NO174483B - Procedure for optimizing the performance of cooling devices - Google Patents
Procedure for optimizing the performance of cooling devices Download PDFInfo
- Publication number
- NO174483B NO174483B NO900127A NO900127A NO174483B NO 174483 B NO174483 B NO 174483B NO 900127 A NO900127 A NO 900127A NO 900127 A NO900127 A NO 900127A NO 174483 B NO174483 B NO 174483B
- Authority
- NO
- Norway
- Prior art keywords
- temperature
- expansion valve
- air cooler
- measured
- air
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000001816 cooling Methods 0.000 title claims description 10
- 239000003507 refrigerant Substances 0.000 claims abstract description 10
- 238000001704 evaporation Methods 0.000 claims description 8
- 230000008020 evaporation Effects 0.000 claims description 8
- 230000033764 rhythmic process Effects 0.000 claims 3
- 238000009529 body temperature measurement Methods 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 241000446313 Lamella Species 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
- F25B41/35—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Air Conditioning Control Device (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Temperature-Responsive Valves (AREA)
- Led Device Packages (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Defrosting Systems (AREA)
- Control Of Temperature (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
Description
Oppfinnelsen angår en fremgangsmåte for optimering av ytelsen av avkjølingsanordninger, særlig av vifteluftavkjølings-anordninger, som drives med et kjølemiddel og mates via en ekspansjonsventil, ved hvilken både fordampningstemperaturen og også temperaturen ved luftkjølerutløpet måles kontinuerlig eller periodisk, i tillegg til luftinngangstemperaturen eller matelufttemperaturen, og hvor differansen mellom matelufttemperaturen og fordampningstemperaturen, målt i grader Kelvin, bestemmes. The invention relates to a method for optimizing the performance of cooling devices, in particular of fan air cooling devices, which are operated with a refrigerant and fed via an expansion valve, in which both the evaporation temperature and also the temperature at the air cooler outlet are measured continuously or periodically, in addition to the air inlet temperature or the supply air temperature, and where the difference between the supply air temperature and the evaporation temperature, measured in degrees Kelvin, is determined.
Kjølemiddelfordampere, særlig vifteluftavkjølingsan-ordninger, benyttes i stor skala i praksis og må sikre at de materialer som skal avkjøles, spesielt også særlig følsomme materialer som ikke må få tørke ut, holdes på en temperatur som kan forutbestemmes så nøyaktig som mulig. Refrigerant evaporators, especially fan air cooling devices, are used on a large scale in practice and must ensure that the materials to be cooled, especially particularly sensitive materials that must not be allowed to dry out, are kept at a temperature that can be predetermined as precisely as possible.
Det å tilfredsstille dette krav fører til betydelige vanskeligheter, særlig når forskjellige ytelseskrav oppstår, når matelufttemperaturen utsettes for store fluktuasjoner, for eksempel ved åpning av dører, og når rim- eller isdannelse i forskjellig grad inntreffer i selve luftavkjølingsanordningen. Satisfying this requirement leads to considerable difficulties, particularly when different performance requirements arise, when the supply air temperature is exposed to large fluctuations, for example when doors are opened, and when frost or ice formation occurs to varying degrees in the air cooling device itself.
Formålet med oppfinnelsen er å tilveiebringe en fremgangsmåte for optimering av ytelsen av sådanne kjølemiddel-fordampere som kan realiseres med liten kompleksitet og som alltid sikrer den best mulige ytelse av luftkjøleren, og også bidrar til en mer ensartet nedising og således til en forenkling og forbedring av avisingskontrollen. The purpose of the invention is to provide a method for optimizing the performance of such refrigerant evaporators which can be realized with little complexity and which always ensures the best possible performance of the air cooler, and also contributes to a more uniform de-icing and thus to a simplification and improvement of the de-icing control.
Ovennevnte formål oppnås ved hjelp av en fremgangsmåte av den innledningsvis angitte type som er kjennetegnet ved at den nevnte differanse multipliseres med en faktor mellom 0,6 og 0,7, særlig med faktoren 0,625, og den beregnede temperaturverdi som oppnås, sammenliknes med temperaturen ved luftkjølerutløpet, og at ekspansjonsventilen på luftkjølerens innløpsside deretter styres kontinuerlig eller periodisk i avhengighet av resultatet av sammenlikningen på en slik måte at temperaturen ved luftkjø-lerutløpet er mest mulig lik den beregnede temperaturverdi, og uavhengig av den respektive ytelsesbelastning, idet behandlingen av de målte verdier og dannelsen av styresignaler for ekspansjonsventilen finner sted i en beregningsenhet som er utstyrt med et tilpasset, utarbeidet program. The above-mentioned purpose is achieved by means of a method of the type indicated at the outset, which is characterized by the aforementioned difference being multiplied by a factor between 0.6 and 0.7, in particular by the factor 0.625, and the calculated temperature value obtained is compared with the temperature at the air cooler outlet, and that the expansion valve on the air cooler inlet side is then controlled continuously or periodically depending on the result of the comparison in such a way that the temperature at the air cooler outlet is as close as possible to the calculated temperature value, and regardless of the respective performance load, as the processing of the measured values and the generation of control signals for the expansion valve takes place in a calculation unit which is equipped with an adapted, prepared program.
Den praktisk talt kontinuerlige bestemmelse av den beregnede temperaturverdi som tilveiebringes i overensstemmelse med oppfinnelsen, og styringen av ekspansjonsventilen på en slik måte at fordamperutløpstemperaturen følger den beregnede temperaturverdi så nøyaktig som mulig, sikrer at kjølemiddelet i det siste delavsnitt av fordamperen alltid er til stede i den over-hetede tilstand, og at bare damp kommer ut på utløpssiden, og da praktisk talt uavhengig av de rådende ytelseskrav. Således muliggjøres en meget nøyaktig temperaturkontroll i det respektive avkjølte rom eller avkjølingskammer, og dette har en positiv virkning, særlig i forbindelse med følsomme materialer. The practically continuous determination of the calculated temperature value which is provided in accordance with the invention, and the control of the expansion valve in such a way that the evaporator outlet temperature follows the calculated temperature value as accurately as possible, ensures that the refrigerant in the last section of the evaporator is always present in the over-heated condition, and that only steam comes out on the outlet side, and then practically regardless of the prevailing performance requirements. Thus, a very precise temperature control is made possible in the respective cooled room or cooling chamber, and this has a positive effect, particularly in connection with sensitive materials.
En ytterligere konsekvens av den ifølge oppfinnelsen tilveiebrakte ytelsesoptimering av luftkjøleren er at vedlike-holdskravene er lavere, og at en mer ensartet nedising finner sted som et resultat av den kontinuerlige kontroll, hvilket på sin side gjør det mulig å optimere utførelsen av avisingsprose-dyrene. A further consequence of the performance optimization of the air cooler provided according to the invention is that the maintenance requirements are lower, and that a more uniform de-icing takes place as a result of the continuous control, which in turn makes it possible to optimize the performance of the de-icing procedures.
Selv om det i prinsipp også ville være mulig å detek-tere fordampningstemperaturen på utgangssiden via trykket, måles fortrinnsvis denne temperatur på kjent måte ved hjelp av en temperaturføler som er direkte festet til fordamperrøret, da dannelsen av målingsverdien da gjøres fullstendig uavhengig av det spesielle kjølemiddel som benyttes. Monteringsbeliggenheten for temperaturføleren er forholdsvis ukritisk, men den tilsva-rende føler monteres imidlertid fortrinnsvis i området for halve lengden av fordamperrøret. Dannelsen av rim eller is på for-damperrøret fører ikke til forfalskning av den måte verdi. Although in principle it would also be possible to detect the evaporation temperature on the output side via the pressure, this temperature is preferably measured in a known manner using a temperature sensor which is directly attached to the evaporator tube, as the formation of the measurement value is then done completely independently of the particular refrigerant which is used. The mounting location for the temperature sensor is relatively uncritical, but the corresponding sensor is preferably mounted in the area of half the length of the evaporator tube. The formation of frost or ice on the pre-evaporator tube does not lead to falsification of the mode value.
Selv om forskjellige styrbare ekspansjonsventiler i prinsipp kan benyttes, gjøres det fortrinnsvis bruk av en elektrisk eller elektronisk innstillbar, fortrinnsvis digitalt innstillbar ekspansjonsventil med en justerbar ventilnål. Da hele behandlingen av den målte verdi og dannelsen av reguleringssigna-let finner sted i en beregningsenhet, kan de respektive styresignaler som dannes, ved hjelp av en ventil av denne type behandles på særlig gunstig måte samtidig som man unngår regulerings-ustabilitet. Although different controllable expansion valves can in principle be used, an electrically or electronically adjustable, preferably digitally adjustable expansion valve with an adjustable valve needle is preferably used. As the entire processing of the measured value and the formation of the regulation signal takes place in a calculation unit, the respective control signals that are formed can be processed in a particularly favorable way with the help of a valve of this type while avoiding regulation instability.
Oppfinnelsen skal beskrives nærmere i det følgende i forbindelse med et utførelseseksempel under henvisning til tegningen hvis ene figur viser en skjematisk fremstilling av en vifteluftavkjølingsanordning som drives med et kjølemiddel og som er utstyrt med en styreenhet som arbeider i overensstemmelse med The invention shall be described in more detail in the following in connection with an embodiment with reference to the drawing, one figure of which shows a schematic representation of a fan air cooling device which is operated with a refrigerant and which is equipped with a control unit which works in accordance with
fremgangsmåten ifølge oppfinnelsen. the method according to the invention.
Tegningen viser en ventilerings- eller vifteluftav-kjølingsanordning KL hvis rørledninger passerer gjennom en lamellpakke og mates med kjølemiddel via en ekspansjonsventil EV. I luftkjøleren KL er en temperaturføler anordnet i direkte kontakt med rørledningene ved omtrent halve rørlengden av én fordeling, og fordampningstemperaturen t0 måles ved hjelp av denne temperaturføler. Målesignalet tilføres til en beregningsenhet KLR. The drawing shows a ventilation or fan air cooling device KL whose pipelines pass through a lamella pack and are fed with refrigerant via an expansion valve EV. In the air cooler KL, a temperature sensor is arranged in direct contact with the pipelines at approximately half the pipe length of one distribution, and the evaporation temperature t0 is measured using this temperature sensor. The measurement signal is supplied to a calculation unit KLR.
Temperaturen t0h måles likeledes ved fordamper- eller luftkjølerutløpet ved hjelp av en temperaturføler, og de målte verdier tilføres likeledes til beregningsenheten KLR. The temperature t0h is also measured at the evaporator or air cooler outlet using a temperature sensor, and the measured values are also fed to the calculation unit KLR.
Temperaturen tLl av tilførselsluften måles ved hjelp av en temperaturføler som er anordnet i strømmen av tilførselsluft, og beregningsenheten KLR mottar også disse målte verdier. The temperature tLl of the supply air is measured using a temperature sensor which is arranged in the flow of supply air, and the calculation unit KLR also receives these measured values.
Tilførselen av kjølemiddel finner sted via en styrbar ekspansjonsventil EV, og innstillingsverdien avgis ved hjelp av beregningsenheten KLR. The supply of refrigerant takes place via a controllable expansion valve EV, and the setting value is given using the calculation unit KLR.
I beregningsenheten KLR dannes differansen Atx, målt i grader Kelvin, mellom tilførsels- eller matelufttemperaturen tLl og fordampningstemperaturen t0, og denne differanseverdi multipliseres med en forutbestembar faktor mellom 0,6 og 0,7. In the calculation unit KLR, the difference Atx, measured in degrees Kelvin, is formed between the supply or feed air temperature tLl and the evaporation temperature t0, and this difference value is multiplied by a predeterminable factor between 0.6 and 0.7.
Den beregnede temperaturverdi som oppnås, sammenliknes deretter med temperaturen toh ved luftkjølerutløpet, og når avvikelser oppstår, dannes et styre- eller reguleringssignal for ekspansjonsventilen EV som fører til en innstilling av ventilen slik at det ved luftkjølerens utløp oppstår en temperaturverdi t0h som ligger så nær opp til den rådende, beregnede temperaturverdi som mulig. The calculated temperature value that is obtained is then compared with the temperature toh at the air cooler outlet, and when deviations occur, a control or regulation signal is generated for the expansion valve EV which leads to a setting of the valve so that a temperature value t0h occurs at the air cooler outlet that is as close to to the prevailing, calculated temperature value as possible.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3900643A DE3900643A1 (en) | 1989-01-11 | 1989-01-11 | METHOD FOR OPTIMIZING THE PERFORMANCE OF REFRIGERANT EVAPORATORS |
Publications (4)
Publication Number | Publication Date |
---|---|
NO900127D0 NO900127D0 (en) | 1990-01-10 |
NO900127L NO900127L (en) | 1990-07-12 |
NO174483B true NO174483B (en) | 1994-01-31 |
NO174483C NO174483C (en) | 1994-05-11 |
Family
ID=6371883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO900127A NO174483C (en) | 1989-01-11 | 1990-01-10 | Process for optimizing the performance of cooling devices |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0378152B1 (en) |
JP (1) | JPH02279965A (en) |
AT (1) | ATE103699T1 (en) |
DE (2) | DE3900643A1 (en) |
DK (1) | DK0378152T3 (en) |
ES (1) | ES2050847T3 (en) |
NO (1) | NO174483C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4105880A1 (en) * | 1991-02-25 | 1992-08-27 | Kueba Kaeltetechnik Gmbh | METHOD AND DEVICE FOR OPTIMIZING THE PERFORMANCE AND DEFROSTING OF REFRIGERANT EVAPORATORS |
JP2694885B2 (en) * | 1992-01-21 | 1997-12-24 | 日新興業株式会社 | Defrost start timing identification method for refrigerant evaporator |
DE4436925C2 (en) * | 1994-10-15 | 1998-05-14 | Danfoss As | Control device for the superheating temperature of at least one evaporator of a refrigeration system |
DE19520995A1 (en) * | 1995-06-08 | 1996-12-12 | Kueba Kaeltetechnik Gmbh | Device for optimizing the performance of coolers operated with refrigerants |
DE10021610A1 (en) * | 2000-05-04 | 2001-11-08 | Linde Ag | Method for operating a (composite) refrigeration system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2534455A (en) * | 1944-06-08 | 1950-12-19 | Honeywell Regulator Co | Refrigerating control apparatus |
US4067203A (en) * | 1976-09-07 | 1978-01-10 | Emerson Electric Co. | Control system for maximizing the efficiency of an evaporator coil |
US4244182A (en) * | 1977-12-20 | 1981-01-13 | Emerson Electric Co. | Apparatus for controlling refrigerant feed rate in a refrigeration system |
AU538000B2 (en) * | 1979-04-02 | 1984-07-26 | Matsushita Electric Industrial Co., Ltd. | Air conditioner |
JPS57207773A (en) * | 1981-06-17 | 1982-12-20 | Taiheiyo Kogyo Kk | Method of controlling cooling circuit and its control valve |
EP0078928A3 (en) * | 1981-11-10 | 1983-09-28 | Feraton Anstalt | Method for regulating the circulating refrigerants in a refrigerant circuit, and device for carrying out the method |
EP0123643B1 (en) * | 1983-03-22 | 1992-01-22 | Joh. Vaillant GmbH u. Co. | Method to control an electric output variable by means of a duty cycle |
DE3466798D1 (en) * | 1983-08-06 | 1987-11-19 | Vaillant Joh Gmbh & Co | Refrigerant flow control for a heat pump |
DE3337095A1 (en) * | 1983-10-12 | 1985-05-02 | Luwa Gmbh, 6000 Frankfurt | Device for detecting the positions of shut-off or regulating members, in particular in refrigerant circuits |
JPH0754207B2 (en) * | 1986-11-25 | 1995-06-07 | 日本電装株式会社 | Refrigeration cycle equipment |
-
1989
- 1989-01-11 DE DE3900643A patent/DE3900643A1/en not_active Withdrawn
-
1990
- 1990-01-08 ES ES90100313T patent/ES2050847T3/en not_active Expired - Lifetime
- 1990-01-08 AT AT90100313T patent/ATE103699T1/en not_active IP Right Cessation
- 1990-01-08 EP EP90100313A patent/EP0378152B1/en not_active Expired - Lifetime
- 1990-01-08 DE DE90100313T patent/DE59005141D1/en not_active Expired - Lifetime
- 1990-01-08 DK DK90100313.7T patent/DK0378152T3/en active
- 1990-01-10 JP JP2001655A patent/JPH02279965A/en active Pending
- 1990-01-10 NO NO900127A patent/NO174483C/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
NO174483C (en) | 1994-05-11 |
EP0378152B1 (en) | 1994-03-30 |
ATE103699T1 (en) | 1994-04-15 |
NO900127D0 (en) | 1990-01-10 |
ES2050847T3 (en) | 1994-06-01 |
DE3900643A1 (en) | 1990-07-12 |
NO900127L (en) | 1990-07-12 |
DK0378152T3 (en) | 1994-05-24 |
JPH02279965A (en) | 1990-11-15 |
EP0378152A2 (en) | 1990-07-18 |
EP0378152A3 (en) | 1991-02-20 |
DE59005141D1 (en) | 1994-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5233841A (en) | Method of optimising the performance of refrigerant vaporizers including improved frost control method and apparatus | |
US6854285B2 (en) | Controller and a method for controlling an expansion valve of a refrigeration system | |
US4596122A (en) | Sorption heat pump | |
US20080216500A1 (en) | System and method for controlling an air conditioner or heat pump | |
CN101925784A (en) | Indoor unit and air conditioning apparatus including the same | |
NO180603B (en) | Method of high pressure regulation in a transcritical compression cooling system and a compression cooling system for carrying out the same | |
KR960702091A (en) | Refrigerant Flow Rate Control Based on Evaporator Dryness | |
BRPI0303508B1 (en) | method for controlling a refrigerator, and a refrigerator having at least two compartments | |
KR20080081002A (en) | Flash tank cooling control | |
US5477696A (en) | Control device for absorption chiller or absorption chiller/heater | |
NO174483B (en) | Procedure for optimizing the performance of cooling devices | |
US4502289A (en) | Cold water supply system | |
US4702306A (en) | Apparatus for controlling a process variable of a flowing medium | |
JP2012163257A (en) | Evaporation load control system of dryer | |
KR20190115209A (en) | Heat Pump System and Control Method of Heat Pump System | |
CN114653321A (en) | Temperature control system utilizing primary energy for heat exchange | |
US10329961B2 (en) | Sensorless condenser regulation for power optimization for ORC systems | |
JP3323984B2 (en) | Constant temperature and constant humidity air supply device | |
CN110360724A (en) | Temperature and humidity adjusts device, control device, control method and storage medium | |
JPH0575938B2 (en) | ||
US6694762B1 (en) | Temperature-controlled parallel evaporators refrigeration system and method | |
KR950033307A (en) | Refrigerant Heating Air Conditioning Unit | |
CN112432243B (en) | A constant temperature room temperature control system based on cold source and heat source | |
JP3954446B2 (en) | Temperature / humidity control system and temperature / humidity control method | |
JPH086996B2 (en) | Cooling water control method in refrigeration system and its control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK1K | Patent expired |