[go: up one dir, main page]

NO167521B - FIRE-RESISTANT STEEL BEAMLESS STEEL IN COOPERATED CONCRETE - Google Patents

FIRE-RESISTANT STEEL BEAMLESS STEEL IN COOPERATED CONCRETE Download PDF

Info

Publication number
NO167521B
NO167521B NO882044A NO882044A NO167521B NO 167521 B NO167521 B NO 167521B NO 882044 A NO882044 A NO 882044A NO 882044 A NO882044 A NO 882044A NO 167521 B NO167521 B NO 167521B
Authority
NO
Norway
Prior art keywords
profiles
concrete
steel
flange
end plates
Prior art date
Application number
NO882044A
Other languages
Norwegian (no)
Other versions
NO882044L (en
NO167521C (en
NO882044D0 (en
Inventor
Joergen Thor
Original Assignee
Joergen Thor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joergen Thor filed Critical Joergen Thor
Publication of NO882044D0 publication Critical patent/NO882044D0/en
Publication of NO882044L publication Critical patent/NO882044L/en
Publication of NO167521B publication Critical patent/NO167521B/en
Publication of NO167521C publication Critical patent/NO167521C/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/943Building elements specially adapted therefor elongated
    • E04B1/944Building elements specially adapted therefor elongated covered with fire-proofing material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/29Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated the prefabricated parts of the beams consisting wholly of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • E04C3/07Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web at least partly of bent or otherwise deformed strip- or sheet-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/043Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the hollow cross-section comprising at least one enclosed cavity
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0465Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section square- or rectangular-shaped

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Building Environments (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Peptides Or Proteins (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

The fire resistant, pre-stressed structural flooring carrying beam of steel includes two vertical webs (2) and a bearing plate (4) along the bottom of the beam extending outside the webs (2) for bearing the floor structure, the upper side of which is above the upper side of the steel beam after finished concrete pouring. The webs (2) are those of two channels (1) fixed to the bearing plate (4) with their toes in opposing, mutual, spaced relationship. The upper flanges (5) of the channels are provided with projecting means (6, 6 min ) fixed at pre-determined mutual spacing along the beam. An open space between the channels (1) is thus provided between the toes of the channels for filling with concrete (10) when concrete is poured, such as to achieve static co-action between the steel beam and concrete via the means (6).

Description

Oppfinnelsen angår en prefabrikert stålbjelke beregnet for bæreverk for bjelkelag, fortrinnsvis bjelkelag av prefabri-kerte betongelementer. Bjelken som har en horisontal opplagringsflens utragende i hver retning på sin underside, er utformet slik at den hovedsakelig rommes innenfor bjelkelagstykkelsen og slik at det oppnås en statisk samvirkning mellom stålbjelken og en betongstøping som passende utføres på bygge-arbeidsplassen i forbindelse med den normalt forekommende på-støpingen av bjelkelagselementene. Ved sin spesielle utforming får bjelken stor stivhet i forhold til stålvekt konstruk-sjonshøyde, og dessuten oppnås en høy brannmotstand. The invention relates to a prefabricated steel beam intended for supporting structures for beams, preferably beams of prefabricated concrete elements. The beam, which has a horizontal storage flange protruding in each direction on its underside, is designed so that it is mainly accommodated within the thickness of the beam layer and so that a static interaction is achieved between the steel beam and a concrete casting which is suitably carried out on the construction site in connection with the normally occurring on - the casting of the joist elements. Due to its special design, the beam gains great rigidity in relation to the steel weight and construction height, and a high fire resistance is also achieved.

Stålbjelker blir stadig mer vanlig som bæreverk i bjelkelag i fleretasjesbygninger. Avhengig av antall etasjer og den virksomhet som skal utøves i bygningen stilles det vanligvis krav til mellom en og to timers brannmotstand i bjelke og bjelkelag. Steel beams are becoming increasingly common as load-bearing structures in joists in multi-storey buildings. Depending on the number of storeys and the activity to be carried out in the building, requirements are usually made for between one and two hours of fire resistance in beams and joists.

En konvensjonell utførelse er å anvende valsede bjelker av I-eller H-profiler og å legge opp bjelkelaget på overflensen. En ulempe med denne utførelse er at den totale bjelkelagstykkelsen blir stor. De nedoverragende bjelkene vanskeliggjør og-så trekking av ventilasjonsrør og ledninger. Videre må bjelkene brannbeskyttes for å oppnå nødvendig brannmotstand. Dette må som oftest gjøres ved innkledning av alle bjelkene med f.eks. gipsskiver. A conventional design is to use rolled beams of I or H profiles and to lay up the beam layer on the top flange. A disadvantage of this design is that the total beam thickness becomes large. The downward-projecting beams also make pulling ventilation pipes and cables difficult. Furthermore, the beams must be fire-protected to achieve the necessary fire resistance. This usually has to be done by cladding all the beams with e.g. gypsum boards.

En måte å forminske noen av ovennevnte ulemper er å legge opp bjelkelagselementene på bjelkenes underflenser. Dermed reduseres den totale bjelkelagshøyden og trekking av ledninger og ventilasjonsrør forenkles. Brannbeskyttelsen forenkles også da bare underflensen blir eksponert for brann samtidig som bjelkens indre deler opprettholdes avkjølt ved brannpåvirkning i lang tid på grunn av betongen omkring. Vanligvis oppnås nødvendig brannbeskyttelse ved at bjelkenes underflenser males med brannbeskyttelse. En ulempe med denne utførelse er at bjelkens konstruksjonshøyde begrenses av bjelkelagstykkelsen. I noen tilfeller kan dette innebære vanskelig-heter med å oppnå tilstrekkelig stivhet ved lengre spennvidder. Den største ulempen er imidlertid vanskeligheten med å montere bjelkelagselementene, da elementenes ender må stikkes inn mellom bjelkeflensene. One way to reduce some of the above-mentioned disadvantages is to place the joist elements on the bottom flanges of the joists. This reduces the total joist height and makes pulling cables and ventilation pipes easier. Fire protection is also simplified as only the lower flange is exposed to fire, while the inner parts of the beam are kept cool in the event of fire for a long time due to the surrounding concrete. Usually, the necessary fire protection is achieved by painting the lower flanges of the beams with fire protection. A disadvantage of this design is that the structural height of the beam is limited by the thickness of the beam layer. In some cases, this may involve difficulties in achieving sufficient stiffness at longer spans. The biggest disadvantage, however, is the difficulty of mounting the joist elements, as the ends of the elements have to be inserted between the joist flanges.

For først og fremst å eliminere sistnevnte problem er det utviklet bjelkelagsbjelker med lukket kasseprofil og ut-stikkende underflenser. Disse fremstilles ved at fire plater sveises sammen med kontinuerlige sveiser. En ulempe med disse bjelker er at de blir dyrere i fremstilling enn valsede I-eller H-bjelker med samme vekt eller samme bæreevne, blant annet avhengig av at fremstillingen krever kostbare spesial-maskiner for sveisingen. En videreutvikling av sistnevnte bjelke er en stålbjelke som er vist og beskrevet i svensk ut-legningsskrift SE 448897. Denne bjelke fremstilles ved at en overflens og en underflens sveises fast til et H-profils fire flenskanter. H-profilets flenser utgjør da stamme i den nye kassebjelken, samt H-profilets stamme en mellomflens. Denne bjelke kan fremstilles med vanlige sveieautomater og er derfor billigere i fremstilling enn ovennevnte bjelke med vanlig kasseprofil. På den andre side blir materialøkonomien som regel dårligere fordi de forholdsvis tykke stammer samt mellomflenser ikke er optimale sett fra et statisk synspunkt. Bjelkens vekt for en gitt stivhet eller bæreevne burde derfor som regel være høyere. Brannmotstandsevnen er eventuelt noe bedre enn for de vanlige kassebjelker avhengig av om de forholdsvis grove stammer, hvor temperaturøkningen ved brann begrenses, svarer for en større del av bæreevnen. På den andre side må bjelkens underside likevel males med brannbeskyttelse dersom det skal oppnås brannmotstandtider på 1 time, alternativt at bjelken statisk ikke utnyttes til tillatte verdi, som da også ytterligere ned-setter materialøkonomien. To primarily eliminate the latter problem, joist beams with a closed box profile and protruding lower flanges have been developed. These are produced by welding four plates together with continuous welds. A disadvantage of these beams is that they are more expensive to manufacture than rolled I- or H-beams with the same weight or the same load-bearing capacity, depending, among other things, on the fact that the manufacture requires expensive special machines for the welding. A further development of the latter beam is a steel beam which is shown and described in Swedish design document SE 448897. This beam is produced by welding a top flange and a bottom flange to the four flange edges of an H-profile. The H-profile's flanges then constitute the stem in the new box beam, and the H-profile's stem an intermediate flange. This beam can be produced with normal automatic welding machines and is therefore cheaper to manufacture than the above-mentioned beam with a normal box profile. On the other hand, the material economy is usually worse because the relatively thick stems and intermediate flanges are not optimal from a static point of view. The weight of the beam for a given stiffness or load-bearing capacity should therefore, as a rule, be higher. The fire resistance is possibly somewhat better than for the usual box beams, depending on whether the relatively rough stems, where the temperature increase in case of fire is limited, account for a larger part of the load-bearing capacity. On the other hand, the underside of the beam must still be painted with fire protection if fire resistance times of 1 hour are to be achieved, or alternatively that the beam is not statically utilized to permitted values, which also further reduces the material economy.

Ved samtlige av de ovenfor anførte utførelsesformer er det vanskelig å tilveiebringe noen større grad av statisk samvirkning mellom bjelke og betongpåstøping, da denne blir meget begrenset rundt bjelken. En statisk samvirkning skulle kunne øke brannmotstanden samt bærevnen og stivheten. Det sistnevnte er meget viktig, da nettopp stivheten kan være et problem for bjelker som skal rommes inne i bjelkelagstykkelsen på grunn av den begrensede konstruksjonshøyden som er tilgjengelig. In all of the above-mentioned embodiments, it is difficult to provide a greater degree of static interaction between the beam and concrete casting, as this becomes very limited around the beam. A static interaction should be able to increase fire resistance as well as load-bearing capacity and stiffness. The latter is very important, as precisely the stiffness can be a problem for beams that are to be accommodated within the thickness of the joist layer due to the limited construction height that is available.

Formålet med den foreliggende oppfinnelse er å tilveiebringe en prefabrikert stålbjelke av den innledningsvis nevnte type, som eliminerer ovenfor nevnte problem ved at bjelkens utforming medfører at det oppnås en vesentlig statisk samvirkning med betong, og at utformingen forøvrig gjør at underflensen ikke behøver å bli malt med brannbeskyttelse selv ved meget strenge krav itl brannmotstand. The purpose of the present invention is to provide a prefabricated steel beam of the type mentioned at the outset, which eliminates the above-mentioned problem in that the design of the beam means that a significant static interaction with concrete is achieved, and that the design otherwise means that the lower flange does not need to be painted with fire protection even with very strict requirements regarding fire resistance.

Dette formål oppnås ifølge oppfinnelsen ved hjelp av de karakteristiske trekk angitt i den kjennetegnende del av krav 1. Forskjellige utførelsesformer er angitt i de uselv-stendige krav. This purpose is achieved according to the invention by means of the characteristic features indicated in the characterizing part of claim 1. Different embodiments are indicated in the independent claims.

Oppfinnelsen skal beskrives nærmere i det følgende, under henvisning til tegningene, der fig. 1 viser et tverrsnitt av en prefabrikert bjelke ifølge oppfinnelsen, fig. 2 viser bjelken på fig. 1 sett fra siden, fig. 3 viser et tverrsnitt av bjelken ifølge fig. 1 og 2 når denne er montert på en byggearbeidsplass og bærer to bjelkelagelementer, fig. 4 viser et tverrsnitt av en andre utførelsesform av bjelken ifølge oppfinnelsen som bærer to bjelkelagselementer, fig. 5 viser et tverrsnitt av en tredje utførelsesform av bjelken ifølge oppfinnelsen som bærer to bjelkelagselementer, fig. 6 viser skjematisk et lengdesnitt gjennom en fjerde utførelsesform av en bjelke ifølge oppfinnelsen, og fig. 7 er et enderiss delvis i snitt av bjelken vist på fig. 6. The invention will be described in more detail below, with reference to the drawings, where fig. 1 shows a cross-section of a prefabricated beam according to the invention, fig. 2 shows the beam in fig. 1 seen from the side, fig. 3 shows a cross section of the beam according to fig. 1 and 2 when this is mounted on a construction site and carries two joist elements, fig. 4 shows a cross-section of a second embodiment of the beam according to the invention which carries two beam layer elements, fig. 5 shows a cross-section of a third embodiment of the beam according to the invention which carries two beam layer elements, fig. 6 schematically shows a longitudinal section through a fourth embodiment of a beam according to the invention, and fig. 7 is an end view, partially in section, of the beam shown in fig. 6.

Som det fremgår av fig. 1 viser denne en bjelke ifølge foreliggende oppfinnelse i et tverrsnitt. Bjelken omfatter to valsede U-profiler 1 anbragt ved siden av hverandre med sine åpne sider vendt mot hverandre på en slik måte at det dannes en avstand mellom de to profilers 1 endekanter. U-profilenes 1 steg 2 danner steg i dette nye bjelkeprofil, og material-økonomisk innebærer dette fordeler sammenliknet med bjelker ifølge SE 448897, da U-profilenes ] steg er tynnere enn H-profilenes flenser, U-profilene 1 er med sine underflenser 3 fastsveiset mot en opplagringsflens 4 av plate. Til U-profilenes 1 overflenser 5 og vinkelrett mot U-profilenes 1 lengde-retning er det med forutbestemte avstander fra hverandre fastsveiset lasker 6 for skyvekraftoverføring og statisk samvirkning mellom stålbjelken og en senere utført betongstøping. Disse lasker 6 kan f.eks. utgjøres av små vinkeljernsprofiler eller armeringsjern. Avstanden mellom disse bestemmes av aktu-elle belastninger. Alternativt kan laskene 6 utgjøres av utragende skruer 6', såkalte studs, fastsveiset til flensene 5 eller i området inntil disse, som er skjematisk vist på fig. 2. I bjelkens ender er det fastsveiset en endeplate 7, hvilken overfører bjelkens belastning til f.eks. et peleunderlag. Bjelken ifølge oppfinnelsen kan fremstilles meget enkelt da det kan anvendes vanlige sveiseautomater. I motsetning til ovenfor beskrevne bjelker av kassebjelketype kreves det bare to langsgående sveiser i stedet for fire. For fastsveising av laskene 6 tii overflensen 5 kreves det bare korte kaldsveiser. Bjelken kan prefabrikeres på verksted og monteres på byggearbeids-plassen. Etter monteringen av bjelkelagselementene 8 (fig. 3) mot bjelkens opplagringsflens 4 skjer en betongpåstøping 9 av bjelkelagselementene 8. Samtidig fyller man da bjelkens hulrom og det rom som finnes mellom bjelkelagselement 8 og bjelken med betong 10. Ved hjelp av laskene 6, 6' oppnås en effektiv statisk samvirkning mellom stålbjelkene og betongistøpingen som øker konstruksjonens bæreevne og stivhet betydelig sammmen-liknet med bjelker av typen nevnt i innledningen og som har samme stålvekt eller konstruksjonshøyde. As can be seen from fig. 1 shows a beam according to the present invention in a cross section. The beam comprises two rolled U-profiles 1 placed next to each other with their open sides facing each other in such a way that a distance is formed between the end edges of the two profiles 1. The step 2 of the U-profiles 1 forms steps in this new beam profile, and material-economically this entails advantages compared to beams according to SE 448897, as the steps of the U-profiles ] are thinner than the flanges of the H-profiles, the U-profiles 1 are with their lower flanges 3 welded to a storage flange 4 made of plate. To the top flange 5 of the U-profiles 1 and perpendicularly to the longitudinal direction of the U-profiles 1, at predetermined distances from each other, laths 6 are welded for thrust transfer and static interaction between the steel beam and a later concrete casting. These lashers 6 can e.g. consists of small angle iron profiles or rebar. The distance between these is determined by current loads. Alternatively, the tabs 6 can be made up of protruding screws 6', so-called studs, welded to the flanges 5 or in the area next to them, which are schematically shown in fig. 2. An end plate 7 is welded to the beam's ends, which transfers the beam's load to e.g. a pile foundation. The beam according to the invention can be manufactured very easily as ordinary automatic welding machines can be used. In contrast to the box-girder type beams described above, only two longitudinal welds are required instead of four. For welding the tabs 6 to the top flange 5, only short cold welds are required. The beam can be prefabricated in a workshop and assembled on the construction site. After the assembly of the beam elements 8 (fig. 3) against the beam's storage flange 4, a concrete casting 9 of the beam elements 8 takes place. At the same time, the cavity of the beam and the space between the beam element 8 and the beam is filled with concrete 10. Using the laths 6, 6' an effective static interaction is achieved between the steel beams and the concrete casting which significantly increases the structure's load-bearing capacity and stiffness compared to beams of the type mentioned in the introduction and which have the same steel weight or construction height.

Utformingen av bjelken ifølge foreliggende oppfinnelse er også gunstig ved brannpåvirkning. En vesentlig del av bæreevnen representeres av U-profilenes 1 underflenser 3. Disse ligger beskyttet av opplagringsflensen 4. Selv om stål har en høy varmeledningsevne utgjør likevel opplagringsflensen 4 en direkte strålningsbeskyttelse for U-profilenes 1 flenser 3, The design of the beam according to the present invention is also favorable in the event of fire. A significant part of the bearing capacity is represented by the lower flanges 3 of the U-profiles 1. These are protected by the storage flange 4. Even though steel has a high thermal conductivity, the storage flange 4 still constitutes direct radiation protection for the flanges 3 of the U-profiles 1,

og dette i kombinasjon med betongistøpingen med høy varmekapasitet gjør at temperaturstigningen i U-flensene 3 er lang-sommere enn i f.eks. underflensene i konvensjonelle bjelker av kassebjelketypen. Dette forhold samt at betongistøpingen ved brann kommer til å overta en stadig større del av bæreevnen, gjør at bjelken får en vesentlig brannmotstand uten at opp-lagringsf lensen 4 over hodet behøver å bli forsynt med brann-isolasjon. and this, in combination with the concrete casting with a high heat capacity, means that the temperature rise in the U-flanges 3 is longer than in e.g. the bottom flanges in conventional beams of the box girder type. This situation, as well as the fact that the concrete casting in the event of a fire will take over an increasingly large part of the load-bearing capacity, means that the beam gains significant fire resistance without the storage flange 4 overhead needing to be provided with fire insulation.

En utførelsesform av den foreliggende oppfinnelse for ytterligere å øke bæreevnen og brannmotstanden, er at det i bjelkens hulrom er anordnet ett eller flere armeringsjern 11, som det fremgår av fig. 4. Armeringsjernene 11 innfestes i bjelken før laskene 6 fastsveises, og kan passende henges opp i disse. Armeringsjernene 11 anbringes i en slik avstand fra bjelkens underside at de opprettholdes tilstrekkelig avkjølet for nødvendig brannmotstandstid, samtidig som avstanden til bjelkens overside velges tilstrekkelig stor for å kunne gi en effektiv indre hevarm. Armeringsjernene 12 kan også anordnes An embodiment of the present invention, in order to further increase the load-bearing capacity and fire resistance, is that one or more rebars 11 are arranged in the cavity of the beam, as can be seen from fig. 4. The reinforcing bars 11 are attached to the beam before the laths 6 are welded, and can be suitably suspended from them. The rebars 11 are placed at such a distance from the underside of the beam that they are maintained sufficiently cooled for the required fire resistance time, while at the same time the distance to the upper side of the beam is chosen to be sufficiently large to be able to provide an effective internal lifting arm. The reinforcing bars 12 can also be arranged

i nærheten av U-profilenes 1 overflenser 5 for derigjennom å øke stålarealet også innenfor bjelkens øvre deler. in the vicinity of the U-profiles 1 overflange 5 to thereby increase the steel area also within the upper parts of the beam.

På fig. 5 er det vist en ytterligere utførelsesform av bjelken ifølge den foreliggende oppfinnelse, og som kan gi meget lave brannmotstandstider. Et tynt varmeisolasjonssjikt 13 er anordnet mellom opplagringsflensen 4 og U-profilenes 1 underflenser 3. Til tross for at denne isolering er tynn gir den tilsammen med betongistøpingens høye varmekapasitet en radikal forsinkning av temperaturstigningen ved brann i U-profilenes 1 underflenser 3, som har stor betydning for bjelkenes bæreevne og dermed brannmotstand. In fig. 5 shows a further embodiment of the beam according to the present invention, which can provide very low fire resistance times. A thin thermal insulation layer 13 is arranged between the storage flange 4 and the lower flanges 3 of the U-profiles 1. Despite the fact that this insulation is thin, together with the high heat capacity of the concrete casting, it provides a radical delay in the temperature rise in the event of a fire in the lower flanges 3 of the U-profiles 1, which have a large significance for the beams' bearing capacity and thus fire resistance.

En ytterligere utførelsesform av bjelken ifølge den foreliggende oppfinnelse er vist på fig. 6 og 7, hvor armer-ingen 11 utnyttes for forspenning av bjelken, som dermed gir bjelken en økende høyde.Forspenningen kan f.eks. avpasses slik at den kompenserer for nedbøyningen av bjelkelagskonstruksjon-ens egenvekt. Forspenningen kan f.eks. oppnås ved at et armeringsjern 11 gjøres noe lengre enn avstanden mellom bjelkens to endeplater 7, og at armeringsjernet 11 har gjenger i sine endepartier som samvirker med muttere 14 for fastspenning av armeringsjernet 11 mellom endeplatene 7. For å tilveiebringe en enkel passering av armeringsjernet 11 mellom endeplatene 7 kan disse være forsynt med avlange spor 15. A further embodiment of the beam according to the present invention is shown in fig. 6 and 7, where the arms 11 are used for prestressing the beam, which thus gives the beam an increasing height. The prestressing can e.g. adjusted so that it compensates for the deflection of the joist construction's own weight. The bias can e.g. is achieved by making a rebar 11 somewhat longer than the distance between the beam's two end plates 7, and that the rebar 11 has threads in its end parts that cooperate with nuts 14 for clamping the rebar 11 between the end plates 7. To provide an easy passage of the rebar 11 between end plates 7, these can be provided with oblong grooves 15.

Claims (6)

1. Brannmotstandskraftig, prefabrikert bjelkelagsbjelke av stål i samvirke med betong og omfattende to vertikale steg (2) og en opplagringsflens (4) ragende ut horisontalt på undersiden utenfor stegene (2) for å bære motliggende bjelkelag, hvor oversiden etter ferdigstøping ligger ovenfor stålbjelkens overside, KARAKTERISERT VED at stegene (2) er sammensatt av steg fra to U-profiler (1), som er festet til opplagringsflensen (4) med sine åpne sider vendt mot hverandre og med en avstand mellom de to U-profilers (1) flenskanter, mens U-profilenes (1) overflenser (5) er sammenkoplet ved lasker (6, 6') festet på forutbestemt avstand fra hverandre langs bjelken, slik at det ved nevnte avstand mellom de to U-profilers flenskanter tilveiebringes et åpent rom mellom U-profilene (I) for fylling av bjelken med betong (10) ved betongstøping og for å oppnå en statisk samvirkning ved hjelp av laskene (6) mellom stålbjelken og betongen.1. Fire-resistant, prefabricated joist beam of steel in conjunction with concrete and comprising two vertical steps (2) and a storage flange (4) projecting horizontally on the underside outside the steps (2) to support opposite joists, where the upper side after finished casting lies above the upper side of the steel beam, CHARACTERIZED IN THAT the steps (2) are composed of steps from two U-profiles (1), which are attached to the storage flange (4) with their open sides facing each other and with a distance between the two U-profiles (1) flange edges, while the U-profiles (1) upper flanges (5) are connected by tabs (6, 6') fixed at a predetermined distance from each other along the beam, so that at said distance between the two U- profiles' flange edges provide an open space between the U-profiles (I) for filling the beam with concrete (10) during concrete casting and to achieve a static interaction using the laths (6) between the steel beam and the concrete. 2. Bjelkelagsbjelke ifølge krav 1, KARAKTERISERT VED at minst ett armeringsjern (12) er anordnet umiddelbart inntil U-profilenes (1) overflenser (5).2. Beam layer beam according to claim 1, CHARACTERIZED BY the fact that at least one reinforcing bar (12) is arranged immediately next to the upper flange (5) of the U-profiles (1). 3. Bjelkelagsbjelke ifølge krav 1 eller 2, KARAKTERISERT VED at minst ett langsgående armeringsjern (11) er anordnet i rommet mellom U-profilene (1) ovenfor opplagr-ingsf lensen (4), men under det sammensatte profilets tyngde-punkt .3. Beam layer beam according to claim 1 or 2, CHARACTERIZED BY the fact that at least one longitudinal reinforcing bar (11) is arranged in the space between the U-profiles (1) above the storage flange (4), but below the composite profile's center of gravity. 4. Bjelkelagsbjelke ifølge ett av kravene 1-3, KARAKTERISERT VED at bjelken omfatter et tynt varmeisolerings-sjikt (13) mellom opplagringsflensen (4) og U-profilenes (1) underflenser (3).4. Beam layer beam according to one of claims 1-3, CHARACTERIZED IN THAT the beam comprises a thin thermal insulation layer (13) between the storage flange (4) and the lower flanges (3) of the U-profiles (1). 5. Bjelkelagsbjelke ifølge ett av kravene 1-4, KARAKTERISERT VED at armeringsjernet (11) er forlenget en strekning slik at dens totale lengde er noe større enn avstanden mellom endeplatene (7), slik at det kan forspennes mellom endeplatene (7) ved hjelp av muttere (14) mot endeplatenes (7) utside som samvirker med gjenger utformet i armeringsjernets (II) endepartier.5. Beam layer beam according to one of the claims 1-4, CHARACTERIZED IN THAT the reinforcing bar (11) is extended a section so that its total length is somewhat greater than the distance between the end plates (7), so that it can be prestressed between the end plates (7) using of nuts (14) against the outside of the end plates (7) which interact with threads formed in the end parts of the rebar (II). 6. Bjelkelagsbjelke ifølge ett av kravene 1-5, KARAKTERISERT VED at det er et avlangt spor (15) i endeplatene (7) for å lette innføring av armeringsjernet for forspenning av bjelken ved hjelp av endeplatene (7).6. Beam layer beam according to one of claims 1-5, CHARACTERIZED BY the fact that there is an elongated groove (15) in the end plates (7) to facilitate the introduction of the rebar for prestressing the beam using the end plates (7).
NO882044A 1987-05-11 1988-05-10 FIRE-RESISTANT STEEL BEAMLESS STEEL IN COOPERATED CONCRETE NO167521C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8701937A SE457364B (en) 1987-05-11 1987-05-11 FIRE-RESISTABLE BEAM LAYER Beam OF STEEL IN CONNECTION WITH CONCRETE

Publications (4)

Publication Number Publication Date
NO882044D0 NO882044D0 (en) 1988-05-10
NO882044L NO882044L (en) 1988-11-14
NO167521B true NO167521B (en) 1991-08-05
NO167521C NO167521C (en) 1991-11-13

Family

ID=20368481

Family Applications (1)

Application Number Title Priority Date Filing Date
NO882044A NO167521C (en) 1987-05-11 1988-05-10 FIRE-RESISTANT STEEL BEAMLESS STEEL IN COOPERATED CONCRETE

Country Status (7)

Country Link
EP (1) EP0292449B1 (en)
AT (1) ATE64974T1 (en)
DE (1) DE3863487D1 (en)
DK (1) DK164181C (en)
FI (1) FI86326C (en)
NO (1) NO167521C (en)
SE (1) SE457364B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU87137A1 (en) * 1988-02-19 1989-09-20 Arbed JOINTED BEAM IN THE FLOOR
DE68907059T2 (en) * 1988-07-29 1994-01-05 Suomen Liittopalkki Oy Tampere SYSTEM WITH A CONNECTOR AND WITH A CONNECTING PLATE.
FI85745C (en) * 1989-04-13 1993-02-23 Peikkorakenne Oy Fireproof prefabricated steel beam
SE466609B (en) * 1989-06-15 1992-03-09 Joergen Thor DEVICE AT A COLLABORATION BALL
FI92089C (en) * 1993-01-13 1994-09-26 Deltatek Oy Prefabricated steel-concrete composite beam
FI930696A (en) * 1993-02-17 1994-08-18 Deltatek Oy Prefabricated steel-concrete composite beam
FR2718173B1 (en) * 1994-03-30 1996-05-15 Laubeuf Supporting profile stable to fire, for example for canopy and arrangement comprising such a profile.
FR2718174B1 (en) * 1994-03-30 1996-05-03 Laubeuf Supporting profile with high thermal resistance and arrangement, for example glass roof, comprising such a profile.
US6442908B1 (en) * 2000-04-26 2002-09-03 Peter A. Naccarato Open web dissymmetric beam construction
KR100416877B1 (en) * 2001-07-20 2004-01-31 한국건설기술연구원 steel beam with open section and composite structure using the same
KR100477189B1 (en) * 2002-09-04 2005-03-17 삼성중공업 주식회사 Lattice beam for slim floor system
ES2256637T3 (en) * 2002-10-05 2006-07-16 Dywidag-Systems International Gmbh COMPOSITE STEEL STRUCTURE FOR FLOOR CEILINGS.
FI20021934A (en) * 2002-10-31 2004-07-16 Tartuntamarkkinointi Oy Composite beam
FI5914U1 (en) * 2003-04-10 2003-08-25 Teraespeikko Oy steel beam
NL1031896C1 (en) * 2006-05-29 2007-11-30 Anne Pieter Van Driesum Beam for supporting floor plates, as well as base plate, combination plate or support rod as part of such a beam.
KR100787133B1 (en) 2007-02-15 2007-12-21 주식회사 하모니구조엔지니어링 Prefabricated box-shaped steel girder beam for concrete filling and its installation structure
CN103114680B (en) * 2013-03-05 2015-10-21 江苏中宝钢构有限公司 J section steel on light-duty steel construction house
CN104264899B (en) * 2014-10-17 2016-05-11 上海天华建筑设计有限公司 Embedded outsourcing U-shaped steel-concrete composite beam
DE202015104628U1 (en) 2015-09-01 2016-12-05 Pfeifer Holding Gmbh & Co. Kg Support beam for ceiling systems and ceiling system
IT201600078034A1 (en) * 2016-07-26 2018-01-26 Pasquale Impero ELEMENT IN REINFORCED CONCRETE, RELATED CONCRETE BEAM AND CONCRETE FLOOR
ES2681568A1 (en) * 2018-05-23 2018-09-13 Universitat Politècnica De València FLAT BEAM WITH IMPROVED FIRE RESISTANCE FOR STEEL-CONCRETE FORGINGS AND ITS MANUFACTURING PROCEDURE (Machine-translation by Google Translate, not legally binding)
DE102018212750A1 (en) * 2018-07-31 2020-02-06 Pfeifer Holding Gmbh & Co. Kg Support beams for ceiling systems, ceiling system and process for their production
SE543184C2 (en) * 2019-02-14 2020-10-20 Vaestsvenska Staalkonstruktioner Ab Fire-resistant steel joist beam with vertical webs, horizontal flanges and a heat-insulating material in a space between the flanges

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731824A (en) * 1956-01-24 hadley
US1957176A (en) * 1930-08-09 1934-05-01 Ferrocon Corp Beam construction
CH188563A (en) * 1936-02-26 1937-01-15 Isele Suter Oscar Space-enclosing construction.
DE1016427B (en) * 1948-12-27 1957-09-26 Carl Abraham Forssell Process for cold stretching of concrete reinforcement layers
US4211045A (en) * 1977-01-20 1980-07-08 Kajima Kensetsu Kabushiki Kaisha Building structure
AT386237B (en) * 1984-07-19 1988-07-25 Feichtmayr Josef ELONG STRETCH SUPPORT ELEMENT FOR SUPPORT CONSTRUCTIONS AND CEILING MADE WITH SUCH SUPPORT ELEMENTS
LU85753A1 (en) * 1985-02-01 1986-09-02 Arbed LATCH SUPPORT CONNECTION

Also Published As

Publication number Publication date
FI86326C (en) 1992-08-10
DE3863487D1 (en) 1991-08-08
DK256388D0 (en) 1988-05-10
EP0292449A2 (en) 1988-11-23
NO882044L (en) 1988-11-14
SE8701937L (en) 1988-11-12
DK164181B (en) 1992-05-18
DK256388A (en) 1988-11-12
FI882186A (en) 1988-11-12
EP0292449A3 (en) 1989-02-01
SE457364B (en) 1988-12-19
DK164181C (en) 1992-10-12
FI882186A0 (en) 1988-05-10
NO167521C (en) 1991-11-13
FI86326B (en) 1992-04-30
ATE64974T1 (en) 1991-07-15
NO882044D0 (en) 1988-05-10
EP0292449B1 (en) 1991-07-03
SE8701937D0 (en) 1987-05-11

Similar Documents

Publication Publication Date Title
NO167521B (en) FIRE-RESISTANT STEEL BEAMLESS STEEL IN COOPERATED CONCRETE
US4571913A (en) Prefabricated fireproof steel and concrete beam
AU626971B2 (en) Prefabricated building foundation element and a method and means for the manufacture of the element
US3633323A (en) Prefabricated room cell in particular a bathroom
US3600862A (en) Procedure and precast building elements made of concrete or reinforced concrete for the construction of buildings or skeletons
US2124519A (en) Building structure
US3487597A (en) Integral precast concrete lintelbalcony combination
US2379636A (en) Method of making reinforced concrete buildings
KR100796216B1 (en) Concrete composite beam of building
US2084649A (en) Steel floor and column construction
US2115949A (en) Concrete building construction
US1979642A (en) Beam
US2375744A (en) Half-tubular reinforced concrete beam for use in building construction
ITBO20070528A1 (en) MODULAR FLOOR
US2230430A (en) Building construction
US2296863A (en) Reinforced concrete floor construction
US1944292A (en) Floor construction
Storozhenko et al. New design decisions of prefabricated girderless floors of multi-storeyed buildings
EP0483089A2 (en) A beam for floor structures
US1812690A (en) Arch joist and floor construction
US1798925A (en) Floor construction
JPH1082092A (en) Building of box frame structure
JPH0628594Y2 (en) Floor structure
JPS5931627B2 (en) Extension construction method
JPS6134468Y2 (en)

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN NOVEMBER 2003