NO161812B - Cathode for aqueous electrolysis. - Google Patents
Cathode for aqueous electrolysis. Download PDFInfo
- Publication number
- NO161812B NO161812B NO842443A NO842443A NO161812B NO 161812 B NO161812 B NO 161812B NO 842443 A NO842443 A NO 842443A NO 842443 A NO842443 A NO 842443A NO 161812 B NO161812 B NO 161812B
- Authority
- NO
- Norway
- Prior art keywords
- layer
- cathode
- nickel
- oxide
- carrier
- Prior art date
Links
- 238000005868 electrolysis reaction Methods 0.000 title claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 12
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 12
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 11
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- FHMDYDAXYDRBGZ-UHFFFAOYSA-N platinum tin Chemical compound [Sn].[Pt] FHMDYDAXYDRBGZ-UHFFFAOYSA-N 0.000 description 2
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DUDJJJCZFBPZKW-UHFFFAOYSA-N [Ru]=S Chemical compound [Ru]=S DUDJJJCZFBPZKW-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CLDVQCMGOSGNIW-UHFFFAOYSA-N nickel tin Chemical compound [Ni].[Sn] CLDVQCMGOSGNIW-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- -1 platinum metals Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- 150000003304 ruthenium compounds Chemical class 0.000 description 1
- VDRDGQXTSLSKKY-UHFFFAOYSA-K ruthenium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Ru+3] VDRDGQXTSLSKKY-UHFFFAOYSA-K 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Oppfinnelsen vedrører en katode for en vandig elektrolyse, f.eks. elektrolyse av vandige oppløsninger av alkaliklorider for dannelse av kloralkali og hydrogen, og som består av en bærer av nikkel eller nikkelbelagt stål og et sjikt som i det minste delvis dekker bærerens overflate, og som inneholder et metall fra platinagruppen. The invention relates to a cathode for an aqueous electrolysis, e.g. electrolysis of aqueous solutions of alkali chlorides to form chloralkali and hydrogen, and which consists of a support of nickel or nickel-plated steel and a layer which at least partially covers the surface of the support, and which contains a metal of the platinum group.
For elektrolyse av vandige oppløsninger ved temperaturer ikke vesenlig over værelsestemperatur er det kjent å benytte titananoder som er belagt med blandinger som inneholder oksyder fra gruppen platinametaller, samt passiverbare metaller, f.eks. en blanding av 30 mol % rutheniumoksyd og 7 0 mol % titanoksyd (DE-AS 16 71 422). Anodene har en relativt liten overspenning og er enkle å håndtere, daelektrodeavstanden ikke forandrer seg under elektrolyseprosessen. Ved disse elektrolyseprosesser består katodene i alminnelighet av stål, nikkel eller nikkel-plettert stål, og det er også kjent for å bedre stabiliteten og senke hydrogenoverspenningen å belegge katodene med et platinametall, f.eks. å belegge katodelegemer av rustfritt stål eller nikkel med metallisk ruthenium (DE-OS 27 34 084), hvorunder der ved galvanisk utskillelse eller ved en CVD-prosess blir dannet et metallsjikt som omgir bærerlegemet. Ved en annen metode blir der ved elektroplettering eller ved termisk spaltning av saltholdige presipitater fremstilt et rutheniumholdig sjikt på bærerlegemet (DE-OS 28 11 472). Man belegger da bærerens overflate med en oppløsning eller suspensjon av en rutheniumforbindelse, f.eks. rutheniumhydrok-syd, rutheniumklorid, rutheniumoksid eller rutheniumsulfid, fordamper oppløsnings- eller dispersjonsmiddelet og spalter forbindelsen ved oppheting i en ikke-oksiderende atmosfære til omtrent 1200°C. For fremstilling av brenselceller som ikke anvendes for elektrolytiske prosesser, er det sluttelig kjent å forsyne katodens overflate med et sjikt som inneholder metallisk ruthenium og en spinell. For electrolysis of aqueous solutions at temperatures not significantly above room temperature, it is known to use titanium anodes which are coated with mixtures containing oxides from the group of platinum metals, as well as passivable metals, e.g. a mixture of 30 mol% ruthenium oxide and 70 mol% titanium oxide (DE-AS 16 71 422). The anodes have a relatively small overvoltage and are easy to handle, as the electrode distance does not change during the electrolysis process. In these electrolysis processes, the cathodes generally consist of steel, nickel or nickel-plated steel, and it is also known to improve stability and lower the hydrogen overvoltage to coat the cathodes with a platinum metal, e.g. to coat cathode bodies of stainless steel or nickel with metallic ruthenium (DE-OS 27 34 084), during which a metal layer is formed which surrounds the carrier body by galvanic deposition or by a CVD process. In another method, a ruthenium-containing layer is produced on the carrier body by electroplating or by thermal decomposition of salt-containing precipitates (DE-OS 28 11 472). The surface of the carrier is then coated with a solution or suspension of a ruthenium compound, e.g. ruthenium hydroxide, ruthenium chloride, ruthenium oxide, or ruthenium sulfide, vaporizes the solvent or dispersant and decomposes the compound by heating in a non-oxidizing atmosphere to about 1200°C. Finally, for the production of fuel cells which are not used for electrolytic processes, it is known to provide the surface of the cathode with a layer containing metallic ruthenium and a spinel.
Belegningen av katodiske bærerstrukturer med rutheniummetall er ikke alltid tilfredsstillende, da hydrogenoverspenningen ofte ved lengre tids bruk av katoden stiger og overspenningen under mange betingelser sammenligningsvis blir for stor.Til grunn for oppfinnelsen ligger derfor den oppgave å skaffe en belagt katode som er holdbar overfor elektrolyttene og elektrolysepro-duktene og har en lav overspenning mot hydrogen. The coating of cathodic carrier structures with ruthenium metal is not always satisfactory, as the hydrogen overvoltage often rises during prolonged use of the cathode and the overvoltage under many conditions becomes comparatively too large. The invention is therefore based on the task of obtaining a coated cathode which is durable against the electrolytes and the electrolysis products and has a low overvoltage against hydrogen.
Denne oppgave blir løst med en katode av den innledningsvis nevnte art som er kjennetegnet ved de trekk som fremgår av kravene. This task is solved with a cathode of the kind mentioned at the outset, which is characterized by the features that appear in the requirements.
Det er kjent å belegge anoder av et bærelegeme av metall med et platinametalloksid alene eller i blanding med andre oksider. De anodiske belegg ble regnet som ubrukelige for katoder, som derfor ble belagt med metallisk platina eller et element fra platinagruppen. Bestod katodens primære belegning av en oksidisk eller annen saltformig forbindelse, ble forbindelsene redusert til metall ved en særskilt varmebehandling It is known to coat anodes of a metal support body with a platinum metal oxide alone or in a mixture with other oxides. The anodic coatings were considered useless for cathodes, which were therefore coated with metallic platinum or an element from the platinum group. If the cathode's primary coating consisted of an oxidic or other salty compound, the compounds were reduced to metal by a special heat treatment
(DE-OS 28 11 472). Man har nå iakttatt det overraskende forhold at et bærelegeme som består av nikkel eller nikkelbelagt stål og er belagt med rutheniumoksid og nikkeloksid, oppviser en bedre overspenning mot hydrogen og en bedre holdbarhet enn metallbelagte katoder. (DE-OS 28 11 472). The surprising fact has now been observed that a support body consisting of nickel or nickel-plated steel and coated with ruthenium oxide and nickel oxide exhibits a better overvoltage against hydrogen and a better durability than metal-coated cathodes.
Bæreren hos katoden ifølge oppfinnelsen består i samsvar med de gitte betingelser for elektrolyseprosessen av porøse eller massive plater, staver eller rør av nikkel eller nikkelbelagt stål. Det sjikt av rutheniumoksid og nikkeloksid som er utskilt av bærerens overflate og i det minste delvis dekker denne, består av flere delsjikt som tilsammen danner belegget. Mengdeforholdet mellom oksidene i de enkelte delsjikt er ved en foretrukken realisering av oppfinnelsen forskjellig. Takket være oppdelingen av belegget i flere delsjikt blir der oppnådd meget god heftning og også lang levetid. Det delsjikt som grenser til bæreren, inneholder hensiktsmessig mere nikkel- enn rutheniumoksid, og det delsjikt som vender mot elektrolytten mer ruthenium- enn nikkeloksid. Der foretrekkes delsjikt med et innhold av 70-95% nikkeloksid og 30-5% rutheniumoksid resp. med 5-25% nikkeloksid og 95-75% rutheniumoksid. Beleggets tykkelse utgjør 1-10, fortrinnsvis 2-5 pm, og antall delsjikt 3-5, så den gjennomsnittelige tykkelse av et delsjikt utgjør omtrent 0,2-3 um. I dette område er en katodisk aktivitet særlig gunstig samtidig som sjiktets mekaniske holdbarhet er god. The carrier of the cathode according to the invention consists, in accordance with the given conditions for the electrolysis process, of porous or solid plates, rods or tubes of nickel or nickel-plated steel. The layer of ruthenium oxide and nickel oxide which is separated from the surface of the carrier and at least partially covers it, consists of several partial layers which together form the coating. In a preferred embodiment of the invention, the quantity ratio between the oxides in the individual sub-layers is different. Thanks to the division of the coating into several sub-layers, very good adhesion and also a long service life are achieved. The partial layer bordering the carrier suitably contains more nickel than ruthenium oxide, and the partial layer facing the electrolyte more ruthenium than nickel oxide. Partial layers with a content of 70-95% nickel oxide and 30-5% ruthenium oxide resp. with 5-25% nickel oxide and 95-75% ruthenium oxide. The thickness of the coating is 1-10, preferably 2-5 µm, and the number of partial layers 3-5, so the average thickness of a partial layer is approximately 0.2-3 µm. In this area, a cathodic activity is particularly beneficial, while the mechanical durability of the layer is good.
For fremstilling av katoden blir et bærelegeme fra gruppen nikkel, forniklet stål, belagt med en oppløsning inneholdende et nikkel- og et rutheniumsalt, f.eks. en saltsur metanolisk oppløsning av nikkelnitrat og rutheniumklorid. Oppløsningsmid-delet blir fjernet ved tørring og legemet oppvarmet luft i omtrent 450-550°C. Der danner seg da et sjikt som vesentlig består av nikkeloksid og rutheniumoksid, og hvis tykkelse er proporsjonal med mengden av den oppløsning som ble påført bærerens overflate. Syklusen blir så gjentatt 3-5 ganger så der dannes et sjikt bestående av 3-5 delsjikt. To produce the cathode, a support body from the nickel group, nickel-plated steel, is coated with a solution containing a nickel and a ruthenium salt, e.g. a hydrochloric acid methanolic solution of nickel nitrate and ruthenium chloride. The solvent is removed by drying and the body heated air to approximately 450-550°C. A layer is then formed which essentially consists of nickel oxide and ruthenium oxide, and whose thickness is proportional to the amount of the solution that was applied to the surface of the carrier. The cycle is then repeated 3-5 times so that a layer consisting of 3-5 sub-layers is formed.
Oppfinnelsen vil i det følgende bli belyst ved eksempler under henvisning til tegningen. Fig. 1 er et diagram som viser katodepotensialet ved katoder ifølge oppfinnelsen som funksjon av strømtettheten. Fig. 2 er et sammenligningsdiagram som viser katodepotensialene ved forskjellige katoder. Fig. 3 viser katodepotensialet ved katoder ifølge oppfinnelsen som funksjon av tiden. In the following, the invention will be illustrated by examples with reference to the drawing. Fig. 1 is a diagram showing the cathode potential of cathodes according to the invention as a function of the current density. Fig. 2 is a comparison diagram showing the cathode potentials at different cathodes. Fig. 3 shows the cathode potential of cathodes according to the invention as a function of time.
Eksempel 1 Example 1
Et sandblåst nikkelblikk av en type som forekommer vanlig i handelen, og har et format av 50 mm x 50 mm og en tykkelse av 1 mm, ble ensidig belagt med en oppløsning hvis sammensetning var som følger: 15,6 mg Ni (1^03)2 og 2,6 mg RUCI3, svarende til A sandblasted nickel sheet of a type commonly found in commerce, having a format of 50 mm x 50 mm and a thickness of 1 mm, was coated on one side with a solution whose composition was as follows: 15.6 mg of Ni (1^03 )2 and 2.6 mg RUCI3, corresponding to
80 vektprosent Ni/20 vektprosent Ru, 75 yl etanol, og 50 ul konsentrert saltsyre. Blikket ble tørret og oppvarmet i en muffelovn under luftoksygen til 500°C og holdt på denne temperatur i 10 minutter. For fremstilling av annet sjikt ble der påført en oppløsning inneholdende 7,8 mg Ni(N03)2 og 15 mg 80 wt% Ni/20 wt% Ru, 75 µl ethanol, and 50 µl concentrated hydrochloric acid. The tin was dried and heated in a muffle furnace under atmospheric oxygen to 500°C and held at this temperature for 10 minutes. For the production of the second layer, a solution containing 7.8 mg Ni(N03)2 and 15 mg
R11CI3 < svarende til 25 vektprosent Ni/75 vektprosent, i 75 ul etanol og 25 ul konsentrert HC1. Blikket ble tørret og varmet opp som beskrevet ovenfor. R11Cl3 < corresponding to 25 wt% Ni/75 wt%, in 75 µl ethanol and 25 µl concentrated HC1. The tin was dried and heated as described above.
Så ble der påført og varmebehandlet et tredje sjikt bestående av en oppløsning av 3,9 mg Ni(NC>3)2 og 20 mg RUCI3 i 75 ul etanol og 25 ul konsentrert HC1, svarende til 11 vektprosent Ni/89 vektprosent Ru. A third layer consisting of a solution of 3.9 mg Ni(NC>3)2 and 20 mg RUCI3 in 75 ul ethanol and 25 ul concentrated HC1 was then applied and heat treated, corresponding to 11% by weight Ni/89% by weight Ru.
Eksempel 2 Example 2
Et strekkmetallgitter av V4A-stål ble sandblåst og forniklet galvanisk i en Watts-elektrolytt. Sjikttykkelsen utgjorde omtrent 5 pm. På det forniklede bærerlegeme ble der på tilsvarende måte som i Eksempel 1 påført tre delsjikt av nikkeloksid og rutheniumoksid. A tensile metal grid of V4A steel was sandblasted and galvanically nickel plated in a Watts electrolyte. The layer thickness was approximately 5 pm. Three partial layers of nickel oxide and ruthenium oxide were applied to the nickel-plated carrier body in a similar manner as in Example 1.
Potensialet for katoden ifølge Eksempel 1 (sirkler) og 2 (trekanter) ble målt som funksjon av strømtettheten i en 20%'s vandig oppløsning av NaOH ved 70°C. Referanseelektroden var en mettet kalomelelektrode. For sammenligning ble katodepotensialet av et sandblåst edelstålblikk (1), et nikkelblikk (2), et platinablikk (3) og den belagte nikkelkatode ifølge Eksempel 1 (4) bestemt (fig. 2). Det lave og med stigende strømtetthet forholdsvis bagatellmessige stigende potensial på katoden ifølge oppfinnelsen behøver ingen nærmere forklaring. Potensialet er også praktisk talt uavhengig av driftstiden, noe målinger ved en lav strømtetthet av 5 kA/m<2> viser (fig. 3). The potential of the cathode according to Example 1 (circles) and 2 (triangles) was measured as a function of the current density in a 20% aqueous solution of NaOH at 70°C. The reference electrode was a saturated calomel electrode. For comparison, the cathode potential of a sandblasted stainless steel tin (1), a nickel tin (2), a platinum tin (3) and the coated nickel cathode according to Example 1 (4) was determined (Fig. 2). The low and relatively trivial rising potential on the cathode according to the invention with increasing current density needs no further explanation. The potential is also practically independent of the operating time, which measurements at a low current density of 5 kA/m<2> show (fig. 3).
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19833322169 DE3322169A1 (en) | 1983-06-21 | 1983-06-21 | CATHODE FOR AQUEOUS ELECTROLYSIS |
Publications (3)
Publication Number | Publication Date |
---|---|
NO842443L NO842443L (en) | 1984-12-27 |
NO161812B true NO161812B (en) | 1989-06-19 |
NO161812C NO161812C (en) | 1989-09-27 |
Family
ID=6201896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO842443A NO161812C (en) | 1983-06-21 | 1984-06-18 | Cathode for aqueous electrolysis. |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0129088B1 (en) |
JP (1) | JPH0689469B2 (en) |
DE (1) | DE3322169A1 (en) |
NO (1) | NO161812C (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3344416A1 (en) * | 1983-12-08 | 1985-12-05 | Sigri GmbH, 8901 Meitingen | Method of producing a cathode for aqueous electrolysis |
FR2579628A1 (en) * | 1985-03-29 | 1986-10-03 | Atochem | CATHODE FOR ELECTROLYSIS AND METHOD FOR MANUFACTURING THE SAME CATHODE |
FR2596776B1 (en) * | 1986-04-03 | 1988-06-03 | Atochem | CATHODE FOR ELECTROLYSIS AND A METHOD FOR MANUFACTURING SAID CATHODE |
DE3612790A1 (en) * | 1986-04-16 | 1987-10-22 | Sigri Gmbh | Cathode for aqueous electrolysis |
US5164062A (en) * | 1990-05-29 | 1992-11-17 | The Dow Chemical Company | Electrocatalytic cathodes and method of preparation |
US5035789A (en) * | 1990-05-29 | 1991-07-30 | The Dow Chemical Company | Electrocatalytic cathodes and methods of preparation |
US5066380A (en) * | 1990-05-29 | 1991-11-19 | The Dow Chemical Company | Electrocatalytic cathodes and method of preparation |
US5227030A (en) * | 1990-05-29 | 1993-07-13 | The Dow Chemical Company | Electrocatalytic cathodes and methods of preparation |
JP2008124855A (en) * | 2006-11-14 | 2008-05-29 | Funai Electric Co Ltd | Speaker device |
DE102010023418A1 (en) * | 2010-06-11 | 2011-12-15 | Uhde Gmbh | Single or multi-sided substrate coating |
CN114643187A (en) * | 2022-03-10 | 2022-06-21 | 宝鸡宝冶钛镍制造有限责任公司 | Nickel cathode active coating of ion-exchange membrane electrolytic cell and nickel cathode surface treatment method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1195871A (en) * | 1967-02-10 | 1970-06-24 | Chemnor Ag | Improvements in or relating to the Manufacture of Electrodes. |
US3990957A (en) * | 1975-11-17 | 1976-11-09 | Ppg Industries, Inc. | Method of electrolysis |
DE2734084A1 (en) * | 1976-08-02 | 1978-02-09 | Goodrich Co B F | Electrolytic prodn. of chlorine and alkali phosphate - using ruthenium coated electrodes as cathodes |
DE2811472A1 (en) * | 1977-03-19 | 1978-09-21 | Tokuyama Soda Kk | CATHODES FOR ELECTROLYTIC CELLS |
US4100049A (en) * | 1977-07-11 | 1978-07-11 | Diamond Shamrock Corporation | Coated cathode for electrolysis cells |
US4544473A (en) * | 1980-05-12 | 1985-10-01 | Energy Conversion Devices, Inc. | Catalytic electrolytic electrode |
JPS6022070B2 (en) * | 1981-09-22 | 1985-05-30 | ペルメレツク電極株式会社 | Cathode for acidic solution electrolysis and its manufacturing method |
AU580002B2 (en) * | 1983-05-31 | 1988-12-22 | Dow Chemical Company, The | Preparation and use of electrodes |
-
1983
- 1983-06-21 DE DE19833322169 patent/DE3322169A1/en active Granted
-
1984
- 1984-05-23 EP EP84105859A patent/EP0129088B1/en not_active Expired
- 1984-06-18 NO NO842443A patent/NO161812C/en not_active IP Right Cessation
- 1984-06-20 JP JP59127243A patent/JPH0689469B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE3322169C2 (en) | 1990-06-13 |
EP0129088A1 (en) | 1984-12-27 |
JPS6017086A (en) | 1985-01-28 |
NO842443L (en) | 1984-12-27 |
DE3322169A1 (en) | 1985-01-10 |
EP0129088B1 (en) | 1987-05-20 |
JPH0689469B2 (en) | 1994-11-09 |
NO161812C (en) | 1989-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0298055B1 (en) | Cathode for electrolysis and process for producing the same | |
US4331528A (en) | Coated metal electrode with improved barrier layer | |
US3701724A (en) | Electrodes for electrochemical processes | |
US3428544A (en) | Electrode coated with activated platinum group coatings | |
EP0218706B1 (en) | Electrodes for use in electrochemical processes and method for preparing the same | |
US4530742A (en) | Electrode and method of preparing same | |
NO322413B1 (en) | Cathode for use in electrolysis of aqueous solutions, their use and the process for the preparation of chlorine and alkali metal hydroxide. | |
NO156420B (en) | CATHODS SUITABLE FOR USE BY A REACTION THAT DEVELOPES HYDROGEN, PROCEDURE FOR MANUFACTURING THEM, AND USE OF THE CATHOD. | |
NO161812B (en) | Cathode for aqueous electrolysis. | |
EP0129734B1 (en) | Preparation and use of electrodes | |
US4456518A (en) | Noble metal-coated cathode | |
US5035789A (en) | Electrocatalytic cathodes and methods of preparation | |
US6231731B1 (en) | Electrolyzing electrode and process for the production thereof | |
US4584085A (en) | Preparation and use of electrodes | |
US5164062A (en) | Electrocatalytic cathodes and method of preparation | |
US3940323A (en) | Anode for electrolytic processes | |
US4572770A (en) | Preparation and use of electrodes in the electrolysis of alkali halides | |
DK153166B (en) | CLOTHED METAL ELECTRODE WITH IMPROVED BARRIER LAYER, PROCEDURE FOR PREPARING SUCH A ELECTRODE, AND USING THE ELECTRIC WIRE AS ANODE BY CHLOR ALKALIE ELECTROLYSIS | |
JP3231556B2 (en) | Method for electrolytic reduction of disulfide compound | |
AU2009299918B2 (en) | Cathode member and bipolar plate for hypochlorite cells | |
US4353790A (en) | Insoluble anode for generating oxygen and process for producing the same | |
IE46061B1 (en) | Manufacture of titanium anodes suitable for use in the electrolytic production of manganese dioxide | |
CA1088026A (en) | Stable electrode for electrochemical applications | |
US7790233B2 (en) | Method for the formation of a coating of metal oxides on an electrically-conductive substrate, resultant activated cathode and use thereof for the electrolysis of aqueous solutions of alkaline metal chlorides | |
NO171566B (en) | ANODE FOR USE IN AN ELECTROLYCLE CELL AND PROCEDURE FOR MANUFACTURING THE ANOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |
Free format text: LAPSED IN DECEMBER 2003 |