heat pump act as reservoirs for energy quantities obtained from the ice water buffer tank via the heat pump.
Magasinert energi bygges opp i buffertankene på dag og natt og kan anvendes, fordeles etter energisvigninger i forbruket. Stored energy is built up in the buffer tanks day and night and can be used and distributed according to energy fluctuations in consumption.
Gjennvinningskappasiteten er størst på natten, da forbruket er mindre enn på dagtid og vil da med overnevnte akkumuleringsmuligheter handtere overskuddsenergimengden som nå ikke kan brukes. The recycling capacity is greatest at night, as consumption is less than during the day and will then, with the above-mentioned accumulation possibilities, handle the surplus energy amount that cannot now be used.
Avfukting natterstid medfører at buffertankene for isvann å varme, magasinerer overskuddsenergien som bygges opp natterstid. Dette er ca 50 % av den samlede gjenvunne enegimengde. Denne akkumulerte energimengden gjennbrukes når behovet melder seg ved økt forbruk på dagtid. Det fører til at store mengder energi kan gjenvinnes. Dehumidification at night means that the buffer tanks for ice water to heat store the excess energy that builds up at night. This is approximately 50% of the total amount of energy recovered. This accumulated amount of energy is reused when the need arises due to increased consumption during the day. This means that large amounts of energy can be recovered.
Dette er en av de store forskjellene til tradisjonell gjennvinneing, hvor overskuddsvarme må anvendes/ brukes direkte, alternativt vil ikke utnyttet energi, gå rett ut i friluft. This is one of the big differences to traditional recycling, where surplus heat must be used/used directly, otherwise the energy used will not go straight out into the open air.
Vår system akkumulerer primært gjennvunnet varme via buffertanker, skundært brukes utgjevningstanker, spillvarmetanker og dertil basengvolumet. Our system primarily accumulates recovered heat via buffer tanks, secondarily using release tanks, waste heat tanks and the basin volume.
Basengvolumet brukes altså til akkumulering av energi etter behov. The pool volume is thus used to accumulate energy as needed.
Ved dagdrift vil magsinert energimengde anvendes til å heve isvanntemperaturen betraktelig. During daytime operation, stored energy will be used to raise the ice water temperature considerably.
Det medfører større kjølefaktor, som gir en større mengde avgitt effekt, enn den tilførte effekt for drift av kompressor. This results in a greater cooling factor, which gives a greater amount of power output than the added power for operating the compressor.
Isvannet holder en temperatur (fra minimum +0 C og vidre oppover,) som gir maksimalt opptak av energi fra kildene uten at påfrysning stopper prosessen. The ice water maintains a temperature (from a minimum of +0 C and upwards), which provides maximum absorption of energy from the sources without freezing stopping the process.
Isvannet sirkulerer også gjennom batteri som er plassert etter gjenvinneren på avkastluften for ventilasjonsaggrcgatone, som i forhold til årsmiddcltcmpcratur vil utgjøre ca.+7 °C. The ice water also circulates through a battery which is placed after the recuperator on the exhaust air for ventilation aggregates, which in relation to the average annual temperature will amount to approximately +7 °C.
Ved sommerdrift vil overnevnte batteri også kunne opptre som kjølebatteri for systemet når isvannet far for høy temperatur. During summer operation, the above-mentioned battery will also be able to act as a cooling battery for the system when the ice water becomes too hot.
Kondensator siden av varmepumpen (vvx-5) avgir varmen som er gjenvunnet fra ovenstående energikilder til en buffertank som holder en maks temp på 55 °C. Back up fra ettervamekilder slik som el-kjeler eller fjernvarme starter først nede på 45 °C Condenser on the side of the heat pump (vvx-5) emits the heat recovered from the above energy sources to a buffer tank which maintains a maximum temperature of 55 °C. Back-up from after-heating sources such as electric boilers or district heating only starts below 45 °C
Kjent teknologi. Known technology.
Hele oppvarmingsystemet er bygd opp som lavtemperatur 50/40 °C som forvarmer forbruksvannet fra 4 °C opp til 50 °C. The entire heating system is set up as low temperature 50/40 °C, which preheats the domestic water from 4 °C up to 50 °C.
Dette medfører at ved bruk av lavtemperatur er det mulig å dekke energibehovet med 100 % til ettervarme for bassengvann og ventilasjonsaggregatene. This means that when using a low temperature, it is possible to cover the energy requirement with 100% for post-heating for pool water and the ventilation units.
Dette er et enkelt fleksibelt system som har flere muligheter en tradisjonell gjenvinning. This is a simple, flexible system that has more options than traditional recycling.
Med opptak av energi fra flere kilder som akkumuleres i buffertanker anvendes energien via varmepumpen til buffertank for varme som fordeles vidre til flere brukersteder. Overskuddsvarme kan også distrubueres til nabobygg. With the absorption of energy from several sources that accumulate in buffer tanks, the energy is used via the heat pump to the buffer tank for heat that is distributed to several user locations. Surplus heat can also be distributed to neighboring buildings.
Etter søk i en rekke patentkildcr er det kun to publikasjoner som kan trerkkes frem: After searching a number of patent sources, only two publications can be highlighted:
I engelsk utlegnings skrift Dl: JP 4084050 A beskriver pubilkasjonen av varmegjenvinningssystem for bruk ved lave tempraturer. Gjør bruk av varmepumpe, samt sirkulerende vann med isbiter for opptak av lavtempratur energi. Faséndring is/vann utnyttes ved varmeopptak. In English explanatory document Dl: JP 4084050 A describes the publication of a heat recovery system for use at low temperatures. Make use of a heat pump, as well as circulating water with ice cubes to absorb low-temperature energy. Phase change ice/water is used for heat absorption.
Et annet dokument D2: JP 6307655A publikasjon beskriver varmegjenvinning fra datarom. Kjølig vann brukes for avkjøling av rommet, hvor vannet sirkulerer mellom varmeveksler og en varmepumpe. Another document D2: JP 6307655A publication describes heat recovery from computer rooms. Cool water is used to cool the room, where the water circulates between the heat exchanger and a heat pump.
Begge disse systemløsningene skiller seg klart fra vår løsning, ved at de ikke har akkumulatortanker på begge sider av varmepumpen. Both of these system solutions clearly differ from our solution, in that they do not have accumulator tanks on both sides of the heat pump.
Vår løsning med med separate akkumulatortanker på begge sider av varmepumpen som primært benyttes til akkumulering av energi, sekundært brukes utgjevningstank, spillvarmetank og svømmebasenger med dertil respektive volum. Our solution includes separate accumulator tanks on both sides of the heat pump which are primarily used for the accumulation of energy, secondarily an equalization tank, waste heat tank and swimming pools with corresponding volumes are used.
Dette gir mulighet for akkumulering av energi på natta da svømmehallen avfuktes og systemet opptar enegien som vil bli gjenbrukt. Den akkumulerte energien som lagres blir gjenbrukt på etter behov. This allows for the accumulation of energy at night when the swimming pool is dehumidified and the system absorbs the energy that will be reused. The accumulated energy that is stored is reused as needed.
Sammenfatnin<g>av oppfinnelsen Summary of the invention
Primært er oppfinnelsen akkumelering av energi fra et tidspunkt på døgnet når avfuktningen må gjennomføres med dertil store mengder av overskuddsenergi. Primarily, the invention is the accumulation of energy from a time of the day when the dehumidification must be carried out with large amounts of excess energy.
RHP's systemløsning ivaretar med dette alle svingninger av energiforbruket over hele døgnet. Systemet fanger opp og lagrger energi, som tradisjonell gjenvinning ikke ivaretar. RHP's system solution thus takes care of all fluctuations in energy consumption throughout the day. The system captures and stores energy, which traditional recycling does not take care of.
Kort beskrivelse av tegningsfmurene. Brief description of the drawing walls.
Figur la og b RHP's komplette systemløsning. Figure la and b RHP's complete system solution.
Figur 2 viser aggregatløsning for avfuktning. Figure 2 shows the aggregate solution for dehumidification.
Figur 3 viser systemløsning for ordinær ventilasjon. Figure 3 shows the system solution for ordinary ventilation.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20111763A NO20111763A1 (en) | 2011-12-19 | 2011-12-19 | System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) |
EP12858864.7A EP2795020A1 (en) | 2011-12-19 | 2012-12-19 | Method and device for recovering of energy (rhp-system solution) |
PCT/NO2012/000069 WO2013095152A1 (en) | 2011-12-19 | 2012-12-19 | Method and device for recovering of energy (rhp-system solution) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20111763A NO20111763A1 (en) | 2011-12-19 | 2011-12-19 | System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) |
Publications (1)
Publication Number | Publication Date |
---|---|
NO20111763A1 true NO20111763A1 (en) | 2013-06-20 |
Family
ID=48668884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20111763A NO20111763A1 (en) | 2011-12-19 | 2011-12-19 | System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2795020A1 (en) |
NO (1) | NO20111763A1 (en) |
WO (1) | WO2013095152A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108151114A (en) * | 2017-11-29 | 2018-06-12 | 国网北京市电力公司 | Heating plant |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU59935A1 (en) * | 1968-12-03 | 1970-05-04 | ||
GB1307969A (en) * | 1969-06-09 | 1973-02-21 | Witte Haustechnik Gmbh | Swimming bath installations |
CA1101211A (en) * | 1979-11-28 | 1981-05-19 | Reinhold Kittler | Swimming pool dehumidifier |
DE3325231A1 (en) * | 1983-07-13 | 1985-01-24 | Heinz Schilling KG, 4152 Kempen | Process for year-round recovery of sensible and latent heat from the forwarded air to the swimming bath region or similarly for other regions |
DE3424278A1 (en) * | 1984-07-02 | 1986-01-23 | Dieter 3002 Wedemark Kronauer | Process and apparatus for the dehumidifying and heating of rooms with large open water surfaces, especially swimming pool halls |
GB8807367D0 (en) * | 1988-03-29 | 1988-05-05 | Nordsea Gas Technology Ltd | Swimming pool heating system |
-
2011
- 2011-12-19 NO NO20111763A patent/NO20111763A1/en not_active Application Discontinuation
-
2012
- 2012-12-19 EP EP12858864.7A patent/EP2795020A1/en not_active Withdrawn
- 2012-12-19 WO PCT/NO2012/000069 patent/WO2013095152A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP2795020A1 (en) | 2014-10-29 |
WO2013095152A1 (en) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4024908A (en) | Solar powered heat reclamation air conditioning system | |
Helm et al. | Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience | |
KR200443867Y1 (en) | Solar Cryogenic Water Absorption Chiller | |
KR20130085696A (en) | Solar thermal and geothermal heat pump hybrid system with underground solar heat storage device | |
JP6568938B2 (en) | Heat pump air conditioning system using composite heat source and control method thereof | |
KR20130128661A (en) | Connecting apparatus for return water heat system of district heating and solar system and heatpump system | |
Gommed et al. | Investigation of an improved solar-powered open absorption system for cooling, dehumidification and air conditioning | |
JP6689801B2 (en) | Solar air conditioning system | |
CN105423590B (en) | Absorption refrigeration system | |
JP5528903B2 (en) | Absorption type air conditioning and hot water supply system | |
KR101347153B1 (en) | Building air conditioning/heating and the seawater introducing system using siphon | |
NO20111763A1 (en) | System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) | |
KR101361853B1 (en) | Water heat utilizing apparatus of air heat source heat pump using water heat source by secondary heat source | |
JP6784699B2 (en) | Improving power plant efficiency | |
JP2005214595A (en) | Air conditioner | |
Hollmuller et al. | Solar assisted heat pump with ice storage for a 19’000 m2 retrofitted multi-family building complex | |
KR20120082158A (en) | Cooling/heating equipment of water heat exchanging type having generator | |
JP2008209038A (en) | Engine-driven heat pump system | |
JP5490841B2 (en) | Water refrigerant heater and water refrigerant water heater using the same | |
KR101337353B1 (en) | Heat pump system using water for irrigation of golf course reservoir | |
JP2009115387A (en) | Water refrigerant heater and water refrigerant water heater using the same | |
JP2010085074A (en) | Dual heat storage tank type air conditioning system | |
RU2499197C1 (en) | Method for using soil heat accumulation properties | |
Ahmed | Impact of Storage Tank Size and Backup Heating Unit on a Solar Absorption Cooling System | |
Gerstler et al. | A Lithium bromide absorption chiller with cold storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CHAD | Change of the owner's name or address (par. 44 patent law, par. patentforskriften) |
Owner name: PLUSS ENERGI AS, NO |
|
FC2A | Withdrawal, rejection or dismissal of laid open patent application |