NO173452B - PROCEDURE FOR PREPARING POLYPEPTIDES IN STREPTOMYCETS - Google Patents
PROCEDURE FOR PREPARING POLYPEPTIDES IN STREPTOMYCETS Download PDFInfo
- Publication number
- NO173452B NO173452B NO85851971A NO851971A NO173452B NO 173452 B NO173452 B NO 173452B NO 85851971 A NO85851971 A NO 85851971A NO 851971 A NO851971 A NO 851971A NO 173452 B NO173452 B NO 173452B
- Authority
- NO
- Norway
- Prior art keywords
- dna
- isolation
- sequence
- pst
- codes
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 16
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 12
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 11
- 108020004414 DNA Proteins 0.000 claims abstract description 45
- 229950001790 tendamistat Drugs 0.000 claims abstract description 40
- 108010037401 tendamistate Proteins 0.000 claims abstract description 40
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 34
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 26
- 238000002955 isolation Methods 0.000 claims abstract description 23
- 239000012634 fragment Substances 0.000 claims abstract description 19
- 241000187179 Streptomyces tendae Species 0.000 claims abstract description 17
- 238000002105 Southern blotting Methods 0.000 claims abstract description 13
- 150000001413 amino acids Chemical class 0.000 claims abstract description 10
- 230000029087 digestion Effects 0.000 claims abstract description 9
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 6
- KKAJSJJFBSOMGS-UHFFFAOYSA-N 3,6-diamino-10-methylacridinium chloride Chemical compound [Cl-].C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 KKAJSJJFBSOMGS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 241000187747 Streptomyces Species 0.000 claims abstract description 5
- 229940023020 acriflavine Drugs 0.000 claims abstract description 5
- DCVYRWFAMZFSDA-ZLUOBGJFSA-N Ala-Ser-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O DCVYRWFAMZFSDA-ZLUOBGJFSA-N 0.000 claims abstract description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims abstract description 4
- 238000012163 sequencing technique Methods 0.000 claims abstract description 4
- 239000013612 plasmid Substances 0.000 claims description 54
- 241000588724 Escherichia coli Species 0.000 claims description 16
- 210000004027 cell Anatomy 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 241000187398 Streptomyces lividans Species 0.000 claims description 10
- 241001655322 Streptomycetales Species 0.000 claims description 7
- 239000001963 growth medium Substances 0.000 claims description 6
- 108010087967 type I signal peptidase Proteins 0.000 claims description 3
- 210000004899 c-terminal region Anatomy 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 abstract description 5
- 238000002360 preparation method Methods 0.000 abstract description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 abstract 2
- 238000011144 upstream manufacturing Methods 0.000 abstract 2
- 239000000243 solution Substances 0.000 description 11
- 239000002609 medium Substances 0.000 description 9
- 239000013598 vector Substances 0.000 description 7
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 101100518987 Mus musculus Pax1 gene Proteins 0.000 description 5
- NSFFHOGKXHRQEW-UHFFFAOYSA-N Thiostrepton B Natural products N1C(=O)C(C)NC(=O)C(=C)NC(=O)C(C)NC(=O)C(C(C)CC)NC(C(C2=N3)O)C=CC2=C(C(C)O)C=C3C(=O)OC(C)C(C=2SC=C(N=2)C2N=3)NC(=O)C(N=4)=CSC=4C(C(C)(O)C(C)O)NC(=O)C(N=4)CSC=4C(=CC)NC(=O)C(C(C)O)NC(=O)C(N=4)=CSC=4C21CCC=3C1=NC(C(=O)NC(=C)C(=O)NC(=C)C(N)=O)=CS1 NSFFHOGKXHRQEW-UHFFFAOYSA-N 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 229930188070 thiostrepton Natural products 0.000 description 5
- NSFFHOGKXHRQEW-AIHSUZKVSA-N thiostrepton Chemical compound C([C@]12C=3SC=C(N=3)C(=O)N[C@H](C(=O)NC(/C=3SC[C@@H](N=3)C(=O)N[C@H](C=3SC=C(N=3)C(=O)N[C@H](C=3SC=C(N=3)[C@H]1N=1)[C@@H](C)OC(=O)C3=CC(=C4C=C[C@H]([C@@H](C4=N3)O)N[C@H](C(N[C@@H](C)C(=O)NC(=C)C(=O)N[C@@H](C)C(=O)N2)=O)[C@@H](C)CC)[C@H](C)O)[C@](C)(O)[C@@H](C)O)=C\C)[C@@H](C)O)CC=1C1=NC(C(=O)NC(=C)C(=O)NC(=C)C(N)=O)=CS1 NSFFHOGKXHRQEW-AIHSUZKVSA-N 0.000 description 5
- 229940063214 thiostrepton Drugs 0.000 description 5
- NSFFHOGKXHRQEW-OFMUQYBVSA-N thiostrepton A Natural products CC[C@H](C)[C@@H]1N[C@@H]2C=Cc3c(cc(nc3[C@H]2O)C(=O)O[C@H](C)[C@@H]4NC(=O)c5csc(n5)[C@@H](NC(=O)[C@H]6CSC(=N6)C(=CC)NC(=O)[C@@H](NC(=O)c7csc(n7)[C@]8(CCC(=N[C@@H]8c9csc4n9)c%10nc(cs%10)C(=O)NC(=C)C(=O)NC(=C)C(=O)N)NC(=O)[C@H](C)NC(=O)C(=C)NC(=O)[C@H](C)NC1=O)[C@@H](C)O)[C@](C)(O)[C@@H](C)O)[C@H](C)O NSFFHOGKXHRQEW-OFMUQYBVSA-N 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 241000828254 Streptomyces lividans TK24 Species 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 241001131785 Escherichia coli HB101 Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 3
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 3
- 229960005542 ethidium bromide Drugs 0.000 description 3
- 210000001938 protoplast Anatomy 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000937 inactivator Effects 0.000 description 2
- 229940038580 oat bran Drugs 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 108010019160 Pancreatin Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000948169 Streptomyces viridosporus Species 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PEJLNXHANOHNSU-UHFFFAOYSA-N acridine-3,6-diamine;10-methylacridin-10-ium-3,6-diamine;chloride Chemical compound [Cl-].C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21.C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 PEJLNXHANOHNSU-UHFFFAOYSA-N 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 238000007169 ligase reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229940055695 pancreatin Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229940093429 polyethylene glycol 6000 Drugs 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
- C12N15/625—DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/36—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/76—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Detergent Compositions (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av polypeptider fra genetisk kodbare aminosyrer. The present invention relates to a method for producing polypeptides from genetically codeable amino acids.
I den tyske patentsøknad P 33 31 860.3 ble det allerede foreslått en fremgangsmåte til fremstilling av tendamistat ved fermentering av Streptomyces tendae, i det fremgangsmåten er karakterisert ved at tendamistat-produserende S.tendae-stammer anvendes og behandles med subletale doser av Acriflavin. Fra således dannede stammer ble det isolert et DNA-fragment med genet for tendamistat, nemlig et 2,3 kb-Pst I-fragment. Vedinnbygging av dette fragmentet i Pst I kuttede pBR 322 kunne dette DNA amplifiseres i E. coli og igjen isoleres. In the German patent application P 33 31 860.3, a method for the production of tendamistat by fermentation of Streptomyces tendae was already proposed, in which the method is characterized by the use of tendamistat-producing S.tendae strains and treatment with sublethal doses of Acriflavin. From strains thus formed, a DNA fragment with the gene for tendamistat, namely a 2.3 kb Pst I fragment, was isolated. By incorporating this fragment into Pst I-cut pBR 322, this DNA could be amplified in E. coli and again isolated.
Det ble nå funnet at på dette 2,3 kb-fragment umiddelbart før strukturgenet for tendamistat er det kodet et signålpeptid (prepeptid) med formel I It was now found that on this 2.3 kb fragment immediately before the structural gene for tendamistat, a signal peptide (prepeptide) of formula I is encoded
i det X betyr et hydrofobt området som omfatter 17-20 aminosyre. in which X means a hydrophobic region comprising 17-20 amino acids.
Det ble videre funnet at dette signålpeptid er i stand til å føre ut også andre peptider fra vertscellene som inneholder en tilsvarende signalpeptidase. It was further found that this signal peptide is also able to export other peptides from the host cells which contain a corresponding signal peptidase.
Foreliggende oppfinnelse er følgelig kjennetegnet ved at man i en vertscelle fra arten Streptomyces uttrykker en genstruktur, som i leserammen med strukturgenet for det ønskede polypetidet, inneholder DNA-sekvensen B til et prepeptid, oppnåelig fra tendamistat-produserende Streptomyces tendae-stammen, som fortrinnsvis er blitt behandlet med subletale doser av akriflavin, gjennom isolering av total-DNA, spaltning med Pst I, Southern-hybridisering med DNA-sekvens A isolering av 2,3 kb-Pst I-fragmentet, spaltning med BamHI, Southern-hybridisering med sekvens A, isolering av 0,94 kb-Pst-I-BamHI-subfragmentene, spaltning med Sau 3a, Southern-hybridisering med sekvens A, isolering av 0,525 kb-BamHI-Sau 3a-subfragmentene og sekvensering av DNA, og The present invention is therefore characterized by expressing in a host cell from the species Streptomyces a gene structure which, in the reading frame with the structural gene for the desired polypeptide, contains the DNA sequence B of a prepeptide, obtainable from the tendamistat-producing Streptomyces tendae strain, which is preferably treated with sublethal doses of acriflavine, through isolation of total DNA, digestion with Pst I, Southern hybridization with DNA sequence A isolation of the 2.3 kb Pst I fragment, digestion with BamHI, Southern hybridization with sequence A , isolation of the 0.94 kb-Pst-I-BamHI subfragments, digestion with Sau 3a, Southern hybridization with sequence A, isolation of the 0.525 kb-BamHI-Sau 3a subfragments and sequencing of the DNA, and
a) ligger umiddelbart før strukturgenet, a) lies immediately before the structural gene,
b) koder ved aminoterminus for Met-Arg-Val-Arg-Ala-Leu-Arg, b) codes at the amino terminus for Met-Arg-Val-Arg-Ala-Leu-Arg,
c) koder ved karboksy-terminus for Ala-Ser-Ala c) codes at the carboxy terminus for Ala-Ser-Ala
d) koder i midten for et hydrofobt område X, som omfatter 10 d) codes in the middle for a hydrophobic region X, comprising 10
til 25 aminosyrer. to 25 amino acids.
Denne DNA-sekvens betegnes i det følgende som sekvens B resp. signålpeptid. This DNA sequence is referred to in the following as sequence B or signal peptide.
De ved sammenligning med standardmarkører fastslåtte kb-tallverdier har den vanlige nøyaktighet. The kb number values determined by comparison with standard markers have the usual accuracy.
I stedet for sekvensen A kan det til Southern-hybridisering velges en ønskelig, til tendamistagen eller mottråd kompletaer sekvens. Instead of the sequence A, a desirable sequence can be selected for the Southern hybridization, for the tendency stage or the antisense complementary sequence.
For de forskjellige trinn til karakterisering av DNA-sekvens B innbringes i praksis respektivt DNA i en egnet vektor, denne transformeres i en vertscelle, amplifiseres der ved kolonihybridisering med sekvens A fastslås transformantene og DNA reisoleres. Disse trinn er i og for seg kjent. For the various steps to characterize DNA sequence B, in practice respectively DNA is brought into a suitable vector, this is transformed in a host cell, amplified where by colony hybridization with sequence A the transformants are determined and the DNA is reisolated. These steps are known per se.
DNA-sekvens C, hvis kodende tråd er nedlagt i vedhenget, viser nukleotidfølge av tendamistat-strukturen fra S. tendae. DNA sequence C, whose coding strand is laid down in the appendage, shows the nucleotide sequence of the tendamistat structure from S. tendae.
De nevnte genstrukturer inneholder således DNA-sekvensen B i leseramme med et strukturgen, som eksempelvis koder for tendamistat, og fortrinnsvis DNA-sekvensen C. The aforementioned gene structures thus contain the DNA sequence B in reading frame with a structural gene, which for example codes for tendamistat, and preferably the DNA sequence C.
DNA-sekvens B for prepeptidet er isolert fra S. tendae. Plasmider som er karakterisert ved DNA-sekvens B, i leseramme med et strukturgen, som eksempelvis koder for tendamistat, spesielt for DNA-sekvensen C, kan inneholde en i E. coli virksom replikon og er da deretter i stand til å amplifisere og også å uttrykke DNA i E. coli. DNA sequence B for the prepeptide is isolated from S. tendae. Plasmids which are characterized by DNA sequence B, in reading frame with a structural gene, which for example codes for tendamistat, especially for DNA sequence C, can contain a replicon active in E. coli and are then able to amplify and also to express DNA in E. coli.
Foretrukne plasmider inneholder i tillegg et i streptomyceter virksomt replikon. Dersom en streptomycet transformeres med et slikt plasmid så blir den i stand til å uttrykke det ved strukturgenet bestemte peptid i form av et propeptid med formel II, som deretter innen rammen av prosessen spaltes ved hjelp av en signalpeptidase og utskiller det ønskede peptid i kulturmediet. Preferred plasmids additionally contain a replicon active in streptomycetes. If a streptomycete is transformed with such a plasmid, it becomes able to express the peptide determined by the structural gene in the form of a propeptide of formula II, which is then cleaved within the framework of the process with the help of a signal peptidase and secretes the desired peptide into the culture medium.
Fordelaktig er også såkalte "Shuttle"-plasmider, som så vel inneholder et i E. coli som også et i strptomyceter virksomt replikon. Disse "Shuttle"-vektorer kan amplifiseres i E. coli og etter reisolering transformeres i streptomyceter, hvor deretter produksjonen av det øasekde polypeptid foregår. Also advantageous are so-called "Shuttle" plasmids, which contain a replicon active in E. coli as well as in Streptomycetes. These "Shuttle" vectors can be amplified in E. coli and, after re-isolation, transformed into streptomycetes, where the production of the island-secreted polypeptide then takes place.
Mens det for gram-negative bakterier finnes en mengde vektorer, er det for gram-positive bakterier bare beskrevet få vektorer, vektorer for bakterier av typen S. tendae er hittil ikke kjent. Oppfinnelsen muliggjør således en tilgang for utnyttelse av S. tendae som vertsorganisme. While for gram-negative bacteria there are a number of vectors, for gram-positive bacteria only a few vectors have been described, vectors for bacteria of the type S. tendae are not yet known. The invention thus enables an approach for the utilization of S. tendae as a host organism.
En spesiell fordel ved oppfinnelsen ligger i at transformerte Streptomyces-stammer, spesielt S. lividans-stamme, spordanner optimalt, dvs. innholdet av det rekombinante plasmid påvirker ikke denne stamme i dens generative fase. De transformerte organismer er således også egnet for ytterligere stamme-forbedringer, eksempelvis til fremstilling og seleksjon av metaboliske mutanter, ved hvis fremstilling det arbeides med sporer. _ A particular advantage of the invention lies in the fact that transformed Streptomyces strains, especially the S. lividans strain, form spores optimally, i.e. the content of the recombinant plasmid does not affect this strain in its generative phase. The transformed organisms are thus also suitable for further strain improvements, for example for the production and selection of metabolic mutants, in the production of which spores are used. _
I forhold til de kjente stammer av S. tendae danner de transformerte stammer, spesielt S. lividans, intet melamin. Adskillelse derav bortfaller derfor og dette letter isoleringen av det ønskede peptid, eksempelvis tendamistat, og hindrer utbyttetap. Compared to the known strains of S. tendae, the transformed strains, especially S. lividans, produce no melamine. Separation thereof is therefore omitted and this facilitates the isolation of the desired peptide, for example tendamistat, and prevents loss of yield.
Et ytterligere fortrinn ved oppfinnelsen ligger i at fremmedgener også uttrykkes i S. lividans og de tilsvarende polypeptider utskilles, hvilket likeledes byr mangfoldige muligheter til stammeforbedring og også modifisering av det således fremstilte polypeptid. A further advantage of the invention lies in the fact that foreign genes are also expressed in S. lividans and the corresponding polypeptides are secreted, which likewise offers multiple opportunities for strain improvement and also modification of the polypeptide thus produced.
Ifølge oppfinnelsen kan imidlertid også andre streptomyces-typer transformeres, eksempelvis S. ghanaensis eller aureofaciens. Transformeres plasmidfrie stammer, som er i stand til å syntetisere et spesifikt signålpeptid med hybridplasmider så fåes stabile transformanter, som uttrykker og utskiller det kodete peptid. According to the invention, however, other streptomyces types can also be transformed, for example S. ghanaensis or aureofaciens. If plasmid-free strains capable of synthesizing a specific signal peptide are transformed with hybrid plasmids, stable transformants are obtained, which express and secrete the coded peptide.
Spesielt foretrukkede utførelser av oppfinnelsen er forklart nærmere i følgende eksempler. Postangivelsene refererer seg her til vekt, hvis intet annet er bemerket. Figurene som viser hybridplasmidene viser snittstedene i riktig målestokk. Particularly preferred embodiments of the invention are explained in more detail in the following examples. The postal information here refers to weight, if nothing else is noted. The figures showing the hybrid plasmids show the cut sites to the correct scale.
I eksemplene ble det anvendt følgende litteraturkjente vektorer: Enkel ttråd-f agene M 13 mp 8 og M 13 mp 9: Messing et al., Gene 19 (1982) 269, pUC 8: Vierra et al., Gene 19 In the examples, the following vectors known from the literature were used: Single-stranded phage M 13 mp 8 and M 13 mp 9: Messing et al., Gene 19 (1982) 269, pUC 8: Vierra et al., Gene 19
(1982) 259, pAC 177 og 184: Chang et al., J. Bacteriology 134 (1982) 259, pAC 177 and 184: Chang et al., J. Bacteriology 134
(1978) 1141, pIJ 102 og 350, Kieser et al., Mol. Gen. Genet. 185 (1982) 223. (1978) 1141, pIJ 102 and 350, Kieser et al., Mol. Gen. The gene. 185 (1982) 223.
Oppbevaring av S. tendae er omtalt i US-patent 4.226.764. Isoleringen av tendamistatgen kan prinsippielt foregå fra enhver tendamistat-produserende stamme. Spesielt fordelaktig er det imidlertid å gå fram ifølge tysk søknad P 33 31 860.3, i hvis eksempel 3 det er omtalt isolering av DNA. Dette isolerte samlede DNA er utgangsmaterialet for følgende eksempel 1. Storage of S. tendae is discussed in US patent 4,226,764. The isolation of the tendamistat gene can in principle take place from any tendamistat-producing strain. However, it is particularly advantageous to proceed according to German application P 33 31 860.3, in whose example 3 the isolation of DNA is discussed. This isolated pooled DNA is the starting material for the following Example 1.
Eksempel 1 Example 1
5 jjg DNA fra S. tendae fordøyes komplett med restriksjons-enzym Pst I og overføres etter separering på en 0, 8% agarosegel til nitrocellulosefilter (Southern-Transfer). Filteret med det bundede, denaturerte DNA forhybridiseres 6 timer i 5 ml forhybridiseringsmedium (0,6 M NaCl, 0,06 M Na_EDTA, 0, 1% natriumdodecylsulfatoppløsning, 100 pg/ml ultralydbehandlet kalvetymus-DNA og 4-ganger konsentrert Denhardt-oppløsning). Deretter behandles igjen med 5 ml av forhybridiseringsmediet, hvortil imidlertid er tilsatt 500.000 cpm/ml radioaktivt merket DNA. Denne radioaktivt merkede prøve fåes som føler: DNA-sekvensen A syntetiseres kjemisk etter fosfit-fermgangs-måten. Den inneholder 20 nukleotider (molekylvekt ca. 13.000) og er komplementær til putativ DNA-sekvens for tendamistat, avledet av aminosyresekvensen av tendamistat fra aminosyre 37 av tendamistat under bruk av den av E. coli foretrukkede triplett. Denne DNA-sekvens A merkes radioaktivt ved 5'-enden ved hjelp av \/<32>P-ATP og nukleotidkinase. 5 µg DNA from S. tendae is completely digested with restriction enzyme Pst I and transferred after separation on a 0.8% agarose gel to a nitrocellulose filter (Southern-Transfer). The filter with the bound, denatured DNA is prehybridized for 6 hours in 5 ml prehybridization medium (0.6 M NaCl, 0.06 M Na_EDTA, 0.1% sodium dodecyl sulfate solution, 100 pg/ml ultrasound-treated calf thymus DNA and 4-fold concentrated Denhardt solution) . It is then treated again with 5 ml of the pre-hybridization medium, to which, however, 500,000 cpm/ml radioactively labeled DNA has been added. This radioactively labeled sample is obtained as a probe: the DNA sequence A is chemically synthesized according to the phosphite process. It contains 20 nucleotides (molecular weight about 13,000) and is complementary to the putative DNA sequence for tendamistat, derived from the amino acid sequence of tendamistat from amino acid 37 of tendamistat using the E. coli preferred triplet. This DNA sequence A is radioactively labeled at the 5' end by means of \/<32>P-ATP and nucleotide kinase.
Til hybridisering av denne radioaktive prøve til komplementær DNA-sekvens i det samlede DNA lar man blandingen stå 24 timer ved 37°C. Deretter fjernes det ikke-bundede radioaktive DNA og filteret vaskes ved 37° C 5 ganger respektivt 30 minutter med hver gang 200 ml hybridiseringsmedium og autoradiograferes deretter. Etter 24 timers eksponering viser hybridiseringssignalene at genet ligger på et 2,3 kb Pst I-fragment. Dette fragment utvinnes fra en preparativ agarosegel, ved elektroeluering av et til denne fragmentstørrelse tilsvarende påsnitthvorpå det Pstl-frdøyde samlede DNA ble oppdelt. Det eluerte DNA klones i Pst I-snittstedet av plasmidet pUC 8. For hybridization of this radioactive sample to the complementary DNA sequence in the total DNA, the mixture is allowed to stand for 24 hours at 37°C. The unbound radioactive DNA is then removed and the filter is washed at 37° C 5 times for 30 minutes each time with 200 ml of hybridization medium and then autoradiographed. After 24 hours of exposure, the hybridization signals show that the gene is located on a 2.3 kb Pst I fragment. This fragment is recovered from a preparative agarose gel, by electroelution of a section corresponding to this fragment size, on which the PstI-digested total DNA was divided. The eluted DNA is cloned into the Pst I cut site of the plasmid pUC 8.
Disse hybridplasmider transformeres og amplifiseres i E. coli JM 103. Påvisning av de kloner som har det søkte innskuddet med tendamistat-genet føres gjennom koloni-hybridisering under anvendelse av den radioaktive DNA-prøve A. De således dannede hybridplasmider pKAI I a resp. 1 b er vist på fig. 1 a og 1 b. These hybrid plasmids are transformed and amplified in E. coli JM 103. Detection of the clones that have the sought-after insert with the tendamistat gene is carried out by colony hybridization using the radioactive DNA sample A. The thus formed hybrid plasmids pKAI I a resp. 1 b is shown in fig. 1 a and 1 b.
Ved ytterligere Southern-hybridiseringer mot isolert 2,3 kb Pst I-fragment og dets subf ragmenter lar det seg nøyaktig fastslå lokalisering av genet (fig. 2a til 2c). By further Southern hybridizations against the isolated 2.3 kb Pst I fragment and its subfragments, the exact location of the gene can be determined (Fig. 2a to 2c).
Eksempel 2 Example 2
I de enkelte snittsteder av plasmid pIJ 102 for Pst I klones 2,3 kb Pst I-fragment fra S. tendae. De således dannede hybridplasmider pAX 1 a og 1 b, som adskiller seg ved innskuddets orientering, gjør etter transformasjonen i S. lividans-stammen denne i stand til produksjon av tendamistat. In the individual cut sites of plasmid pIJ 102 for Pst I, a 2.3 kb Pst I fragment from S. tendae is cloned. The thus formed hybrid plasmids pAX 1 a and 1 b, which differ in the orientation of the insert, enable the S. lividans strain to produce tendamistat after transformation.
Fig. 3 viser plasmidet pAX 1 a. Fig. 3 shows the plasmid pAX 1 a.
Eksempel 3 Example 3
Den kommersielle stammen S. lividans TK 24 (John Innes Institute, Norwich, England) overføres på kjent måte i protoplaster og 1 jjg hybridplasmid pAX 1 a blandes med 10^ protoplaster under tilsetning av 2056 polyetylenglykol 6000. De transformerte protoplaster dyrkes på regenerasjonsmedier R2YE (Thompson et al., NAture 286 (1980) 525) ved 30°C i 5 dager. The commercial strain S. lividans TK 24 (John Innes Institute, Norwich, England) is transferred in a known manner in protoplasts and 1 jjg hybrid plasmid pAX 1 a is mixed with 10^ protoplasts while adding 2056 polyethylene glycol 6000. The transformed protoplasts are grown on regeneration media R2YE ( Thompson et al., Nature 286 (1980) 525) at 30°C for 5 days.
Påvisning av den ekstracellulære amylase-inaktivator ble dannet, kan foregå ved hjelp av en plateprøve. Detection of the extracellular amylase inactivator was formed can be done with the help of a plate test.
De regenererte kolonier overhelles med 5 ml av en 0,4-1,0 mg/ml pankreatinholdig vandig oppløsning og inkuberes 1 time ved 37°C. Oppløsningen fjernes deretter og erstattes med 5 ml av en 2%- ig stivelsesagar. Etter 2 timers inkubasjon ved 37°C overhelles platene med 5 ml av en jodkaliumjodid-oppløsning til fremkalling. Kolonier med en blå opphopning angir at klonen syntetiserer og ekstreterer tendamistat. The regenerated colonies are poured over with 5 ml of a 0.4-1.0 mg/ml pancreatin-containing aqueous solution and incubated for 1 hour at 37°C. The solution is then removed and replaced with 5 ml of a 2% starch agar. After 2 hours of incubation at 37°C, the plates are poured over with 5 ml of an iodine-potassium iodide solution for development. Colonies with a blue accumulation indicate that the clone synthesizes and extracts tendamistat.
Til kontroll kan det av tendamistat-produserende godt sporulerende stammer isoleres plasmid-DNA og kartlegges. Alle tensdamistat-produserende stammer har det anvendte plasmid-DNA. As a control, plasmid DNA can be isolated from tendamistat-producing well-sporulating strains and mapped. All tensdamistat-producing strains have the plasmid DNA used.
Eksempel 4 Example 4
Man går fram ifølge eksempel 2, anvender imidlertid plasmidet pIJ 350, som Streptomyceter som seleksjonsmarkør har et tiostrepton-resistensgen. Man får således hybridplasmid pAX 350 a og b (som adskiller seg ved orienteringen av insersjonen). Fig. 4 viser plasmidet PAX 350 a. One proceeds according to example 2, but uses the plasmid pIJ 350, which Streptomyceter has as a selection marker a thiostrepton resistance gene. Hybrid plasmid pAX 350 a and b are thus obtained (which differ in the orientation of the insertion). Fig. 4 shows the plasmid PAX 350 a.
Etter transformasjon ifølge eksempel 3 selekteres på minimalmedium (Hopwood, Bacteriological Reviews 31 (1967) 373-403 i nærvær av 50 jig/ml tiostrepton resistente kloner. Disse undersøkes enten direkte på minimalmedium eller etter omplating på ikke selektiv R2YE-agar for tendamistat-produksjon. After transformation according to example 3, clones are selected on minimal medium (Hopwood, Bacteriological Reviews 31 (1967) 373-403 in the presence of 50 µg/ml thiostrepton resistant clones. These are examined either directly on minimal medium or after plating on non-selective R2YE agar for tendamistat production .
Eksempel 5 Example 5
Hybridplasmider som inneholder 2,3 kb Pst I-fragment og foruten Streptomycet-replikon også en E. coli-replikon, har som "Shuttle"-vektorer er rekke fordeler: På grunn av E. colireplikonet og i E. coli virksomme resistentmarkører kan de godt amplifiseres i disse organismer. Etter isolering og transformering i Streptomyceter, spesielt S. lividans, viser de en høy stabilitet. Som følge av deres i Streptomyceter virksomme seleksjonsmarkører og av Streptomyceter-replikonet kan de også godt amplifiseres og uttrykkes i disse organismer og sekreterer tendamistat. Hybrid plasmids containing a 2.3 kb Pst I fragment and, in addition to the Streptomycet replicon also an E. coli replicon, have a number of advantages as "Shuttle" vectors: Due to the E. coli replicon and in E. coli active resistance markers, they can well amplified in these organisms. After isolation and transformation in Streptomyceters, especially S. lividans, they show a high stability. As a result of their selection markers active in Streptomyceter and of the Streptomyceter replicon, they can also be well amplified and expressed in these organisms and secrete tendamistat.
Plasmidet pAC 184 fordøyes komplett med restriksjonsenzymet Sal I og enzymet fjernes ved fenol-kloroform-ekstrahering. De overhengende 5'-ender oppfylles i nærvær av ATP, CTP, GTP og TTP ved hjelp av enzymet DNA-polymerase (Klenow-fragment). På de butte ender (blunt ends) ligeres i en 1igase-reaksjon ved 16°C en Pst I-linker av strukturen The plasmid pAC 184 is completely digested with the restriction enzyme Sal I and the enzyme is removed by phenol-chloroform extraction. The overhanging 5'-ends are fulfilled in the presence of ATP, CTP, GTP and TTP by means of the enzyme DNA polymerase (Klenow fragment). On the blunt ends (blunt ends) a Pst I linker of the structure is ligated in a ligase reaction at 16°C
(2 jjg linker på 0,4 jjg DNA). DNA ekstraheres med fenolkloro-form og etter felling fordøyes med enzymet Pst I til utvinning av ligerbare Pst I-ender. DNA defosforyleres deretter, ekstraheres igjen med fenol-kloroform og ligeres med partielt Pst I-fordøyet plasmid pAX 1 a. Ligeringsblandingen transformeres i E. coli (HB 101 resp. MC 1061). Mot kloramfenicol resistente kloner blir tatt ut fra platen og DNA isoleres. S. lividans TK 24 transformeres med 1-2 pg DNA og undersøkes på tendamistat-produksjon. (2 µg linker on 0.4 µg DNA). DNA is extracted with phenol chloroform and, after precipitation, is digested with the enzyme Pst I to extract ligable Pst I ends. The DNA is then dephosphorylated, extracted again with phenol-chloroform and ligated with partially Pst I-digested plasmid pAX 1 a. The ligation mixture is transformed into E. coli (HB 101 resp. MC 1061). Clones resistant to chloramphenicol are removed from the plate and DNA is isolated. S. lividans TK 24 is transformed with 1-2 pg DNA and examined for tendamistat production.
I tendamistat-prøven positivt reagerende kloner isoleres, plasmid-DNA isoleres ved alkalisk Schnell-lyse og transformeres i E. coli HB 101 resp. MC 1061. Etter amplifisering reisolerte plasmider adskiller seg ikke fra de fra S. lividansstammer isolerte plasmider. Alt etter orientering av insersjonen, som har tendamistatgenet, betegnes de rekombinante plasmider som pSA 2 a eller b (fig. 5 a og b). In the tendamistat sample, positively reacting clones are isolated, plasmid DNA is isolated by alkaline Schnell lysis and transformed into E. coli HB 101 resp. MC 1061. Plasmids reisolated after amplification do not differ from those isolated from S. lividans strains. Depending on the orientation of the insertion, which has the tendamistat gene, the recombinant plasmids are designated as pSA 2 a or b (Fig. 5 a and b).
Eksempel 6 Example 6
Går man fram ifølge eksempel 5, imidlertid ut fra plasmid pAX 350 a, selektert i E. coli på kloramfenicol-resistens og i S. lividans på tiostrepton-resistens og tendamistat-produksjon, så får man plasmidene pSA 351 a resp. b (fig. 6 a/b). If you proceed according to example 5, however, starting from plasmid pAX 350 a, selected in E. coli for chloramphenicol resistance and in S. lividans for thiostrepton resistance and tendamistat production, you get the plasmids pSA 351 a resp. b (fig. 6 a/b).
Eksempel 7 Example 7
Går man fram ifølge eksempel 5, imidlertid i stedet for plasmidet pAC 184 ut fra pAC 177, så får man plasmidene pSA 3 resp. b (fig. 7 a/b). If you proceed according to example 5, however, instead of the plasmid pAC 184 from pAC 177, you get the plasmids pSA 3 resp. b (Fig. 7 a/b).
Hertil snittes plasmidet pAX 1 a partielt med PST og enzymet varmeinaktiveres ved 15 minutters oppvarming ved 68°C. DNA ligeres i det med Pst I snittede defosforylerte og deprotein-erte plasmid pAC 177. Etter transformasjon av E. coli HB 101 resp. 1061 taes mot kanamycin resistente kloner ut fra platen, plasmid-DNA isoleres og S. lividans TK 24 transformeres med 1-2 >jg av denne DNA. Tendamistat-produserende kloner seleksjoneres og karalteriserer plasmidet. For this, the plasmid pAX 1a is partially cut with PST and the enzyme is heat-inactivated by heating for 15 minutes at 68°C. DNA is ligated into the Pst I-cut dephosphorylated and deproteinized plasmid pAC 177. After transformation of E. coli HB 101 resp. 1061 are taken against kanamycin-resistant clones from the plate, plasmid DNA is isolated and S. lividans TK 24 is transformed with 1-2 µg of this DNA. Tendamistat-producing clones are selected and charalterize the plasmid.
Eksempel 8 Example 8
Går man fram ifølge eksempel 7, anvender imidlertid i stedet for plasmidet pAX 1 plasmidet pAX 350 a og selekterer S. lividans på tiostrepton-resistens, så får man plasmidene pSA 352 a resp. b (fig. 8 a/b). If you proceed according to example 7, however, instead of the plasmid pAX 1, you use the plasmid pAX 350 a and select S. lividans for thiostrepton resistance, then you get the plasmids pSA 352 a resp. b (fig. 8 a/b).
Eksempel 9 Example 9
Som det fremgår av fig. 2, er det for tendamistat og signal-sekvenser kodende gen ~ 0,3 kb stort. De i de ovenfor omtalte eksempler anvendte 2,3 kb-fragment kan altså i forkortet form anvendes til konstruksjon av hybridplasmider som bevirker produksjon av tendamistat: Plasmidet pKAI 1 a fordøyes med Sal I og religeres. Man får således det rundt ca. 750 basepar forkortede plasmid pKAI 2. Dette klones, isoleres og snittes med Pst I. DNA defosforyleres med alkalisk fosfatase fra kalvetarm og deproteini-seres med fenol-kloroform. As can be seen from fig. 2, it is for tendamistat and signal sequences coding gene ~ 0.3 kb large. The 2.3 kb fragment used in the above-mentioned examples can thus be used in abbreviated form for the construction of hybrid plasmids which effect the production of tendamistat: The plasmid pKAI 1 a is digested with Sal I and religated. You thus get around approx. 750 base pair shortened plasmid pKAI 2. This is cloned, isolated and cut with Pst I. DNA is dephosphorylated with alkaline phosphatase from calf intestine and deproteinized with phenol-chloroform.
Plasmidet pIJ 102 snittes komplett med Pst I og fragmentene ligeres etter varmeinaktivering av enzymet i Pst I-snittstedene av pKAI 2. Ligeringsblandingen transformeres i E. coli HP 101 eller MC 10611. Plasmid-DNA fra ampicillin resistente kloner isoleres ved alkalisk Schnell-Lyse-fremgangsmåte og S. lividans TK 24 transformeres med 1-2 pg av dette DNA. Man selekterer på tendamistat-produksjon og isolerer plasmid-DNA fra denne klonen ved alkalisk Schnell-Lyse. Ved tilbaketransformering i E. coli HB 101 resp. MC 1061 og etter isolering av plasmid-DNA fra transformerte E. coli-stammer karakteriserer man plasmid pSA 1 ved restrik-sjonsanalyse (fig. 9). Plasmidet viser ingen forskjell til de fra S. 1 ividans-stammer isolerte plasmider, imidlertid er DNA-opparbeidelsen fra E. coli mer produktiv og mulig i kortere tid. The plasmid pIJ 102 is completely cut with Pst I and the fragments are ligated after heat inactivation of the enzyme in the Pst I cut sites of pKAI 2. The ligation mixture is transformed into E. coli HP 101 or MC 10611. Plasmid DNA from ampicillin-resistant clones is isolated by alkaline Schnell-Lyse method and S. lividans TK 24 is transformed with 1-2 pg of this DNA. One selects for tendamistat production and isolates plasmid DNA from this clone by alkaline Schnell-Lyse. By back transformation in E. coli HB 101 resp. MC 1061 and after isolation of plasmid DNA from transformed E. coli strains, plasmid pSA 1 is characterized by restriction analysis (Fig. 9). The plasmid shows no difference to the plasmids isolated from S. 1 ividans strains, however, the DNA processing from E. coli is more productive and possible in a shorter time.
Eksempel 10 Example 10
Går man fram ifølge eksempel 9, anvender imidlertid i stedet for plasmidet pIJ 102 plasmidet pIJ 350, idet det kan selekteres i S. lividans da i tillegg etter tiostrepton-resistens, så får man plasmidene pSA 350 a resp. b. Fig. 10 viser plasmidet pSA 350 a. Dette plasmid fører i ryste-kulturer til høyere utbytter av tendamistat enn plasmidet pSA 350 b, som inneholder insersjonen med tendamistat-genet i omvendt orientering. Derimot har minskningen av insersjonen til 1,5 kb ingen tydelig innvirkning på produktdannelsen. If you proceed according to example 9, however, instead of the plasmid pIJ 102, the plasmid pIJ 350 is used, since it can be selected in S. lividans then additionally for thiostrepton resistance, then you get the plasmids pSA 350 a resp. b. Fig. 10 shows the plasmid pSA 350 a. This plasmid leads in shaking cultures to higher yields of tendamistat than the plasmid pSA 350 b, which contains the insertion with the tendamistat gene in reverse orientation. In contrast, reducing the insertion to 1.5 kb has no clear effect on product formation.
Eksempel 11 Example 11
Til fastslåelse av struktur og nukleotidsekvens av tendamistatgenet ble 0,94 kb Pst I-Bam HI-subfragment (fig. 1 a og b) samt 295 bp Sau 3a-Bam HI-subfragment (fig. 2 c) klonet i enkeltstrengfagene M 13 mp 8 og M 13 mp. 9. Som primer for dideoksy-sekvensreaksjonen tjente de 20 nukleotider omfattende DNA-sekvens A samt en kommersielt oppnåelig 15 bp-primer (Bethesda Research Laboratories GmbH., Neu-Isenburg). Det ble fastslått DNA-sekvens C. To determine the structure and nucleotide sequence of the tendamistat gene, the 0.94 kb Pst I-Bam HI subfragment (Fig. 1 a and b) as well as the 295 bp Sau 3a-Bam HI subfragment (Fig. 2 c) were cloned into the single-stranded phages M 13 mp 8 and M 13 mp. 9. As a primer for the dideoxy sequence reaction, they served 20 nucleotides comprising DNA sequence A as well as a commercially available 15 bp primer (Bethesda Research Laboratories GmbH., Neu-Isenburg). The DNA sequence was determined to be C.
Eksempel 12 Example 12
Før strukturgenet av tendamistat befinner det seg på DNA en åpen leseramme inntil startkodon ATG (Met) for et protein, som forlagrer den aminoterminale ende av tendamistat. Dette signålpeptid tilsvarer DNA-sekvens B. Before the structural gene of tendamistat there is an open reading frame on the DNA until the start codon ATG (Met) for a protein, which stores the amino-terminal end of tendamistat. This signal peptide corresponds to DNA sequence B.
Tillegg: Addendum:
DNA-sekvens C (kodende streng) DNA sequence C (coding strand)
Eksempel 1 og 3 fra tysk søknad P 33 31 860.3: Examples 1 and 3 from German application P 33 31 860.3:
Eksempel 1 Example 1
Mutasjonsfremgangsmåte: Ca. 0,25 cm<2> sporet mycel av stammen DSM 2727, som dyrkes på havrefnokkagar (EP-A 49 847), overpodes i 100 ml Erlenmeyer-kolber, som er fylt med 25 ml av følgende kulturmedium: mediet autoklaveres 30 minutter ved 121°C og 1 bar, pH-verdien utgjør 7,0. Podningskolbene inkuberes 2 dager ved 30° C på en rystemaskin. Deretter overpodes 2 ml av den vaskede forkultur i 20 ml hovedkulturmedium, som befinner seg i 100 ml Erlenmeyer-kolber (EP-A 49 847): Mutation procedure: Approx. 0.25 cm<2> sporulated mycelium of the strain DSM 2727, which is grown on oat bran agar (EP-A 49 847), is inoculated into a 100 ml Erlenmeyer flask, which is filled with 25 ml of the following culture medium: the medium is autoclaved for 30 minutes at 121 °C and 1 bar, the pH value is 7.0. The inoculation flasks are incubated for 2 days at 30° C on a shaking machine. Then 2 ml of the washed pre-culture is inoculated into 20 ml of the main culture medium, which is in a 100 ml Erlenmeyer flask (EP-A 49 847):
Mediets pH-verdi utgjør etter autoklaveringen 7,6. After autoclaving, the medium's pH value is 7.6.
Til dette medium settes acriflavin i en konsentrasjon på 10-25 pg/ml som mutagent stoff. Kulturen rystes i 5 dager ved 28°C og 220 o/min. Deretter sentrifugeres kulturoppløsningen (1.300 g, 5 minutter) og cellepellet vaskes i hovedkulturmedium. De vaskede celler fragmenteres i en glass-homogenisator og utplateres på agarplater i følgende medium: Acriflavine is added to this medium in a concentration of 10-25 pg/ml as a mutagenic substance. The culture is shaken for 5 days at 28°C and 220 rpm. The culture solution is then centrifuged (1,300 g, 5 minutes) and the cell pellet is washed in the main culture medium. The washed cells are fragmented in a glass homogenizer and plated on agar plates in the following medium:
Oppløsningens pH-verdi utgjør 7,1 (autoklaveringsbetingelser som oevnfor). The solution's pH value is 7.1 (autoclaving conditions as above).
Platene dyrkes 5 dager ved 28°C og enkeltkolonier overpodes i skrårør med havrefnokkagar. Disse dyrkes som omtalt inntil mycelet er forsporet. Det forsporede mycel formeres som omtalt ovenfor i for- og hovedkulturen og kulturfiltratet undersøkes etter 5 dagers hovedkultur på innholdet av tendamistat (sammenlign EP-A 39 847). På denne måte kan stammene 1-9353, 1-9362, 1-9417, 1-9418 selekteres i sin vekstperiode under de omtalte betingelser produserende ca. 90.000-100.000 IE tendamistat/1 kulturoppløsning, tilsvarende 1,5-1,8 g inaktivator/1. The plates are grown for 5 days at 28°C and single colonies are inoculated into slanted tubes with oat bran agar. These are cultivated as described until the mycelium is pre-spurred. The pre-tracked mycelium is propagated as mentioned above in the pre- and main culture and the culture filtrate is examined after 5 days of main culture for the content of tendamistat (compare EP-A 39 847). In this way, strains 1-9353, 1-9362, 1-9417, 1-9418 can be selected during their growth period under the mentioned conditions producing approx. 90,000-100,000 IU tendamistat/1 culture solution, corresponding to 1.5-1.8 g inactivator/1.
Eksempel 3 Example 3
Isolering av deoksyribonukleotidsyre fra S. tendae og dens molekylærbiologiske karakterisering. Isolation of deoxyribonucleotide acid from S. tendae and its molecular biological characterization.
Oppdrett av cellene foregikk tilsvarende eksempel 1. Etter 3 dagers vekst i hovedkulturmediet rystes cellene av en Erlenmeyer-kolbe ved 5 minutters sentrifugering ved 3000 g ved 4°C og vaskes to ganger med 50 ml av en oppløsning av 50 mM Tris/HCl-buffer, 100 mM NaCl og 25 mM EDTA. Cultivation of the cells took place similarly to example 1. After 3 days of growth in the main culture medium, the cells are shaken from an Erlenmeyer flask by centrifugation for 5 minutes at 3000 g at 4°C and washed twice with 50 ml of a solution of 50 mM Tris/HCl buffer , 100 mM NaCl and 25 mM EDTA.
Ved en typisk preparering dypfryses sjokkaktig 3 g fast-sentrifugerte celler i flytende nitrogen ved -198°C og homogeniseres deretter med en skjæreknivhomogenisator (Warring Commercial Blender) i nærvær av N2 til et fint pulver. Dette pulver opptas i 10 ml av nevnte buffer, oppløses på is og inkuberes med 0,8 ml lysozymoppløsning (30 mg/ml) 20 minutter ved 28°C under svak rysting. Til suspensjonen settes deretter 0,8 ml av en proteinase K-oppløsning (15 mg/ml) og 0,8 ml av en 20#-ig oppløsning av natriumsaltet av N-lauroylsarkocin. Etter forsiktig blanding inkuberes blandingen 30 minutter på is og ytterligere 15 minutter ved værelsestemperatur. Etter tilsetning og oppløsning av 22 g fast cesiumklorid, innstilles volumet med ovennevnte buffer på 22 ml og suspensjonen sentrifugeres ved 12.000 g oh 4°C i 25 minutter. Det klare sentrifugat blandes med etidiumbromid og brytningsindeks innstilles med CsCl refraktometrisk på n = 1,3920. Etter preparativ ultrasentrifugering (120.000 g, 36 timer, 15 °C) uttas båndene av kromosomal DNA fra sentrifuge-rørene og resentrifugeres under samme betingelser. De isolerte bånd befris ved utrysting med n-butanol fra etidiumbromid og dialyseres til fullstendig fjerning av CsCl. Det således utvunnede DNA er skjærbar, dvs. med enzymene Pst I, Barn H I, Sau 3 A, Cia I, Bgl II og Xho I, og ikke skjærbar, for eksempel med endonukleoasene Eco R I og Hind In a typical preparation, 3 g of fixed-centrifuged cells are shock-frozen in liquid nitrogen at -198°C and then homogenized with a cutting knife homogenizer (Warring Commercial Blender) in the presence of N2 to a fine powder. This powder is taken up in 10 ml of said buffer, dissolved on ice and incubated with 0.8 ml of lysozyme solution (30 mg/ml) for 20 minutes at 28°C with gentle shaking. 0.8 ml of a proteinase K solution (15 mg/ml) and 0.8 ml of a 20 µg solution of the sodium salt of N-lauroylsarcocine are then added to the suspension. After careful mixing, the mixture is incubated for 30 minutes on ice and a further 15 minutes at room temperature. After the addition and dissolution of 22 g of solid cesium chloride, the volume with the above-mentioned buffer is adjusted to 22 ml and the suspension is centrifuged at 12,000 g at 4°C for 25 minutes. The clear centrifuge is mixed with ethidium bromide and the refractive index is adjusted with CsCl refractometrically to n = 1.3920. After preparative ultracentrifugation (120,000 g, 36 hours, 15 °C), the bands of chromosomal DNA are removed from the centrifuge tubes and recentrifuged under the same conditions. The isolated bands are freed from ethidium bromide by shaking with n-butanol and dialyzed to completely remove CsCl. The DNA thus recovered is cleavable, i.e. with the enzymes Pst I, Barn H I, Sau 3 A, Cia I, Bgl II and Xho I, and not cleavable, for example with the endonucleoses Eco R I and Hind
III. III.
De eksempelvis fra mutantene 1-9353 og 1-9362 fremstilt DNA, er i forhold til DNA fra ATCC 31210 resp. DSM 2727 karakterisert bed et amplifisert genetisk element, hvis enkeltfragmenter fremtrer tydelig synbart etter farging med fluor-essensfargestoffet etidiumbromid fra bakgrunn av ikke selektivt formerte fragmenter. Størrelsen av det amplifiserte element samt de karakteristiske enkeltfragmenter etter fordøying med restriksjonsendonukleaser er gjengitt i det følgende: The DNA produced from the mutants 1-9353 and 1-9362, for example, is compared to DNA from ATCC 31210 resp. DSM 2727 characterized bed an amplified genetic element, the individual fragments of which appear clearly visible after staining with the fluoro-essence dye ethidium bromide from a background of non-selectively amplified fragments. The size of the amplified element as well as the characteristic individual fragments after digestion with restriction endonucleases are reproduced in the following:
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19843418274 DE3418274A1 (en) | 1984-05-17 | 1984-05-17 | SIGNAL PEPTIDE FOR THE EXCRETION OF PEPTIDES IN STREPTOMYCETS |
Publications (3)
Publication Number | Publication Date |
---|---|
NO851971L NO851971L (en) | 1985-11-18 |
NO173452B true NO173452B (en) | 1993-09-06 |
NO173452C NO173452C (en) | 1993-12-22 |
Family
ID=6236073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO851971A NO173452C (en) | 1984-05-17 | 1985-05-15 | Procedure for the preparation of polypeptides in streptomycetes |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP0161629B1 (en) |
JP (1) | JPH0797993B2 (en) |
AT (1) | ATE36167T1 (en) |
AU (1) | AU580062B2 (en) |
CA (1) | CA1309674C (en) |
DE (2) | DE3418274A1 (en) |
DK (1) | DK172458B1 (en) |
ES (1) | ES8704540A1 (en) |
FI (1) | FI81113C (en) |
GR (1) | GR851184B (en) |
HU (1) | HU197351B (en) |
IE (1) | IE58385B1 (en) |
IL (1) | IL75214A (en) |
NO (1) | NO173452C (en) |
NZ (1) | NZ212085A (en) |
PT (1) | PT80483B (en) |
ZA (1) | ZA853672B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1295563C (en) * | 1985-11-01 | 1992-02-11 | Robert T. Garvin | Production of active proteins containing cystine residues |
CA1295566C (en) * | 1987-07-21 | 1992-02-11 | Robert T. Garvin | Characterization and structure of genes for protease a and protease b from streptomyces griseus |
DE3707150A1 (en) * | 1987-03-06 | 1988-09-15 | Hoechst Ag | TENDAMISTAT DERIVATIVES |
US5426036A (en) * | 1987-05-05 | 1995-06-20 | Hoechst Aktiengesellschaft | Processes for the preparation of foreign proteins in streptomycetes |
DE3714866A1 (en) * | 1987-05-05 | 1988-11-24 | Hoechst Ag | METHOD FOR THE PRODUCTION OF FOREIGN PROTEINS IN STREPTOMYCETES |
DE4012818A1 (en) | 1990-04-21 | 1991-10-24 | Hoechst Ag | METHOD FOR THE PRODUCTION OF FOREIGN PROTEINS IN STREPTOMYCETES |
DE3837271A1 (en) * | 1988-11-03 | 1990-05-10 | Hoechst Ag | PROCESS FOR THE SELECTIVE CLEARANCE OF FUSION PROTEINS |
ES2081826T3 (en) * | 1988-11-03 | 1996-03-16 | Hoechst Ag | PROCEDURE FOR THE PREPARATION OF A PREVIOUS PRODUCT OF INSULIN IN STREPTOMICETS. |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3331860A1 (en) * | 1983-09-03 | 1985-03-21 | Hoechst Ag, 6230 Frankfurt | Process for the preparation of tendamistat |
-
1984
- 1984-05-17 DE DE19843418274 patent/DE3418274A1/en not_active Withdrawn
-
1985
- 1985-05-08 DE DE8585105610T patent/DE3564118D1/en not_active Expired
- 1985-05-08 AT AT85105610T patent/ATE36167T1/en not_active IP Right Cessation
- 1985-05-08 EP EP85105610A patent/EP0161629B1/en not_active Expired
- 1985-05-10 HU HU851786A patent/HU197351B/en unknown
- 1985-05-14 ES ES543120A patent/ES8704540A1/en not_active Expired
- 1985-05-15 NZ NZ212085A patent/NZ212085A/en unknown
- 1985-05-15 FI FI851929A patent/FI81113C/en not_active IP Right Cessation
- 1985-05-15 NO NO851971A patent/NO173452C/en not_active IP Right Cessation
- 1985-05-15 GR GR851184A patent/GR851184B/el unknown
- 1985-05-15 ZA ZA853672A patent/ZA853672B/en unknown
- 1985-05-15 DK DK198502172A patent/DK172458B1/en not_active IP Right Cessation
- 1985-05-15 CA CA000481600A patent/CA1309674C/en not_active Expired - Fee Related
- 1985-05-16 IE IE122585A patent/IE58385B1/en not_active IP Right Cessation
- 1985-05-16 AU AU42640/85A patent/AU580062B2/en not_active Ceased
- 1985-05-16 JP JP60102801A patent/JPH0797993B2/en not_active Expired - Lifetime
- 1985-05-16 IL IL75214A patent/IL75214A/en not_active IP Right Cessation
- 1985-05-17 PT PT80483A patent/PT80483B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPH0797993B2 (en) | 1995-10-25 |
NO173452C (en) | 1993-12-22 |
ES8704540A1 (en) | 1987-04-01 |
HU197351B (en) | 1989-03-28 |
FI851929A0 (en) | 1985-05-15 |
DE3418274A1 (en) | 1985-11-21 |
EP0161629A1 (en) | 1985-11-21 |
HUT38670A (en) | 1986-06-30 |
IE58385B1 (en) | 1993-09-08 |
AU4264085A (en) | 1985-11-21 |
JPS60260598A (en) | 1985-12-23 |
FI851929L (en) | 1985-11-18 |
DK217285D0 (en) | 1985-05-15 |
DE3564118D1 (en) | 1988-09-08 |
PT80483A (en) | 1985-06-01 |
DK172458B1 (en) | 1998-08-24 |
ES543120A0 (en) | 1987-04-01 |
IL75214A0 (en) | 1985-09-29 |
AU580062B2 (en) | 1988-12-22 |
FI81113C (en) | 1990-09-10 |
IE851225L (en) | 1985-11-17 |
DK217285A (en) | 1985-11-18 |
PT80483B (en) | 1987-09-30 |
NZ212085A (en) | 1989-03-29 |
NO851971L (en) | 1985-11-18 |
ATE36167T1 (en) | 1988-08-15 |
ZA853672B (en) | 1985-12-24 |
IL75214A (en) | 1991-03-10 |
EP0161629B1 (en) | 1988-08-03 |
FI81113B (en) | 1990-05-31 |
GR851184B (en) | 1985-11-25 |
CA1309674C (en) | 1992-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5641648A (en) | Methods for preparing synthetic repetitive DNA | |
US5470719A (en) | Modified OmpA signal sequence for enhanced secretion of polypeptides | |
KR930001117B1 (en) | Polypeptide production method by DNA recombination technology | |
WO1998010080A1 (en) | Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein | |
JPH04507346A (en) | Alkaline proteolytic enzyme and its production method | |
US4816405A (en) | Vectors for transformation by ascomycetes | |
JP2001525662A (en) | Method for preparing synthetic repetitive DNA | |
JPS60501837A (en) | DNA vectors and their use in recombinant DNA technology | |
Sibakov et al. | Secretion of TEM beta-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis | |
JPH01501755A (en) | Construction of synthetic DNA and its use in the synthesis of large polypeptides | |
JPH1084978A (en) | Improved riboflavin production | |
NO173452B (en) | PROCEDURE FOR PREPARING POLYPEPTIDES IN STREPTOMYCETS | |
EP0429600B1 (en) | Saf polypeptide, gene, promoter and use for expression in streptomyces | |
JPH06503945A (en) | Promoter probe vectors capable of replicating in Escherichia coli, Bacillus subtilis, Lactococcus and Lactobacillus and uses thereof | |
JP3154720B2 (en) | Inducible expression vector | |
EP0191221A1 (en) | Vectors for transformation of ascomycetes | |
US5858745A (en) | Bacillus thuringiensis transformation method | |
Kenri et al. | Construction and characterization of an Escherichia coli mutant deficient in the metY gene encoding tRNAf2Met: either tRNAf1Met or tRNAf2Met is required for cell growth | |
JP2752092B2 (en) | Expression plasmid having DEO promoter and bacterial host containing the plasmid | |
EP1881071A1 (en) | Methods and materials relating to gene expression | |
JP2770975B2 (en) | Method for producing a streptomycetes mutant | |
JPS6279794A (en) | Rhizobium strain for killing insect | |
JP3302053B2 (en) | Gene involved in production of oxetanosine-A and recombinant DNA containing the same | |
AU647471B2 (en) | Heterologous promoter systems | |
JPH02227083A (en) | New plasmid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |
Free format text: LAPSED IN NOVEMBER 2000 |