[go: up one dir, main page]

NO176481B - Process for Preparation of a Fusion Protein - Google Patents

Process for Preparation of a Fusion Protein Download PDF

Info

Publication number
NO176481B
NO176481B NO864759A NO864759A NO176481B NO 176481 B NO176481 B NO 176481B NO 864759 A NO864759 A NO 864759A NO 864759 A NO864759 A NO 864759A NO 176481 B NO176481 B NO 176481B
Authority
NO
Norway
Prior art keywords
plasmid
fusion protein
amino acids
amino acid
sequence
Prior art date
Application number
NO864759A
Other languages
Norwegian (no)
Other versions
NO176481C (en
NO864759D0 (en
Inventor
Paul Habermann
Friedrich Wengenmayer
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO864759D0 publication Critical patent/NO864759D0/en
Publication of NO176481B publication Critical patent/NO176481B/en
Publication of NO176481C publication Critical patent/NO176481C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/815Protease inhibitors from leeches, e.g. hirudin, eglin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/35Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • C07K2319/75Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Endocrinology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Diabetes (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Fusion proteins in which the C- or N-terminal essentially corresponds to the first 100 units of interleukin 2 are new. Also new are gene structures coding for the above fusion proteins, vectors containing these gene structures, and hot cells containing these vectors. Hirudin derivs. with an amino acide sequence begining N-terminally with Pro are new and claimed. Human interleukin 2 derivs. contg. Asp. C-terminally are new and claimed.

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av et fusjonsprotein, med en C- eller N-terminal andel som tilsvarer de første 90-132 aminosyrene av interleukin-2 (IL-2), men ikke oppviser noen interleukin-2-aktivitet. The present invention relates to a method for producing a fusion protein, with a C- or N-terminal portion that corresponds to the first 90-132 amino acids of interleukin-2 (IL-2), but which does not exhibit any interleukin-2 activity.

Ved den gentekniske fremstillingen av eukaryotiske proteiner oppnås i bakterier ofte bare et lavt utbytte, spesielt ved små proteiner med en molekylvekt inntil 15.000 dalton, hvis strukturer inneholder disulfidbroer. Det antas at de dannede proteiner raskt nedbrytes av vertsegne proteaser. Det konstrueres derfor hensiktsmessig genstrukturer som koder for fusjonsproteiner, hvorved den uønskede andelen av fusjonsproteinet er det vertsegne proteinet, som etter isoleringen av primærproduktet kan avspaltes ved i og for seg kjente fremgangsmåter. In the genetic engineering of eukaryotic proteins, only a low yield is often achieved in bacteria, especially for small proteins with a molecular weight of up to 15,000 daltons, whose structures contain disulfide bridges. It is assumed that the proteins formed are rapidly degraded by host proteases. Gene structures that code for fusion proteins are therefore suitably constructed, whereby the unwanted part of the fusion protein is the host protein, which after the isolation of the primary product can be cleaved by methods known per se.

Det er nå overraskende funnet at en N-terminal andel av interleukin-2, som i det vesentlige tilsvarer de første 100 aminosyrene, egner seg spesielt godt til fremstilling av fusjonsproteiner. Man får altså som primærprodukt et fusjonsprotein som fullstendig, eller i overveiende grad, består av eukaryotiske proteinsekvenser. Overraskende gjenkjennes dette proteinet åpenbart ikke som fremmedprotein av, den aktuelle vertsorganismen, og nedbrytes derfor ikke straks. En ytterligere fordel er at funksjonsproteinene som fremstilles ifølge oppfinnelsen er tungt oppløselige til uoppløselige, og derfor lett lar seg fjerne fra de oppløse-lige proteinene, for eksempel ved sentrifugering. It has now surprisingly been found that an N-terminal part of interleukin-2, which essentially corresponds to the first 100 amino acids, is particularly suitable for the production of fusion proteins. The primary product is thus a fusion protein which is completely, or predominantly, made up of eukaryotic protein sequences. Surprisingly, this protein is obviously not recognized as a foreign protein by the relevant host organism, and is therefore not immediately degraded. A further advantage is that the functional proteins produced according to the invention are poorly soluble to insoluble, and can therefore easily be removed from the soluble proteins, for example by centrifugation.

Idet det ifølge oppfinnelsen vedrørende funksjonen som "ballast-andel" for fusjonsproteinet ikke er viktig at interleukin-2-andelen utgjør et biologisk aktivt molekyl, kommer det heller ikke an på den eksakte strukturen av interleukin-2-andelen. Det er tilstrekkelig at i det vesentlige de første 100 N-terminale aminosyrene foreligger. Det er altså eksempelvis mulig å foreta variasjoner på N-terminalen, som tillater en spalting av fusjonsproteinet dersom det ønskede proteinet er anordnet N-terminalt til dette. Omvendt kan man foreta C-terminale variasjoner for å muliggjøre eller lette avspaltingen av det ønskede proteinet dersom dette, som vanlig, er bundet C-terminalt i fusjonsproteinet . Since according to the invention regarding the function as "ballast part" for the fusion protein it is not important that the interleukin-2 part constitutes a biologically active molecule, nor does it depend on the exact structure of the interleukin-2 part. It is sufficient that essentially the first 100 N-terminal amino acids are present. It is therefore possible, for example, to make variations on the N-terminus, which allow cleavage of the fusion protein if the desired protein is arranged N-terminal to this. Conversely, C-terminal variations can be made to enable or facilitate the cleavage of the desired protein if this, as usual, is bound C-terminally in the fusion protein.

Den for humant-interleukin-2, i det følgende "IL-2", kodende naturlige DNA-sekvens er kjent fra den europeiske patentpublikasjonen EP-A1-0091539. Den der angitte litteraturen vedrører også mus- og rotte-IL-2. Denne pattedyr-DNA kan anvendes til syntese av proteinene som fremstilles ifølge oppfinnelsen. Mer hensiktsmessig anvendes likevel syntetisk DNA, spesielt fordelaktig DNA for human-IL-2, som foreslått i det (ikke tidligere offentliggjorte) tyske utlegningsskrift 3419995 (svarende til den eropeiske patentpublikasjonen 0163249). Denne syntetiske DNA-sekvensen er gjengitt i bilaget (DNA-sekvens I). Denne syntetiske DNA-delen har ikke bare den fordelen at den når det gjelder kodon-valg er avstemt til forholdene i den hyppigst anvendte verten, E.coli, men den inneholder også en rekke snittsteder for restriksjonsendonukleaser, hvorav det ifølge oppfinnelsen kan gjøres bruk. I den følgende tabell 1 er det gjengitt et utvalg av de egnende snittstedene ved begynnelsen, henholdsvis i området for den 100. tripletten. Herved er det imidlertid ikke utelukket at det i det mellomliggende området foretas variasjoner i DNA, hvorved det kan gjøres bruk av de ytterligere snittstedene angitt i den ovenfor nevnte patentpublikasjonen. The natural DNA sequence encoding human interleukin-2, hereinafter "IL-2", is known from the European patent publication EP-A1-0091539. The literature indicated there also relates to mouse and rat IL-2. This mammalian DNA can be used for the synthesis of the proteins produced according to the invention. However, synthetic DNA, particularly advantageous DNA for human IL-2, is more appropriately used, as proposed in the (not previously published) German specification 3419995 (corresponding to the European patent publication 0163249). This synthetic DNA sequence is reproduced in the appendix (DNA sequence I). This synthetic DNA part not only has the advantage that, in terms of codon selection, it is matched to the conditions in the most frequently used host, E.coli, but it also contains a number of cut sites for restriction endonucleases, of which, according to the invention, use can be made. In the following table 1, a selection of the suitable incision sites at the beginning, respectively in the area of the 100th triplet, is reproduced. However, it is not excluded that variations in the DNA are made in the intermediate area, whereby use can be made of the additional cut sites indicated in the above-mentioned patent publication.

Dersom det gjøres bruk av nukleasene Ban II, Sac I eller Sst I, så får man en IL-2-delsekvens, som koder for ca. 95 aminosyrer. Denne lengden er generelt tilstrekkelig til å oppnå et uoppløselig fusjonsprotein. Når tungtoppløselig-heten, eksempelvis ved et ønsket hydrofilt eukaryotisk protein, fremdeles ikke er tilstrekkelig, men man - for å produsere så lite "ballast" som mulig - ikke ønsker å gjøre bruk av de snittstedene som ligger nærmere C-terminalen, så kan man ved hjelp av tilsvarende adapter, henholdsvis forbindelsesledd, forlenge DNA-sekvensen ved den N- og/eller C-terminale enden, og dermed "skreddersy" "ballast"-andelen. Man kan naturligvis også anvende DNA-sekvensen, mer eller mindre, til enden, og på denne måten oppnå eventuelt modifisert, biologisk aktivt IL-2 som "biprodukt", henholdsvis fremstille et bifunksjonelt protein som viser IL-2-virkning i tillegg til virkningen av det kodede proteinet. If the nucleases Ban II, Sac I or Sst I are used, an IL-2 partial sequence is obtained, which codes for approx. 95 amino acids. This length is generally sufficient to obtain an insoluble fusion protein. When the heavy solubility, for example in the case of a desired hydrophilic eukaryotic protein, is still not sufficient, but one - in order to produce as little "ballast" as possible - does not want to make use of the cut sites that are closer to the C-terminus, then one can by means of a corresponding adapter, respectively connecting link, extend the DNA sequence at the N- and/or C-terminal end, and thus "tailor" the "ballast" part. One can of course also use the DNA sequence, more or less, to the end, and in this way obtain possibly modified, biologically active IL-2 as a "by-product", respectively produce a bifunctional protein that shows IL-2 action in addition to the effect of the encoded protein.

Oppfinnelsen tilveiebringer følgelig en fremgangsmåte for fremstilling av et fusjonsprotein, med en C— eller N—terminal andel som tilsvarer de første 90-132 aminosyrene av interleukin-2 (IL-2), men ikke oppviser noen interleukin-2-aktivitet, med den generelle formelen der X er aminosyrerekken for de 90-132 første aminosyrene av menneskelig interleukin-2, Y betyr en direktebinding eller et broledd av 2-14 genetisk kodbare aminosyrer, som muliggjør avspaltning av aminosyresekvensen Z, og Z er en sekvens av genetisk kodbare aminosyrer, hvor Y, nabo til Z, inneholder Met, Cys, Trp, Arg, Lys, Asp eller Pro eller består av disse aminosyrer. Fremgangsmåten er kjennetegnet ved at man transformerer en vertscelle med en for dette fusjonsproteinet kodende genstruktur, dyrker vertscellen og fraskiller det uttrykte fusjonsproteinet fra de oppløselige proteinene, fortrinnsvis ved sentrifugering. Accordingly, the invention provides a method for producing a fusion protein, with a C- or N-terminal portion corresponding to the first 90-132 amino acids of interleukin-2 (IL-2), but not exhibiting any interleukin-2 activity, with the the general formula where X is the amino acid sequence of the first 90-132 amino acids of human interleukin-2, Y means a direct link or bridge of 2-14 genetically coded amino acids, which enables cleavage of the amino acid sequence Z, and Z is a sequence of genetically coded amino acids , where Y, neighbor to Z, contains Met, Cys, Trp, Arg, Lys, Asp or Pro or consists of these amino acids. The method is characterized by transforming a host cell with a gene structure encoding this fusion protein, culturing the host cell and separating the expressed fusion protein from the soluble proteins, preferably by centrifugation.

Som det fremgår av formlene Ia og Ib, og som allerede nevnt ovenfor, er det mulig å bringe det ønskede proteinet til ekspresjon før eller etter IL-2-andelen. For å oppnå en forenkling beskrives i det følgende i det vesentlige den førstnevnte muligheten, som tilsvarer den opprinnelige fremgangsmåten til fremstilling av fusjonsproteiner. Når i det følgende denne "klassiske" varianten beskrives, er herved det andre alternativet ikke utelukket. As can be seen from the formulas Ia and Ib, and as already mentioned above, it is possible to bring the desired protein to expression before or after the IL-2 part. In order to achieve a simplification, the following essentially describes the first-mentioned possibility, which corresponds to the original method for the production of fusion proteins. When this "classic" variant is described below, the second option is not excluded.

Spaltingen av fusjonsproteinet kan foregå på kjent måte kjemisk eller enzymatisk. Valget av den egnede fremgangsmåten avhenger fremfor alt av aminosyresekvensen for det ønskede proteinet. Når denne eksempelvis ikke inneholder metionin, kan Y stå for Met, hvorpå en kjemisk spalting foregår med klor- eller bromcyan. Dersom i bindeleddet Y cystein står ved karboksyterminalen eller dersom Y står for Cys, så kan det foregå en enzymatisk cysteinspesifikk spalting eller en kjemisk spalting, for eksempel etter spesifikk S-cyanylering. Dersom i broleddet Y tryptofan står ved karboksyterminalen eller Y står for Trp, så kan det foregå en kjemisk spalting med N-bromsuccinimid. The cleavage of the fusion protein can take place in a known manner chemically or enzymatically. The choice of the appropriate method depends above all on the amino acid sequence of the desired protein. When this, for example, does not contain methionine, Y can stand for Met, after which a chemical cleavage takes place with chlorine or bromine. If in the link Y cysteine is at the carboxy terminal or if Y stands for Cys, then an enzymatic cysteine-specific cleavage or a chemical cleavage can take place, for example after specific S-cyanylation. If in the bridge link Y tryptophan is at the carboxy terminal or Y stands for Trp, then a chemical cleavage with N-bromosuccinimide can take place.

Proteiner som i aminosyresekvensen ikke inneholder Proteins which in the amino acid sequence do not contain

og er tilstrekkelig syrestabile, kan på i og for seg kjent måte spaltes proteolytisk. Herved får man proteiner som N-terminalt inneholder prolin, henholdsvis C-terminalt aspara-ginsyre. På denne måten kan altså også modifiserte proteiner syntetiseres. and are sufficiently acid-stable, can be proteolytically cleaved in a manner known per se. This results in proteins whose N-terminus contains proline, respectively C-terminus aspartic acid. In this way, modified proteins can also be synthesized.

Asp-Pro-bindingen kan også utformes syrelabil når dette broleddet er (Asp)n-Pro henholdsvis Glu-(Asp)n-Pro, hvorved n er 1 til 3. The Asp-Pro bond can also be made acid-labile when this bridge link is (Asp)n-Pro or Glu-(Asp)n-Pro, whereby n is 1 to 3.

Eksempler på enzymatiske spaltinger er også kjente hvorved modifiserte enzymer med forbedret spesifisitet kan anvendes (se C.S. Craik et al., Science 228 (1985) 291-297). Dersom det ønskede eukaryotiske peptidet er proinsulin, så velges hensiktsmessig som sekvens Y en peptidsekvens hvor en med trypsin avspaltbar aminosyre (Arg, lys) er bundet til den N-terminale aminosyren (Phe) for proinsulin, eksempelvis Ala-Ser-Met-Thr-Arg, idet da den arginin-spesifikke spaltningen kan foregå med proteasen trypsin. Examples of enzymatic cleavages are also known whereby modified enzymes with improved specificity can be used (see C.S. Craik et al., Science 228 (1985) 291-297). If the desired eukaryotic peptide is proinsulin, then a peptide sequence where a trypsin-cleavable amino acid (Arg, light) is bound to the N-terminal amino acid (Phe) of proinsulin, for example Ala-Ser-Met-Thr- Arg, since the arginine-specific cleavage can take place with the protease trypsin.

Dersom det ønskede proteinet ikke inneholder aminosyrerekken If the desired protein does not contain the amino acid sequence

så kan fusjonsproteinet spaltes med faktor Xa (europeiske patentpublikasjoner 0025190 og 0161973). then the fusion protein can be cleaved with factor Xa (European Patent Publications 0025190 and 0161973).

Fusjonsproteinet utvinnes ved ekspresjon i et egnet ekspre-sjonssystem på i og for seg kjent måte. For dette formålet egner alle kjente vert-vektor-systemer seg, dvs. eksempelvis pattedyrceller og mikroorganismer, for eksempel gjærtyper og fortrinnsvis bakterier, spesielt E.coli. The fusion protein is obtained by expression in a suitable expression system in a manner known per se. For this purpose, all known host-vector systems are suitable, i.e. for example mammalian cells and microorganisms, for example yeast types and preferably bacteria, especially E.coli.

DNA-sekvensen, som koder for det ønskede proteinet, innebyg-ges på kjent måte i en vektor, som sikrer en god ekspresjon i det valgte ekspresjonssystemet. The DNA sequence, which codes for the desired protein, is incorporated in a known manner into a vector, which ensures good expression in the chosen expression system.

I bakterielle verter velges hensiktsmessig promotoren og operatoren fra gruppen lac, tac, trp, Pj^ eller Pjj for fagene X, hsp, omp eller en syntetisk promotor, for eksempel som foreslått i det tyske utlegningsskrift nr. 3430683 (europeisk patentpublikasjon 0173149). Fordelaktig er tac promotor-operator-sekvensen, som nå er handelsvanlig (for eksempel ekspresjonsvektor pKK223/3, Pharmacia, "Molecular Biologi-cals, Chemicals and Equipment for Molecular Biology", 1984, s. 63). In bacterial hosts, the promoter and operator are suitably selected from the group lac, tac, trp, Pj^ or Pjj for the phages X, hsp, omp or a synthetic promoter, for example as proposed in the German specification no. 3430683 (European patent publication 0173149). Advantageously, the tac promoter-operator sequence is now commercially available (eg expression vector pKK223/3, Pharmacia, "Molecular Biology, Chemicals and Equipment for Molecular Biology", 1984, p. 63).

Ved ekspresjon av fusjonsproteinet ved fremgangsmåten ifølge oppfinnelsen kan det vise seg hensiktsmessig å endre tripletter for de første aminosyrene etter ATG-start-kodonet for å forhindre en eventuell basepardannelse på nivået for mRNA. Slike forandringer, samt forandringer, utelatelser eller tilsatser av enkelte aminosyrer i IL-2-proteinandelen, er kjent for fagmannen. When expressing the fusion protein by the method according to the invention, it may prove appropriate to change triplets for the first amino acids after the ATG start codon in order to prevent any base pair formation at the level of mRNA. Such changes, as well as changes, omissions or additions of certain amino acids in the IL-2 protein portion, are known to the person skilled in the art.

Oppfinnelsen beskrives nærmere i de følgende eksemplene og i f igurene. The invention is described in more detail in the following examples and in the figures.

Fig. 1 og dens fortsettelse, fig. la, vedrører syntesen av plasmidet pk360, som koder for et fusjonsprotein, som oppviser hirudinsekvensen, Fig. 1 and its continuation, fig. 1a, relates to the synthesis of the plasmid pk360, which codes for a fusion protein, which exhibits the hirudin sequence,

fig. 2 og dens fortsettelse, fig. 2a, vedrører syntesen av plasmidet pK410, som også koder for et fusjonsprotein med aminosyresekvensen for hirudin, fig. 2 and its continuation, fig. 2a, relates to the synthesis of the plasmid pK410, which also codes for a fusion protein with the amino acid sequence of hirudin,

fig. 3 og dens fortsettelse, fig. 3a til 3c, vedrører konstruksjon av plasmidene pPH15, 16, 20 og 30, som koder for fusjonsproteiner som inneholder aminosyresekvensen av ape-proinsulin. Fig. 4 vedrører syntesen av plasmidet pPHlOO, som koder for et fusjonsprotein med aminosyresekvensen for hirudin. Fig. 5 og dens fortsettelse, fig. 5a, viser konstruksjonen av plasmidet pK370, som koder for et fusjonsprotein med aminosyresekvensen for hirudin, samt fig. 3 and its continuation, fig. 3a to 3c, relate to the construction of plasmids pPH15, 16, 20 and 30, which encode fusion proteins containing the amino acid sequence of monkey proinsulin. Fig. 4 relates to the synthesis of the plasmid pPH100, which codes for a fusion protein with the amino acid sequence of hirudin. Fig. 5 and its continuation, fig. 5a, shows the construction of the plasmid pK370, which codes for a fusion protein with the amino acid sequence of hirudin, as well as

fig. 6 og dens fortsettelse, fig. 6a, vedrører syntesen av plasmidet pKHlOl, som koder for et fusjonsprotein med aminosyrerekkefølgen fra ape-proinsulin. fig. 6 and its continuation, fig. 6a, relates to the synthesis of the plasmid pKH101, which encodes a fusion protein with the amino acid sequence of monkey proinsulin.

Figurene er ikke gjengitt i riktig målestokk, fremfor alt ved gjengivelsen av polyforbindelsesstedet er målestokken "uttøyet". The figures are not rendered to the correct scale, above all in the rendering of the poly connection point the scale is "outstretched".

EKSEMPEL 1 EXAMPLE 1

Ved innføring av lac-repressoren (P.J. Farabaugh, Nature 274 Upon introduction of the lac repressor (P.J. Farabaugh, Nature 274

(1978) 765-769) i plasmidet pKK 177-3 (Amann et al., Gene 25 (1978) 765-769) in the plasmid pKK 177-3 (Amann et al., Gene 25

(1983) 167) får man plasmidet pJF118 (1) (fig. 1, se tysk patentsøknad P3526995.2, eksempel 6, fig. 6). Dette åpnes på det singulære restriksjonsstedet for Ava I og forminskes på i og for seg kjent måte ved exo-nukleasebehandling med ca. 1000 bp. Etter ligering oppnås plasmidet pEW 1000 (2), (fig. 1), hvori lac-repressorgenet er fullstendig, men som på grunn av< forminskelsen foreligger i betydelig høyere kopiantall enn utgangsplasmidet. (1983) 167) the plasmid pJF118 (1) is obtained (fig. 1, see German patent application P3526995.2, example 6, fig. 6). This is opened at the singular restriction site for Ava I and reduced in a manner known per se by exo-nuclease treatment with approx. 1000 bp. After ligation, the plasmid pEW 1000 (2) is obtained (Fig. 1), in which the lac repressor gene is complete, but which, due to the reduction, is present in a significantly higher copy number than the starting plasmid.

I stedet for plasmidet pKK177-3 kan man også ta utgangspunkt i det ovennevnte handelsvanlige plasmidet pKK223-3, bygge inn lac-repressoren og forkorte det oppnådde produktet på analog måte. Instead of the plasmid pKK177-3, one can also start from the above-mentioned commercial plasmid pKK223-3, build in the lac repressor and shorten the obtained product in an analogous way.

Plasmidet pEW 1000 (2) åpnes med restriksjonsenzymene EcoR I og Sal I (3). The plasmid pEW 1000 (2) is opened with the restriction enzymes EcoR I and Sal I (3).

Det for hirudin kodende plasmidet (4), fremstilt ifølge tysk utlegningsskrift 3429430 (europeisk patentpublikasjon 0171024), eksempel 4 (fig. 3), åpnes med restriksjonsenzymene Acc I og Sal I og det lille fragmentet (5), som for største delen inneholder hirudinsekvensen, isoleres. The hirudin-encoding plasmid (4), prepared according to German specification 3429430 (European patent publication 0171024), example 4 (fig. 3), is opened with the restriction enzymes Acc I and Sal I and the small fragment (5), which for the most part contains the hirudin sequence , is isolated.

Plasmidet pl59/6 (6), fremstilt ifølge det tyske utlegningsskrift 3419995 (europeisk patentpublikasjon 0163249), eksempel 4 (fig. 5), åpnes med restriksjonsenzymene Eco RI og Pvu I og det lille fragmentet (7) isoleres, som inneholder den største delen av IL-2-sekvensen. Denne delsekvensen, og i det følgende også andre forkortede IL-2-sekvenser, er i figurene betegnet som "AIL2". The plasmid p159/6 (6), prepared according to the German specification 3419995 (European patent publication 0163249), example 4 (Fig. 5), is opened with the restriction enzymes Eco RI and Pvu I and the small fragment (7) is isolated, which contains the largest part of the IL-2 sequence. This partial sequence, and in the following also other abbreviated IL-2 sequences, are designated in the figures as "AIL2".

Deretter behandles sekvensene (3), (5), (7) samt den syntetiske DNA-sekvensen (8, fig. la) med T4-ligase. Man får plasmidet pK360 (9). The sequences (3), (5), (7) and the synthetic DNA sequence (8, fig. 1a) are then treated with T4 ligase. The plasmid pK360 (9) is obtained.

Kompetente E.coli-celler transformeres med ligerings-produktet og belegges på NA-plater, som inneholder 25 pg/ml ampicillin. Plasmid-DNA forklonene karakteriseres ved hjelp av restriksjons- og sekvensanalyse. Competent E.coli cells are transformed with the ligation product and plated on NA plates containing 25 pg/ml ampicillin. The plasmid DNA preclones are characterized using restriction and sequence analysis.

En kultur av E.coli-celler som har stått over natten, som inneholder plasmidet (9), fortynnes med LB-medium (J.H. Miller, "Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, 1972), som inneholder 50 jjg/ml ampicillin, i forhold på ca. 1:100 og veksten følges ved hjelp av 0D-måling. Ved OD = 0,5 innstilles rystekulturen på 1 mM isopropyl-e-galaktopyranosid (IPTG) og bakteriene frasentri-fugeres etter fra 150 til 180 minutter. Bakteriene kokes i 5 minutter i en bufferblanding (7M urinstoff, 0,l£ SDS, 0,1 M natriumfosfat, pH 7,0) og prøver påføres på en SDS/gelektro-foreseplate. Etter elektroforese oppnås det fra bakteriene som inneholder plasmid (9), et proteinbånd som tilsvarer størrelsen av det ventede fusjonsproteinet. Etter oppslut-ning av bakteriene ("French Press"; "Dyno-Miihle") og sentrifugering befinner fusjonsproteinet seg i bunnfallet slik at betydelige mengder av de øvrige proteinene kan fraskilles med supernatanten. Etter isolering av fusjonsproteinet settes det ventede hirudin-peptidet fri ved bromcyan-spalting. Peptidet karakteriseres etter isolering ved protein-sekvens-analyse. An overnight culture of E.coli cells containing the plasmid (9) is diluted with LB medium (J.H. Miller, "Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, 1972) containing 50 µg/ml ampicillin, in a ratio of approximately 1:100 and the growth is monitored using 0D measurement. At OD = 0.5, the shaking culture is set to 1 mM isopropyl-e-galactopyranoside (IPTG) and the bacteria are centrifuged after 150 to 180 minutes . The bacteria are boiled for 5 minutes in a buffer mixture (7M urea, 0.1£ SDS, 0.1 M sodium phosphate, pH 7.0) and samples are applied to an SDS/gel electrophoresis plate. After electrophoresis, it is obtained from the bacteria containing plasmid (9), a protein band corresponding to the size of the expected fusion protein. After digestion of the bacteria ("French Press"; "Dyno-Miihle") and centrifugation, the fusion protein is in the sediment so that significant amounts of the other proteins can be separated with After isolation of the fusion protein, d an expected hirudin peptide freed by cyanogen bromide cleavage. The peptide is characterized after isolation by protein sequence analysis.

De angitte induksjonsbetingelsene gjelder for rystekulturer: ved større fermenteringer er tilsvarende OD-verdier og eventuelt lett varierte IPTG-konsentrasjoner hensiktsmessig. The stated induction conditions apply to shaking cultures: for larger fermentations, corresponding OD values and possibly slightly varied IPTG concentrations are appropriate.

EKSEMPEL 2 EXAMPLE 2

Plasmidet (4) (fig. 1) åpnes med Acc I, og de overstående endene oppfylles med Klenow-polymerase. Deretter skjæres med Sac I og fragmentet (10) isoleres, dette inneholder den største delen av hirudinsekvensen. The plasmid (4) (Fig. 1) is opened with Acc I, and the upstream ends are filled in with Klenow polymerase. It is then cut with Sac I and the fragment (10) is isolated, this contains the largest part of the hirudin sequence.

Den handelsvanlige vektoren pUC 13 åpnes med restriksjonsenzymene Sac I og Sma I og det store fragmentet (11) isoleres. The commercially available vector pUC 13 is opened with the restriction enzymes Sac I and Sma I and the large fragment (11) is isolated.

Ved hjelp av T4-ligase ligeres nå fragmentene (10) og (11) til plasmid pK 400 (12) (fig. 2). Plasmidet (12) er gjengitt to ganger i fig. 2, hvorved aminosyresekvensen for det derved oppnådde hirudinderivatet er fremhevet i den nederste fremstillingen. Using T4 ligase, the fragments (10) and (11) are now ligated to plasmid pK 400 (12) (Fig. 2). The plasmid (12) is reproduced twice in fig. 2, whereby the amino acid sequence of the thus obtained hirudin derivative is highlighted in the bottom representation.

Plasmidet (4) (fig. 1) åpnes med restriksjonsenzymene Kpn I og Sal I og det lille fragmentet (13) som inneholder hirudin-delsekvensen, isoleres. The plasmid (4) (fig. 1) is opened with the restriction enzymes Kpn I and Sal I and the small fragment (13) containing the hirudin partial sequence is isolated.

Plasmidet (12) omsettes med restriksjonsenzymene Hine II og Rpn I og det lille fragmentet (14) som inneholder hirudindel-sekvensen, isoleres. The plasmid (12) is reacted with the restriction enzymes Hine II and Rpn I and the small fragment (14) containing the hirudindel sequence is isolated.

Plasmidet (9) (fig. la) spaltes delvis med EcoR I, de frie endene oppfylles med Klenow-polymerase i en innfyllingsreak-sjon, og kuttes med Sal I. Man får derivatet av plasmidet pK360 (15). The plasmid (9) (fig. 1a) is partially cleaved with EcoR I, the free ends are filled in with Klenow polymerase in a fill-in reaction, and cut with Sal I. The derivative of the plasmid pK360 (15) is obtained.

Ved liger ing av fragmentene (3), (13), (14) og (15) får man plasmidet pK 410, (16), som er gjengitt to ganger i fig. 2a, hvorved den nederste gjengivelsen viser aminosyrerekkefølgen for fusjonsproteinet og dermed det etter syrespaltning oppnådde hirudinderivatet. By ligation of the fragments (3), (13), (14) and (15), the plasmid pK 410, (16) is obtained, which is reproduced twice in fig. 2a, whereby the lower rendering shows the amino acid sequence of the fusion protein and thus the hirudin derivative obtained after acid cleavage.

Etter ekspresjon og opparbeidelse ifølge eksempel 1, får man et nytt hirudinderivat, som i posisjonene 1 og 2 oppviser aminosyrene prolin og histidin. Dette hirudinderivatet viser den samme aktiviteten som naturproduktet ifølge det tyske utlegningsskriftet nr. 3429430, som i disse posisjonene oppvise aminosyrene threonin og tyrosin, men er mer stabilt mot angrep av aminopeptidaser, hvorved det kan oppnås fordeler ved in-vivo-anvendelse. After expression and processing according to example 1, a new hirudin derivative is obtained, which in positions 1 and 2 exhibits the amino acids proline and histidine. This hirudin derivative shows the same activity as the natural product according to the German Explanatory Document No. 3429430, which in these positions exhibits the amino acids threonine and tyrosine, but is more stable against attack by aminopeptidases, whereby advantages can be obtained in in-vivo use.

EKSEMPEL 3 EXAMPLE 3

Den handel svanlige vektoren pBR 322 åpnes med Barn H 1, hvorved det lineariserte plasmidet (17) oppnås. De frie endene oppfylles delvis under anvendelse av dATP, dGTP og dTTP, og det overstående nukleotidet G nedbrytes med Sl-nuklease, hvorved pBR 322-derivatet (18) oppnås. The commercially available vector pBR 322 is opened with Barn H 1, whereby the linearized plasmid (17) is obtained. The free ends are partially fulfilled using dATP, dGTP and dTTP, and the overlying nucleotide G is degraded with S1 nuclease, whereby the pBR 322 derivative (18) is obtained.

Hae III-fragmentet (19) av ape-proinsulin (Wetekam et al., Gene 19 (1982) 181) ligeres med det modifiserte plasmidet (18), hvorved plasmidet pPH 1 (20) oppnås. Idet insulinse-kvensen ble anvendt i tetracyklingenet, er klonene som inneholder dette plasmidet ikke resistente mot tetracyklin og kan identifiseres på dette grunnlaget. The Hae III fragment (19) of monkey proinsulin (Wetekam et al., Gene 19 (1982) 181) is ligated with the modified plasmid (18), whereby the plasmid pPH 1 (20) is obtained. As the insulin sequence was used in the tetracycline gene, the clones containing this plasmid are not resistant to tetracycline and can be identified on this basis.

Plasmidet (20) åpnes med Barn Hl og Dde I og det lille fragmentet (21) isoleres. The plasmid (20) is opened with Barn Hl and Dde I and the small fragment (21) is isolated.

I tillegg isoleres Dde I-Pvu II-delsekvensen (22) fra ape-proinsulinsekvensen. In addition, the Dde I-Pvu II subsequence (22) is isolated from the monkey proinsulin sequence.

Vektoren pBR 322 åpnes med Bam Hl og Pvu II og det lineariserte plasmidet (22) isoleres. The vector pBR 322 is opened with Bam HI and Pvu II and the linearized plasmid (22) is isolated.

Ved ligering av insulindelsekvensene (21) og (22) med det åpnede plasmidet (23) oppnår man plasmidet pPH5 (24). Dette åpnes med Barn Hl og Pvu II og det lille fragmentet (25) isoleres. By ligation of the insulin partial sequences (21) and (22) with the opened plasmid (23), the plasmid pPH5 (24) is obtained. This is opened with Barn Hl and Pvu II and the small fragment (25) is isolated.

For fullstendiggjørelse av insulinstrukturen syntetiseres DNA-sekvensen (26). To complete the insulin structure, the DNA sequence is synthesized (26).

Den handelsvanlige vektoren pUC 8 åpnes med enzymene Bam HI og Sal I og restplasmidet (27) isoleres. Dette ligeres med DNA-sekvensene (25) og (26) til plasmid pPH 15 (28). Dette åpnes med Sal I og de ovenstående endene oppfylles. Fra de resulterende plasmidderivater (29) avspaltes DNA-sekvensen (30) med Bam Hl. The commercially available vector pUC 8 is opened with the enzymes Bam HI and Sal I and the residual plasmid (27) is isolated. This is ligated with the DNA sequences (25) and (26) to plasmid pPH 15 (28). This opens with Hall I and the above ends are fulfilled. From the resulting plasmid derivatives (29), the DNA sequence (30) is cleaved with Bam H1.

Den handelsvanlige vektoren pUC 9 åpnes med enzymene Bam HI og Sma I og det store fragmentet (31) isoleres. Dette ligeres med DNA-sekvensen (30) hvorved plasmidet pPH16 (32) oppnås. The commercially available vector pUC 9 is opened with the enzymes Bam HI and Sma I and the large fragment (31) is isolated. This is ligated with the DNA sequence (30) whereby the plasmid pPH16 (32) is obtained.

Plasmidet (32) åpnes med Sal I og det lineariserte plasmidet (33) oppfylles delvis med dCTP, dGTP og dTTP og det gjenvær-ende nukleotidet T avspaltes med Sl-nuklease. Det derved oppnådde plasmidderivatet (34) behandles med Bam HI og fra produktet (35) fjernes den overstående enkeltstrengen med Sl-nuklease, hvorved plasmidderivatet (36) oppnås. The plasmid (32) is opened with Sal I and the linearized plasmid (33) is partially filled with dCTP, dGTP and dTTP and the remaining nucleotide T is cleaved with Sl-nuclease. The resulting plasmid derivative (34) is treated with Bam HI and from the product (35) the overlying single strand is removed with Sl-nuclease, whereby the plasmid derivative (36) is obtained.

De butte endene av plasmidderivatet (35) ringsluttes til plasmid pPH 20 (37). The blunt ends of the plasmid derivative (35) are ring-closed to plasmid pPH 20 (37).

Kompetente E.coli Hb 101-celler transformeres med ligerings-blandingen og påføres på selektivt medium. Kloner som inneholder det ønskede plasmidet uttrykker proinsulin, av 70 undersøkte kloner inneholdt 26 radioimmunologisk påvisbart proinsulin. Plasmidene karakteriseres videre ved hjelp av DNA-sekvensanalyse. De inneholder DNA, som foran kodonet for de første aminosyrene av B-kjeden (Phe) koder for arginin. Plasmidet (37) spaltes med Hind II, de overstående endene oppfylles og etterspaltes med Dde I. Det lille fragmentet (38) isoleres. Competent E.coli Hb 101 cells are transformed with the ligation mixture and plated on selective medium. Clones containing the desired plasmid express proinsulin, of 70 clones examined, 26 contained radioimmunologically detectable proinsulin. The plasmids are further characterized by means of DNA sequence analysis. They contain DNA, which in front of the codon for the first amino acids of the B chain (Phe) codes for arginine. The plasmid (37) is cleaved with Hind II, the ends above are filled in and subsequently cleaved with Dde I. The small fragment (38) is isolated.

Plasmidet (28) (fig. 3a) spaltes med Sal I og Dde I og det lille fragmentet (39) fraskilles. The plasmid (28) (fig. 3a) is cleaved with Sal I and Dde I and the small fragment (39) is separated.

Plasmidet (9) (fig. la) spaltes med først Acc I, de frie endene oppfylles og etterspaltes delvis med Eco RI. Fragmentet (40), som inneholder den forkortede IL-2-sekvensen isoleres. The plasmid (9) (fig. 1a) is first cleaved with Acc I, the free ends are filled in and then partially cleaved with Eco RI. The fragment (40) containing the shortened IL-2 sequence is isolated.

Det lineariserte plasmidet (3) (fig. 1) og DNA-segmentene (38), (39) og (40) ligeres så til plasmidet pPH 30 (41). Dette plasmidet koder for et fusjonsprotein som i tilslutning til aminosyrene 1 til 114 av IL-2 oppviser følgende amino-syresekvens: The linearized plasmid (3) (fig. 1) and the DNA segments (38), (39) and (40) are then ligated to the plasmid pPH 30 (41). This plasmid codes for a fusion protein which, in addition to amino acids 1 to 114 of IL-2, has the following amino acid sequence:

Argininet som siste aminosyre av dette broleddet Y muliggjør avspaltning av insulinkjeden med trypsin. The arginine as the last amino acid of this bridge link Y enables cleavage of the insulin chain with trypsin.

Med utgangspunkt i plasmid (9) (fig. la) kan man også ved følgende fremgangsmåte komme til plasmid (41): Man åpner (9) med Acc I, oppfyller de overstående endene, skjærer etter med Sal I og ligerer det oppnådde plasmidderivatet (42) med segmentene (3), (38) og (39). Starting from plasmid (9) (fig. 1a), one can also arrive at plasmid (41) by the following procedure: One opens (9) with Acc I, completes the ends above, cuts with Sal I and ligates the resulting plasmid derivative ( 42) with segments (3), (38) and (39).

EKSEMPEL 4: EXAMPLE 4:

Plasmidet (6) (fig. 1) åpnes med restriksjonsenzymene Taq I og Eco RI og det lille fragmentet (43) isoleres. Dette fragmentet ligeres med den syntetiserte DNA-sekvensen (44) og segmentene (3) og (5) til plasmid pPH 100 (45 ). Dette plasmidet koder for et fusjonsprotein, hvorved det etter de første 132 aminosyrene for IL-2 følger broledd Asp-Pro og heretter aminosyrerekken av hirudin. Den proteolytiske spaltningen gir følgelig et modifisert, biologisk aktivt IL-2', hvori posisjon 133 inneholder Asp i stedet for Thr, og et hirudinderivat som N-terminalt inneholder Pro før aminosyresekvensen av naturproduktet. Også dette produktet er biologisk aktivt, og sammenlignet med naturproduktet mer stabilt mot angrep av proteaser. IL-2'-hirudinfusjonsproteinet oppviser også biologisk aktivitet: I celleformeringsforsøk med en IL-2-avhengig cellelinje (CTLL2) ble det funnet biologisk aktivitet. The plasmid (6) (fig. 1) is opened with the restriction enzymes Taq I and Eco RI and the small fragment (43) is isolated. This fragment is ligated with the synthesized DNA sequence (44) and segments (3) and (5) of plasmid pPH 100 (45 ). This plasmid codes for a fusion protein, whereby the first 132 amino acids for IL-2 are followed by the bridge link Asp-Pro and then the amino acid sequence of hirudin. The proteolytic cleavage consequently yields a modified, biologically active IL-2', in which position 133 contains Asp instead of Thr, and a hirudin derivative which N-terminally contains Pro before the amino acid sequence of the natural product. This product is also biologically active, and compared to the natural product more stable against attack by proteases. The IL-2' hiru fusion protein also exhibits biological activity: In cell proliferation experiments with an IL-2-dependent cell line (CTLL2), biological activity was found.

Etter denaturering i 6 M guanidiniumhydrokloridoppløsning og etterfølgende renaturering i bufferoppløsning (10 mM Tris-HC1, pH 8,5, 1 mM EDTA) ble det videre funnet høy IL-2-aktivitet. Videre ble koaguleringstiden for syrebehandlet, med trombin blandet blod, forlenget etter tilsats av fusjonsproteinet. After denaturation in 6 M guanidinium hydrochloride solution and subsequent renaturation in buffer solution (10 mM Tris-HCl, pH 8.5, 1 mM EDTA), high IL-2 activity was further found. Furthermore, the coagulation time of acid-treated blood mixed with thrombin was prolonged after addition of the fusion protein.

Det oppnås følgelig et bifunksjonelt fusjonsprotein. Consequently, a bifunctional fusion protein is obtained.

EKSEMPEL 5: EXAMPLE 5:

Den handelsvanlige vektoren pUC 12 åpnes med restriksjonsenzymene Eco RI og Sac I. I dette lineariserte plasmidet (46) settes det inn en IL-2-delsekvens, som er utspaltet av plasmidet (6) (fig. 1) med restriksjonsenzymene Eco RI og Sac I. Denne sekvensen (47) omfatter den komplette tripletten for de første 94 aminosyrene av IL-2. Ved ligering av (46) og (47) får man plasmidet pK 300 (48). The commercially available vector pUC 12 is opened with the restriction enzymes Eco RI and Sac I. In this linearized plasmid (46) an IL-2 partial sequence is inserted, which has been cleaved from the plasmid (6) (Fig. 1) with the restriction enzymes Eco RI and Sac I. This sequence (47) comprises the complete triplet for the first 94 amino acids of IL-2. By ligation of (46) and (47), the plasmid pK 300 (48) is obtained.

Plasmidet (9) (fig. la) åpnes med Eco RI, de overstående endene oppfylles og etterspaltes med Hind III. Det lille fragmentet (49) isoleres, som i tilslutning til den for hirudin kodende DNA-sekvensen inneholder en del av polyfor-bindelsesleddet fra pUC 12. The plasmid (9) (fig. 1a) is opened with Eco RI, the upstream ends are filled in and post-cleaved with Hind III. The small fragment (49) is isolated, which in addition to the DNA sequence coding for hirudin contains part of the polyfor link from pUC 12.

Plasmidet (48) åpnes med restriksjonsenzymene Sma I og Hind III og det store fragmentet (50) isoleres. Ved ligering av (50) med (49) får man plasmid pK 301 (51). The plasmid (48) is opened with the restriction enzymes Sma I and Hind III and the large fragment (50) is isolated. By ligation of (50) with (49), plasmid pK 301 (51) is obtained.

Med 1igeringsblandingen transformeres kompetente E.coli 294-celler. Kloner som inneholder plasmidet (51) karakteriseres ved restriksjonsanalyse. De inneholder DNA som i tilslutning til kodonene for de første 96 aminosyrene av IL-2 inneholder kodoner for et broledd av 6 aminosyrer og de derpå følgende kodonene for hirudin. Competent E.coli 294 cells are transformed with the ligation mixture. Clones containing the plasmid (51) are characterized by restriction analysis. They contain DNA which, in addition to the codons for the first 96 amino acids of IL-2, contains codons for a bridge link of 6 amino acids and the following codons for hirudin.

Plasmidet (51) omsettes med Eco RI og Hind III og fragmentet (52) isoleres, dette inneholder DNA-sekvensen for det nevnte eukaryotiske fusjonsproteinet. The plasmid (51) is reacted with Eco RI and Hind III and the fragment (52) is isolated, this contains the DNA sequence for the aforementioned eukaryotic fusion protein.

Plasmidet (2) (fig. 1) åpnes med Eco RI og Hind III. Det oppnådde lineariserte plasmidet (53) ligeres med DNA-sekvensen (52) hvorved plasmidet pK 370 (54) oppnås. The plasmid (2) (Fig. 1) is opened with Eco RI and Hind III. The obtained linearized plasmid (53) is ligated with the DNA sequence (52), whereby the plasmid pK 370 (54) is obtained.

Dersom plasmidet (54) tilsvarende eksempel 1 eksprimeres i E.coli, får man et fusjonsprotein hvor det etter de første 96 aminosyrer av IL-2 følger broleddet If the plasmid (54) corresponding to example 1 is expressed in E.coli, a fusion protein is obtained in which the bridge link follows the first 96 amino acids of IL-2

og i tilknytning til dette aminosyrerekken for hirudin. and in connection with this amino acid sequence for hirudin.

EKSEMPEL 6: EXAMPLE 6:

Fra plasmidet (41) (eksempel 3, fig. 3c) utspaltes med restriksjonsenzymene Eco RI og Hind III DNA-segmentet som koder for ape-proinsulin, og de overstående endene oppfylles. Man får DNA-segmentet (55). From the plasmid (41) (example 3, fig. 3c), the DNA segment coding for monkey proinsulin is cleaved with the restriction enzymes Eco RI and Hind III, and the ends above are filled. You get the DNA segment (55).

Plasmidet (48) (eksempel 5, fig. 5) åpnes med Sma I og behandles med alkalisk oksefosfatase. Det oppnådde lineariserte plasmidet (56) ligeres med DNA-segmentet (55) hvorved plasmidet pK302 (57) oppnås. E.coli 294-celler transformeres med 1igeringsblandingen, hvorved kloner som inneholder det ønskede plasmidet først karakteriseres ved restriksjons- og deretter ved sekvensanalyse for plasmid-DNA. The plasmid (48) (Example 5, Fig. 5) is opened with Sma I and treated with bovine alkaline phosphatase. The obtained linearized plasmid (56) is ligated with the DNA segment (55) whereby the plasmid pK302 (57) is obtained. E.coli 294 cells are transformed with the ligation mixture, whereby clones containing the desired plasmid are first characterized by restriction and then by sequence analysis for plasmid DNA.

Fra plasmid (57) utspaltes med Eco RI og Hind III segmentet (58) som koder for IL-2 og ape-proinsulin. From plasmid (57), the segment (58) which codes for IL-2 and monkey proinsulin is cleaved with Eco RI and Hind III.

Plasmidet (2) (eksempel 1, fig. 1) spaltes også med Eco RI og Hind III og i det lineariserte plasmidet (3) ligeres segmentet (58) inn. Man får plasmidet pKH 101 (59). The plasmid (2) (example 1, fig. 1) is also cleaved with Eco RI and Hind III and the segment (58) is ligated into the linearized plasmid (3). The plasmid pKH 101 (59) is obtained.

Ekspresjon ifølge eksempel 1 fører til et fusjonsprotein, hvori det etter de første 96 aminosyrene for IL-2 følger et broledd med 14 aminosyrer (svarende til Y i DNA-segment (58)), hvortil aminosyrerekken for ape-proinsulin slutter seg. Expression according to example 1 leads to a fusion protein, in which the first 96 amino acids for IL-2 are followed by a bridge link of 14 amino acids (corresponding to Y in DNA segment (58)), to which the amino acid sequence for monkey proinsulin joins.

Vedlegg I; DNA- sekvensen for interleukin- 2 Appendix I; The DNA sequence for interleukin-2

Claims (3)

1. Fremgangsmåte for fremstilling av et fusjonsprotein, med en C- eller N—terminal andel som tilsvarer de første 90-132 aminosyrene av interleukin-2 (IL-2), men ikke oppviser noen interleukin-2-aktivitet, med den generelle formelen der X er aminosyrerekken for de 90-132 første aminosyrene av menneskelig interleukin-2, Y betyr en direktebinding eller et broledd av 2-14 genetisk kodbare aminosyrer, som muliggjør avspaltning av aminosyresekvensen Z, og Z er en sekvens av genetisk kodbare aminosyrer, hvor Y, nabo til Z, inneholder Met, Cys, Trp, Arg, Lys, Asp eller Pro eller består av disse aminosyrer, karakterisert ved at man transformerer en vertscelle med en for dette fusjonsproteinet kodende genstruktur, dyrker vertscellen og fraskiller det uttrykte fusjonsproteinet fra de oppløselige proteinene, fortrinnsvis ved sentrifugering.1. Process for the production of a fusion protein, with a C- or N-terminal portion corresponding to the first 90-132 amino acids of interleukin-2 (IL-2), but not exhibiting any interleukin-2 activity, of the general formula where X is the amino acid sequence for the first 90-132 amino acids of human interleukin-2, Y means a direct link or a bridge link of 2-14 genetically coded amino acids, which enables cleavage of the amino acid sequence Z, and Z is a sequence of genetically coded amino acids, where Y, neighbor to Z, contains Met, Cys, Trp, Arg, Lys, Asp or Pro or consists of these amino acids, characterized by transforming a host cell with a gene structure encoding this fusion protein, culturing the host cell and separating the expressed fusion protein from the the soluble proteins, preferably by centrifugation. 2. Fremgangsmåte ifølge krav 1,karakterisert ved at det anvendes genstrukturer som koder for et fusjonsprotein hvori Y, nabo til Z, inneholder aminosyresekvensen eller består av denne.2. Method according to claim 1, characterized in that gene structures are used which code for a fusion protein in which Y, neighbor to Z, contains the amino acid sequence or consists of this. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at det anvendes genstrukturer som koder for et fusjonsprotein hvori Z betyr aminosyresekvensen til et proinsulin eller et hirudin.3. Method according to claim 1 or 2, characterized in that gene structures are used which code for a fusion protein in which Z means the amino acid sequence of a proinsulin or a hirudin.
NO864759A 1985-11-27 1986-11-26 Process for Preparation of a Fusion Protein NO176481C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19853541856 DE3541856A1 (en) 1985-11-27 1985-11-27 EUKARYOTIC FUSION PROTEINS, THEIR PRODUCTION AND USE, AND MEANS FOR CARRYING OUT THE PROCESS

Publications (3)

Publication Number Publication Date
NO864759D0 NO864759D0 (en) 1986-11-26
NO176481B true NO176481B (en) 1995-01-02
NO176481C NO176481C (en) 1995-04-12

Family

ID=6286938

Family Applications (1)

Application Number Title Priority Date Filing Date
NO864759A NO176481C (en) 1985-11-27 1986-11-26 Process for Preparation of a Fusion Protein

Country Status (17)

Country Link
EP (3) EP0464867B1 (en)
JP (1) JP2566933B2 (en)
KR (1) KR950000300B1 (en)
AT (2) ATE122397T1 (en)
AU (1) AU595262B2 (en)
CA (1) CA1341203C (en)
DE (4) DE3541856A1 (en)
DK (2) DK172064B1 (en)
ES (3) ES2077747T3 (en)
FI (1) FI93471C (en)
GR (1) GR3005042T3 (en)
HU (1) HU203579B (en)
IE (1) IE59488B1 (en)
IL (1) IL80755A0 (en)
NO (1) NO176481C (en)
PT (1) PT83813B (en)
ZA (1) ZA868943B (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125021A (en) * 1955-11-14 1964-03-17 Smooth
EP0168342B1 (en) * 1984-06-14 1991-07-03 Ciba-Geigy Ag Process for the preparation of thrombin inhibitors
DE3712985A1 (en) * 1987-04-16 1988-11-03 Hoechst Ag BIFUNCTIONAL PROTEINS
DE3545568A1 (en) * 1985-12-21 1987-07-16 Hoechst Ag GM-CSF-PROTEIN, ITS DERIVATIVES, PRODUCTION OF SUCH PROTEINS AND THEIR USE
DE3819079A1 (en) * 1988-06-04 1989-12-07 Hoechst Ag HIRUDINE DERIVATIVES WITH DELAYED EFFECT
DE3835815A1 (en) * 1988-10-21 1990-04-26 Hoechst Ag NEW ISOHIRUDINE
DE3844211A1 (en) * 1988-12-29 1990-07-05 Hoechst Ag NEW INSULINE DERIVATIVES, THE PROCESS FOR THEIR PRODUCTION, THEIR USE AND A PHARMACEUTICAL PREPARATION CONTAINING THEM
US5179196A (en) * 1989-05-04 1993-01-12 Sri International Purification of proteins employing ctap-iii fusions
WO1991000912A1 (en) * 1989-07-07 1991-01-24 Massachusetts Institute Of Technology Production and use of hybrid protease inhibitors
CU22222A1 (en) * 1989-08-03 1995-01-31 Cigb PROCEDURE FOR THE EXPRESSION OF HETEROLOGICAL PROTEINS PRODUCED IN A FUSION FORM IN ESCHERICHIA COLI, ITS USE, EXPRESSION VECTORS AND RECOMBINANT STRAINS
GB8927722D0 (en) * 1989-12-07 1990-02-07 British Bio Technology Proteins and nucleic acids
DE3942580A1 (en) * 1989-12-22 1991-06-27 Basf Ag METHOD FOR PRODUCING HIRUDINE
US5270181A (en) * 1991-02-06 1993-12-14 Genetics Institute, Inc. Peptide and protein fusions to thioredoxin and thioredoxin-like molecules
DE4140381A1 (en) * 1991-12-07 1993-06-09 Hoechst Ag, 6230 Frankfurt, De NEW SYNTHETIC ISOHIRUDINE WITH IMPROVED STABILITY
DE4404168A1 (en) * 1994-02-10 1995-08-17 Hoechst Ag Hirudin derivatives and process for their preparation
EP0821006B1 (en) 1996-07-26 2004-04-21 Aventis Pharma Deutschland GmbH Derivatives of insulin having enhanced zinc binding activity
DE19726167B4 (en) 1997-06-20 2008-01-24 Sanofi-Aventis Deutschland Gmbh Insulin, process for its preparation and pharmaceutical preparation containing it
DE19825447A1 (en) 1998-06-06 1999-12-09 Hoechst Marion Roussel De Gmbh New insulin analogues with increased zinc formation
DE10033195A1 (en) * 2000-07-07 2002-03-21 Aventis Pharma Gmbh Bifunctional fusion proteins from hirudin and TAP
US7202059B2 (en) 2001-02-20 2007-04-10 Sanofi-Aventis Deutschland Gmbh Fusion proteins capable of being secreted into a fermentation medium
US7638618B2 (en) 2001-02-20 2009-12-29 Sanofi-Aventis Deutschland Gmbh Nucleic acids encoding a hirudin and pro-insulin as superscretable peptides and for parallel improvement of the exported forms of one or more polypeptides of interest
DE10114178A1 (en) 2001-03-23 2002-10-10 Aventis Pharma Gmbh Zinc-free and low-zinc insulin preparations with improved stability
DE10227232A1 (en) 2002-06-18 2004-01-15 Aventis Pharma Deutschland Gmbh Sour insulin preparations with improved stability
PL2349324T3 (en) 2008-10-17 2018-02-28 Sanofi-Aventis Deutschland Gmbh Combination of an insulin and a glp-1 agonist
PT3417871T (en) 2009-11-13 2021-02-15 Sanofi Aventis Deutschland Pharmaceutical composition comprising a glp-1-agonist, an insulin, and methionine
PT3345593T (en) 2009-11-13 2023-11-27 Sanofi Aventis Deutschland Pharmaceutical composition comprising despro36exendin-4(1-39)-lys6-nh2 and methionine
SI2611458T1 (en) 2010-08-30 2017-01-31 Sanofi-Aventis Deutschland Gmbh Use of ave0010 for the manufacture of a medicament for the treatment of diabetes mellitus type 2
US9821032B2 (en) 2011-05-13 2017-11-21 Sanofi-Aventis Deutschland Gmbh Pharmaceutical combination for improving glycemic control as add-on therapy to basal insulin
BR112014004726A2 (en) 2011-08-29 2017-04-04 Sanofi Aventis Deutschland pharmaceutical combination for use in glycemic control in type 2 diabetes patients
TWI559929B (en) 2011-09-01 2016-12-01 Sanofi Aventis Deutschland Pharmaceutical composition for use in the treatment of a neurodegenerative disease
PE20171622A1 (en) 2014-12-12 2017-11-02 Sanofi Aventis Deutschland INSULIN GLARGIN / LIXISENATIDE FIXED RATIO FORMULATION
TWI748945B (en) 2015-03-13 2021-12-11 德商賽諾菲阿凡提斯德意志有限公司 Treatment type 2 diabetes mellitus patients
TW201705975A (en) 2015-03-18 2017-02-16 賽諾菲阿凡提斯德意志有限公司 Treatment of type 2 diabetes mellitus patients
KR20200080747A (en) 2018-12-27 2020-07-07 주식회사 폴루스 An Enzymatic Conversion Composition for Producing Insulin from Proinsulin and a Method for Producing Insulin from Proinsulin Using the Same
KR20200080748A (en) 2018-12-27 2020-07-07 주식회사 폴루스 A Method for Purifying Proinsulin Using Anion Exchange Chromatography

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000817A1 (en) * 1983-08-10 1985-02-28 Amgen Microbial expression of interleukin ii
DK108685A (en) * 1984-03-19 1985-09-20 Fujisawa Pharmaceutical Co GROWTH FACTOR I
EP0158564B1 (en) * 1984-03-27 1992-07-15 Transgene S.A. Expression vectors for hirudin, transformed cells and process for the preparation of hirudin
EP0158198A1 (en) * 1984-03-29 1985-10-16 Takeda Chemical Industries, Ltd. DNA and use thereof
DE3429430A1 (en) * 1984-08-10 1986-02-20 Hoechst Ag, 6230 Frankfurt GENE TECHNOLOGICAL METHOD FOR PRODUCING HIRUDINE AND MEANS FOR IMPLEMENTING THIS METHOD
DE3526995A1 (en) * 1985-07-27 1987-02-05 Hoechst Ag FUSION PROTEINS, METHOD FOR THEIR PRODUCTION AND THEIR USE
US4865974A (en) * 1985-09-20 1989-09-12 Cetus Corporation Bacterial methionine N-terminal peptidase
CA1297003C (en) * 1985-09-20 1992-03-10 Jack H. Nunberg Composition and method for treating animals

Also Published As

Publication number Publication date
ES2032378T3 (en) 1993-02-16
EP0464867A1 (en) 1992-01-08
GR3005042T3 (en) 1993-05-24
EP0227938A2 (en) 1987-07-08
ES2073081T3 (en) 1995-08-01
ATE122397T1 (en) 1995-05-15
HU203579B (en) 1991-08-28
DK172064B1 (en) 1997-10-06
EP0468539A1 (en) 1992-01-29
FI93471B (en) 1994-12-30
ATE127841T1 (en) 1995-09-15
EP0464867B1 (en) 1995-05-10
NO176481C (en) 1995-04-12
AU6569386A (en) 1987-06-04
KR950000300B1 (en) 1995-01-13
DE3650396D1 (en) 1995-10-19
DE3684892D1 (en) 1992-05-21
IL80755A0 (en) 1987-02-27
DK52292D0 (en) 1992-04-21
EP0468539B1 (en) 1995-09-13
EP0227938A3 (en) 1988-11-23
DK568586D0 (en) 1986-11-26
FI864798A0 (en) 1986-11-25
FI864798L (en) 1987-05-28
AU595262B2 (en) 1990-03-29
HUT43642A (en) 1987-11-30
DK568586A (en) 1987-05-28
DE3650322D1 (en) 1995-06-14
ZA868943B (en) 1987-07-29
IE59488B1 (en) 1994-03-09
PT83813A (en) 1986-12-01
ES2077747T3 (en) 1995-12-01
DK52292A (en) 1992-04-21
EP0227938B1 (en) 1992-04-15
JP2566933B2 (en) 1996-12-25
JPS62143696A (en) 1987-06-26
DE3541856A1 (en) 1987-06-04
CA1341203C (en) 2001-03-13
FI93471C (en) 1995-04-10
IE863119L (en) 1987-05-27
KR870005098A (en) 1987-06-04
PT83813B (en) 1989-06-30
NO864759D0 (en) 1986-11-26
DK172210B1 (en) 1998-01-05

Similar Documents

Publication Publication Date Title
NO176481B (en) Process for Preparation of a Fusion Protein
KR950000301B1 (en) Method for preparing a fusion protein having a eukaryotic ballast portion
JPH07113040B2 (en) Fusion protein, production method thereof and use thereof
AU700605B2 (en) Production of peptides using recombinant fusion protein constructs
CN110724187B (en) Recombinant engineering bacterium for efficiently expressing liraglutide precursor and application thereof
NO177270B (en) Meth. for the preparation of therapeutically active human granulocyte macrophage &#34;colony-stimulating&#34; factor proteins (GM-CSF), bacterial expression vector capable of expressing GM-CSF, and bacterial cell containing the vector
EP0470976A1 (en) Processes and compositions for the isolation of human relaxin.
WO1996017942A9 (en) Production of peptides using recombinant fusion protein constructs
JPH0665318B2 (en) Method for producing human growth hormone
CA2159079C (en) Methods and dna expression systems for over-expression of proteins in host cells
CA2239704A1 (en) Polypeptides with interleukin 16 activity, process for the preparation and use thereof
EP0437544A4 (en) Recombinant pdgf and methods for production
RU2144957C1 (en) Recombinant plasmid dna ppins07 encoding fused polypeptide containing human proinsulin and strain of bacterium escherichia coli - producer of fused polypeptide containing human proinsulin
US20210230659A1 (en) Leader Sequence for Higher Expression of Recombinant Proteins
KR20190098689A (en) Method of preparing glucagon like peptide-1 or analogues using fusion polypeptide
JPH06327489A (en) Production of biologically active beta-ngf by gene manipulation
KR102017542B1 (en) Method of preparing glucagon like peptide-2 or analogues using fusion polypeptide
Han et al. Thioredoxin fusion/HIV‐1 protease coexpression system for production of soluble human IL6 in E. coli cytoplasm
CN1319671A (en) Novel secretion expression vector and its application of recombinant hirudin expression technology
WO1999037781A1 (en) Mutants of il-16, processes for their production, and their use
WO1991014777A1 (en) Isoform of platelet-derived growth factor a chain