[go: up one dir, main page]

NO20111763A1 - System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) - Google Patents

System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) Download PDF

Info

Publication number
NO20111763A1
NO20111763A1 NO20111763A NO20111763A NO20111763A1 NO 20111763 A1 NO20111763 A1 NO 20111763A1 NO 20111763 A NO20111763 A NO 20111763A NO 20111763 A NO20111763 A NO 20111763A NO 20111763 A1 NO20111763 A1 NO 20111763A1
Authority
NO
Norway
Prior art keywords
energy
water
vvx
heat
rhp
Prior art date
Application number
NO20111763A
Other languages
Norwegian (no)
Inventor
Rolf H Pedersen
Original Assignee
En Nord As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by En Nord As filed Critical En Nord As
Priority to NO20111763A priority Critical patent/NO20111763A1/en
Priority to EP12858864.7A priority patent/EP2795020A1/en
Priority to PCT/NO2012/000069 priority patent/WO2013095152A1/en
Publication of NO20111763A1 publication Critical patent/NO20111763A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Primært er oppfinnelsen akkumulering av energi fra et tidspunkt på døgnet når avfuktningen må gjennomføres med dertil store mengder av overskuddsenergi. RHP's systemløsning ivaretar med dette alle svingninger av energiforbruket over hele døgnet. Systemet fanger opp og lagrer energi, som tradisjonell gjenvinning ikke ivaretar.Primarily, the invention is the accumulation of energy from a time of day when dehumidification must be carried out with large amounts of surplus energy. With this, RHP's system solution takes care of all fluctuations in energy consumption throughout the day. The system captures and stores energy, which traditional recycling does not safeguard.

Description

Oppfinnelsens område Field of the invention

Den foreliggende oppfinnelse vedrører en systemløsning med akkumulatortanker på begge sider av varmepumpen, samt opptak og avgivelse av energi fra flere ulike kilder. The present invention relates to a system solution with accumulator tanks on both sides of the heat pump, as well as absorption and release of energy from several different sources.

Som akkumuleringstank på varmesiden annvennes primært egne akkumuleringstanker, sekundært akkumuleres det mot utgjevningstank inklusiv svømmebaseng. As an accumulation tank on the heating side, separate accumulation tanks are primarily used, secondarily it is accumulated against an equalization tank including a swimming pool.

Løsning baserer seg på en varmepumpe som kjøler ned buffertank med isvann (min. +0 °C,) som igjen sirkulerer gjennom vekslere i forbindelse med gjenvinning av energi fra blødervannet, avløpsvann fra dusj og andre varmekilder, før det slippes ut i sluk. The solution is based on a heat pump that cools down the buffer tank with ice water (min. +0 °C), which in turn circulates through exchangers in connection with the recovery of energy from the bleed water, waste water from showers and other heat sources, before it is released into the drain.

Vidre sirkulerer isvannet opp til batteri i avtrekksluftkanalen for avfuktning,deretter retunere den avfuktende luften tilbake til svømmehallen. Isvannet sirkulerer også til batteri plasert i avkastkanalen (Fig 2, aggregat 3602) og opptar den energimengden den mekaniske gjennvinnern ikke tar før avkastluftcn går ut i det fri. (+ 8°C til + 1 °C) Vidre circulates the ice water up to the battery in the exhaust air duct for dehumidification, then returns the dehumidifying air back to the swimming pool. The ice water also circulates to the battery placed in the exhaust duct (Fig 2, unit 3602) and absorbs the amount of energy that the mechanical recuperator does not take before the exhaust air goes out into the open. (+ 8°C to + 1°C)

Buffertanker (fig 1 A og B) fra varmepumpen opptre som magasin for energimengder hentet fra isvannsbuffertank via varmepumpen. Buffer tanks (fig 1 A and B) from the heat pump act as reservoirs for energy quantities obtained from the ice water buffer tank via the heat pump.

Magasinert energi bygges opp i buffertankene på dag og natt og kan anvendes, fordeles etter energisvigninger i forbruket. Stored energy is built up in the buffer tanks day and night and can be used and distributed according to energy fluctuations in consumption.

Gjennvinningskappasiteten er størst på natten, da forbruket er mindre enn på dagtid og vil da med overnevnte akkumuleringsmuligheter handtere overskuddsenergimengden som nå ikke kan brukes. The recycling capacity is greatest at night, as consumption is less than during the day and will then, with the above-mentioned accumulation possibilities, handle the surplus energy amount that cannot now be used.

Avfukting natterstid medfører at buffertankene for isvann å varme, magasinerer overskuddsenergien som bygges opp natterstid. Dette er ca 50 % av den samlede gjenvunne enegimengde. Denne akkumulerte energimengden gjennbrukes når behovet melder seg ved økt forbruk på dagtid. Det fører til at store mengder energi kan gjenvinnes. Dehumidification at night means that the buffer tanks for ice water to heat store the excess energy that builds up at night. This is approximately 50% of the total amount of energy recovered. This accumulated amount of energy is reused when the need arises due to increased consumption during the day. This means that large amounts of energy can be recovered.

Dette er en av de store forskjellene til tradisjonell gjennvinneing, hvor overskuddsvarme må anvendes/ brukes direkte, alternativt vil ikke utnyttet energi, gå rett ut i friluft. This is one of the big differences to traditional recycling, where surplus heat must be used/used directly, otherwise the energy used will not go straight out into the open air.

Vår system akkumulerer primært gjennvunnet varme via buffertanker, skundært brukes utgjevningstanker, spillvarmetanker og dertil basengvolumet. Our system primarily accumulates recovered heat via buffer tanks, secondarily using release tanks, waste heat tanks and the basin volume.

Basengvolumet brukes altså til akkumulering av energi etter behov. The pool volume is thus used to accumulate energy as needed.

Ved dagdrift vil magsinert energimengde anvendes til å heve isvanntemperaturen betraktelig. During daytime operation, stored energy will be used to raise the ice water temperature considerably.

Det medfører større kjølefaktor, som gir en større mengde avgitt effekt, enn den tilførte effekt for drift av kompressor. This results in a greater cooling factor, which gives a greater amount of power output than the added power for operating the compressor.

Isvannet holder en temperatur (fra minimum +0 C og vidre oppover,) som gir maksimalt opptak av energi fra kildene uten at påfrysning stopper prosessen. The ice water maintains a temperature (from a minimum of +0 C and upwards), which provides maximum absorption of energy from the sources without freezing stopping the process.

Isvannet sirkulerer også gjennom batteri som er plassert etter gjenvinneren på avkastluften for ventilasjonsaggrcgatone, som i forhold til årsmiddcltcmpcratur vil utgjøre ca.+7 °C. The ice water also circulates through a battery which is placed after the recuperator on the exhaust air for ventilation aggregates, which in relation to the average annual temperature will amount to approximately +7 °C.

Ved sommerdrift vil overnevnte batteri også kunne opptre som kjølebatteri for systemet når isvannet far for høy temperatur. During summer operation, the above-mentioned battery will also be able to act as a cooling battery for the system when the ice water becomes too hot.

Kondensator siden av varmepumpen (vvx-5) avgir varmen som er gjenvunnet fra ovenstående energikilder til en buffertank som holder en maks temp på 55 °C. Back up fra ettervamekilder slik som el-kjeler eller fjernvarme starter først nede på 45 °C Condenser on the side of the heat pump (vvx-5) emits the heat recovered from the above energy sources to a buffer tank which maintains a maximum temperature of 55 °C. Back-up from after-heating sources such as electric boilers or district heating only starts below 45 °C

Kjent teknologi. Known technology.

Hele oppvarmingsystemet er bygd opp som lavtemperatur 50/40 °C som forvarmer forbruksvannet fra 4 °C opp til 50 °C. The entire heating system is set up as low temperature 50/40 °C, which preheats the domestic water from 4 °C up to 50 °C.

Dette medfører at ved bruk av lavtemperatur er det mulig å dekke energibehovet med 100 % til ettervarme for bassengvann og ventilasjonsaggregatene. This means that when using a low temperature, it is possible to cover the energy requirement with 100% for post-heating for pool water and the ventilation units.

Dette er et enkelt fleksibelt system som har flere muligheter en tradisjonell gjenvinning. This is a simple, flexible system that has more options than traditional recycling.

Med opptak av energi fra flere kilder som akkumuleres i buffertanker anvendes energien via varmepumpen til buffertank for varme som fordeles vidre til flere brukersteder. Overskuddsvarme kan også distrubueres til nabobygg. With the absorption of energy from several sources that accumulate in buffer tanks, the energy is used via the heat pump to the buffer tank for heat that is distributed to several user locations. Surplus heat can also be distributed to neighboring buildings.

Etter søk i en rekke patentkildcr er det kun to publikasjoner som kan trerkkes frem: After searching a number of patent sources, only two publications can be highlighted:

I engelsk utlegnings skrift Dl: JP 4084050 A beskriver pubilkasjonen av varmegjenvinningssystem for bruk ved lave tempraturer. Gjør bruk av varmepumpe, samt sirkulerende vann med isbiter for opptak av lavtempratur energi. Faséndring is/vann utnyttes ved varmeopptak. In English explanatory document Dl: JP 4084050 A describes the publication of a heat recovery system for use at low temperatures. Make use of a heat pump, as well as circulating water with ice cubes to absorb low-temperature energy. Phase change ice/water is used for heat absorption.

Et annet dokument D2: JP 6307655A publikasjon beskriver varmegjenvinning fra datarom. Kjølig vann brukes for avkjøling av rommet, hvor vannet sirkulerer mellom varmeveksler og en varmepumpe. Another document D2: JP 6307655A publication describes heat recovery from computer rooms. Cool water is used to cool the room, where the water circulates between the heat exchanger and a heat pump.

Begge disse systemløsningene skiller seg klart fra vår løsning, ved at de ikke har akkumulatortanker på begge sider av varmepumpen. Both of these system solutions clearly differ from our solution, in that they do not have accumulator tanks on both sides of the heat pump.

Vår løsning med med separate akkumulatortanker på begge sider av varmepumpen som primært benyttes til akkumulering av energi, sekundært brukes utgjevningstank, spillvarmetank og svømmebasenger med dertil respektive volum. Our solution includes separate accumulator tanks on both sides of the heat pump which are primarily used for the accumulation of energy, secondarily an equalization tank, waste heat tank and swimming pools with corresponding volumes are used.

Dette gir mulighet for akkumulering av energi på natta da svømmehallen avfuktes og systemet opptar enegien som vil bli gjenbrukt. Den akkumulerte energien som lagres blir gjenbrukt på etter behov. This allows for the accumulation of energy at night when the swimming pool is dehumidified and the system absorbs the energy that will be reused. The accumulated energy that is stored is reused as needed.

Sammenfatnin<g>av oppfinnelsen Summary of the invention

Primært er oppfinnelsen akkumelering av energi fra et tidspunkt på døgnet når avfuktningen må gjennomføres med dertil store mengder av overskuddsenergi. Primarily, the invention is the accumulation of energy from a time of the day when the dehumidification must be carried out with large amounts of excess energy.

RHP's systemløsning ivaretar med dette alle svingninger av energiforbruket over hele døgnet. Systemet fanger opp og lagrger energi, som tradisjonell gjenvinning ikke ivaretar. RHP's system solution thus takes care of all fluctuations in energy consumption throughout the day. The system captures and stores energy, which traditional recycling does not take care of.

Kort beskrivelse av tegningsfmurene. Brief description of the drawing walls.

Figur la og b RHP's komplette systemløsning. Figure la and b RHP's complete system solution.

Figur 2 viser aggregatløsning for avfuktning. Figure 2 shows the aggregate solution for dehumidification.

Figur 3 viser systemløsning for ordinær ventilasjon. Figure 3 shows the system solution for ordinary ventilation.

Claims (1)

RHP Systemløsning (Fig 1 a) er et system som består av en kuldebærer med innblandet 30% glykol og har en arbeidstemperatur på minimum (+ 0 C) for opptak av energi fra ulike kilder (blødevann vvx-7, ventilasjonssystemet 3601 (Fig 3) og 3603, avfukting og avkastluft 3602 og fra gråvann)RHP System solution (Fig 1 a) is a system that consists of a coolant with mixed 30% glycol and has a working temperature of minimum (+ 0 C) for absorption of energy from various sources (blood water vvx-7, the ventilation system 3601 (Fig 3) and 3603, dehumidification and exhaust air 3602 and from gray water) og legger til rette for det primære i patentkravet da det monteres akkumulatortank for isvann tilkoblet kjøleside (vvx-6) av varmepumpen Fig 1 a og b) og at det monteres en akkumulatortank til varmepumpens varm side (wx-5) hvoretter (Fig la) den akkumulerte energien leveres til ulike kilder (wx-2, wx-3, forbruksvann wx-4, vvx-9,vvx-10, ventilasjonssystemet 3601-3602-3603 og radiatorkurser blir magasinert (akkumulatortanker, beredere og utjamningstank inklusiv svømmebassener) til senere anvendelse noe som medfører at all overskuddsvarme en fanger opp på nattestid hentes ut på dagtid via buffertanker som har akkumulert nattens energi som brukes når forbruket er større enn kapasiteten på den gjenvunne energimengde således er patentkravet akkumulering som kan oppta svingninger i energiflyten på glykolsiden og varmesiden som da kan anvendes etter behov.and facilitates the primary aspect of the patent claim when an accumulator tank for ice water connected to the cooling side (vvx-6) of the heat pump Fig 1 a and b) is fitted and that an accumulator tank is fitted to the heat pump's hot side (wx-5) after which (Fig la) the accumulated energy is delivered to various sources (wx-2, wx-3, consumption water wx-4, vvx-9,vvx-10, the ventilation system 3601-3602-3603 and radiator courses are stored (accumulator tanks, boilers and equalization tank including swimming pools) until later application, which means that all excess heat captured at night is extracted during the day via buffer tanks that have accumulated the night's energy, which is used when the consumption is greater than the capacity of the recovered amount of energy, thus the patent requirement is accumulation that can absorb fluctuations in the energy flow on the glycol side and the heat side which can then be used as needed.
NO20111763A 2011-12-19 2011-12-19 System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system) NO20111763A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO20111763A NO20111763A1 (en) 2011-12-19 2011-12-19 System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system)
EP12858864.7A EP2795020A1 (en) 2011-12-19 2012-12-19 Method and device for recovering of energy (rhp-system solution)
PCT/NO2012/000069 WO2013095152A1 (en) 2011-12-19 2012-12-19 Method and device for recovering of energy (rhp-system solution)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20111763A NO20111763A1 (en) 2011-12-19 2011-12-19 System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system)

Publications (1)

Publication Number Publication Date
NO20111763A1 true NO20111763A1 (en) 2013-06-20

Family

ID=48668884

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20111763A NO20111763A1 (en) 2011-12-19 2011-12-19 System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system)

Country Status (3)

Country Link
EP (1) EP2795020A1 (en)
NO (1) NO20111763A1 (en)
WO (1) WO2013095152A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151114A (en) * 2017-11-29 2018-06-12 国网北京市电力公司 Heating plant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU59935A1 (en) * 1968-12-03 1970-05-04
GB1307969A (en) * 1969-06-09 1973-02-21 Witte Haustechnik Gmbh Swimming bath installations
CA1101211A (en) * 1979-11-28 1981-05-19 Reinhold Kittler Swimming pool dehumidifier
DE3325231A1 (en) * 1983-07-13 1985-01-24 Heinz Schilling KG, 4152 Kempen Process for year-round recovery of sensible and latent heat from the forwarded air to the swimming bath region or similarly for other regions
DE3424278A1 (en) * 1984-07-02 1986-01-23 Dieter 3002 Wedemark Kronauer Process and apparatus for the dehumidifying and heating of rooms with large open water surfaces, especially swimming pool halls
GB8807367D0 (en) * 1988-03-29 1988-05-05 Nordsea Gas Technology Ltd Swimming pool heating system

Also Published As

Publication number Publication date
EP2795020A1 (en) 2014-10-29
WO2013095152A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US4024908A (en) Solar powered heat reclamation air conditioning system
Helm et al. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience
KR200443867Y1 (en) Solar Cryogenic Water Absorption Chiller
KR20130085696A (en) Solar thermal and geothermal heat pump hybrid system with underground solar heat storage device
JP6568938B2 (en) Heat pump air conditioning system using composite heat source and control method thereof
KR20130128661A (en) Connecting apparatus for return water heat system of district heating and solar system and heatpump system
Gommed et al. Investigation of an improved solar-powered open absorption system for cooling, dehumidification and air conditioning
JP6689801B2 (en) Solar air conditioning system
CN105423590B (en) Absorption refrigeration system
JP5528903B2 (en) Absorption type air conditioning and hot water supply system
KR101347153B1 (en) Building air conditioning/heating and the seawater introducing system using siphon
NO20111763A1 (en) System solution for heat recovery from swimming pools and water parks connected to sports facilities and other buildings (RHP system)
KR101361853B1 (en) Water heat utilizing apparatus of air heat source heat pump using water heat source by secondary heat source
JP6784699B2 (en) Improving power plant efficiency
JP2005214595A (en) Air conditioner
Hollmuller et al. Solar assisted heat pump with ice storage for a 19’000 m2 retrofitted multi-family building complex
KR20120082158A (en) Cooling/heating equipment of water heat exchanging type having generator
JP2008209038A (en) Engine-driven heat pump system
JP5490841B2 (en) Water refrigerant heater and water refrigerant water heater using the same
KR101337353B1 (en) Heat pump system using water for irrigation of golf course reservoir
JP2009115387A (en) Water refrigerant heater and water refrigerant water heater using the same
JP2010085074A (en) Dual heat storage tank type air conditioning system
RU2499197C1 (en) Method for using soil heat accumulation properties
Ahmed Impact of Storage Tank Size and Backup Heating Unit on a Solar Absorption Cooling System
Gerstler et al. A Lithium bromide absorption chiller with cold storage

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: PLUSS ENERGI AS, NO

FC2A Withdrawal, rejection or dismissal of laid open patent application