NO155935B - R'3 SINH-CONTAINING SILAZAN POLYMES AND PROCEDURES FOR PREPARING THEREOF. - Google Patents
R'3 SINH-CONTAINING SILAZAN POLYMES AND PROCEDURES FOR PREPARING THEREOF. Download PDFInfo
- Publication number
- NO155935B NO155935B NO812260A NO812260A NO155935B NO 155935 B NO155935 B NO 155935B NO 812260 A NO812260 A NO 812260A NO 812260 A NO812260 A NO 812260A NO 155935 B NO155935 B NO 155935B
- Authority
- NO
- Norway
- Prior art keywords
- acid
- catalyst
- hydrogen
- product
- liquid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 17
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 54
- 239000003054 catalyst Substances 0.000 claims description 43
- 239000001257 hydrogen Substances 0.000 claims description 32
- 229910052739 hydrogen Inorganic materials 0.000 claims description 32
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 239000000047 product Substances 0.000 claims description 16
- 238000005695 dehalogenation reaction Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 239000006227 byproduct Substances 0.000 claims description 5
- 238000005984 hydrogenation reaction Methods 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 239000003595 mist Substances 0.000 claims description 5
- 239000011541 reaction mixture Substances 0.000 claims description 4
- 150000007513 acids Chemical class 0.000 claims description 3
- 230000036571 hydration Effects 0.000 claims description 3
- 238000006703 hydration reaction Methods 0.000 claims description 3
- 230000026030 halogenation Effects 0.000 claims description 2
- 238000005658 halogenation reaction Methods 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 12
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 10
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 10
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 10
- 238000005660 chlorination reaction Methods 0.000 description 9
- 239000012467 final product Substances 0.000 description 8
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000012159 carrier gas Substances 0.000 description 6
- 229960005215 dichloroacetic acid Drugs 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- SIEILFNCEFEENQ-UHFFFAOYSA-N dibromoacetic acid Chemical compound OC(=O)C(Br)Br SIEILFNCEFEENQ-UHFFFAOYSA-N 0.000 description 4
- 229910000039 hydrogen halide Inorganic materials 0.000 description 4
- 239000012433 hydrogen halide Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- KDPAWGWELVVRCH-UHFFFAOYSA-N bromoacetic acid Chemical compound OC(=O)CBr KDPAWGWELVVRCH-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical class CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N ethyl formate Chemical compound CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/956—Silicon carbide
- C01B32/963—Preparation from compounds containing silicon
- C01B32/977—Preparation from organic compounds containing silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/60—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/62—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/16—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/02—Amorphous compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/88—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S521/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S521/919—Sintered product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Nanotechnology (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Silicon Polymers (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Description
Fremgangsmåte til partiell dehalogenering av di- og resp. eller trihalogeneddiksyre. Method for partial dehalogenation of di- and resp. or trihaloacetic acid.
Ved fremstillingen av monokloreddiksyre, f. eks. ved direkte klorering av eddiksyre, oppstår det som biprodukter som be-kjent di- og trikloreddiksyre. Man kan holde dannelsen av disse biprodukter in-nen visse grenser, eksempelvis ved den kontinuerlige tekniske fremstilling av monokloreddiksyre ved at man kontinuerlig fjerner ca. 10 til 15 pst. av kloreringsvæsken («sirkulasjonsvæsken») fra krets-løpet. Denne væske som ved siden av di-og trikloreddiksyre dessuten inneholder monokloreddiksyre og ikke omsatt eddiksyre, kan ved klorering helt omsettes til trikloreddiksyre, hvorav det da f. eks. kan fremstilles det tilsvarende natriumsalt. Da behovet for trikloreddiksyre imidlertid er forholdsvis lite er hovedmengden av den nevnte væske et avfallsprodukt som må kasseres. In the production of monochloroacetic acid, e.g. by direct chlorination of acetic acid, it occurs as by-products such as known di- and trichloroacetic acid. The formation of these by-products can be kept within certain limits, for example in the continuous technical production of monochloroacetic acid by continuously removing approx. 10 to 15 percent of the chlorination liquid (the "circulation liquid") from the circuit. This liquid, which besides di- and trichloroacetic acid also contains monochloroacetic acid and unreacted acetic acid, can be completely converted to trichloroacetic acid by chlorination, of which then e.g. the corresponding sodium salt can be prepared. However, as the need for trichloroacetic acid is relatively small, the main amount of the aforementioned liquid is a waste product that must be discarded.
I det tyske patent nr. 910 778 er det In the German patent no. 910 778 it is
allerede vist en vei til å opparbeide den verdiløse kloreringsvæske til nyttig væske ved at man leder den i damptilstand ved en temperatur på 180° — 250°C i nærvær av hydrogen over en egnet hydreringskatalysator. Derved overføres blandingen praktisk talt fullstendig i eddiksyre som er meget anvendbar. Bortsett fra at behovet for eddiksyre imidlertid kan dekkes på already shown a way to work up the worthless chlorination liquid into a useful liquid by passing it in a vapor state at a temperature of 180° — 250°C in the presence of hydrogen over a suitable hydrogenation catalyst. Thereby, the mixture is practically completely transferred into acetic acid, which is very useful. Apart from the fact that the need for acetic acid can be met
annen måte har denne fremgangsmåte den ulempe at den anvendte katalysator blir inaktiv allerede etter ca. 14 dagers drifts-tid på grunn av sterk harpiksdannelse. otherwise, this method has the disadvantage that the catalyst used becomes inactive already after approx. 14 days operating time due to strong resin formation.
Den må deretter regenereres ved avbren-ning av de polymerisasjonsprodukter som forårsaker harpiksdannelsen. Erfarings-messig lar denne regenerasjon seg bare gjennomføre en—to ganger, da deretter harpiksdannelsen er fremskredet så langt at katalysatoren ved avbrenningen helt ødelegges således at den forholdsvis kost-bare edelmetallkatalysator bare har en kort levetid. It must then be regenerated by burning off the polymerization products that cause the resin formation. In terms of experience, this regeneration can only be carried out once or twice, as the resin formation has then progressed to such an extent that the catalyst is completely destroyed during burning, so that the relatively expensive precious metal catalyst only has a short life.
En med hensyn til katalysatorslitasjen mere skånende fremgangsmåte til overfø-ring av kloreringsvæsken i et teknisk ver-difullt produkt beskrives i det tyske patent nr. 1 072 980, som vedrører fremstillingen av monohalogeneddiksyre ved partiell dehalogenering av di- og resp. eller trihalogeneddiksyre, altså en blanding som er iden-tisk med den forannevnte kloreringsvæske. Fremgangsmåten består i det vesentlige i at man dehalogenerer partielt di- og resp. eller trihalogeneddiksyre ved overføring i damptilstand sammen med hydrogen over en hydreringskatalysator ved en temperatur melom 60 og 140°C. Arbeider man da i A more gentle method with regard to catalyst wear for transferring the chlorination liquid into a technically valuable product is described in German patent no. 1 072 980, which relates to the production of monohaloacetic acid by partial dehalogenation of di- and resp. or trihaloacetic acid, i.e. a mixture which is identical to the aforementioned chlorination liquid. The procedure essentially consists in partially dehalogenating di- and resp. or trihaloacetic acid by transfer in the vapor state together with hydrogen over a hydrogenation catalyst at a temperature between 60 and 140°C. Do you then work in
området fra 100°C til 140°C, så oppstår the range from 100°C to 140°C, then occurs
overveiende monohalogeneddiksyre, mens i temperaturområdet fra 60°C til 100°C over-veier dannelsen av dihalogeneddiksyre. predominantly monohaloacetic acid, while in the temperature range from 60°C to 100°C the formation of dihaloacetic acid predominates.
For ved de forholdsvis lave dehalogene-ringstemperaturer å sikre en tilstrekkelig In order to ensure a sufficient at the relatively low dehalogenation temperatures
omsetning er det nødvendig å tilføre de fra kloreringsvæsken utviklede damper hur-tigst mulig til katalysatoren, hvilket be- reaction, it is necessary to supply the vapors developed from the chlorination liquid as quickly as possible to the catalyst, which
virkes ved hjelp av en inert bæregass eller med det for hydrering anvendte hydrogen. Den hertil nødvendige gass- resp. hydrogenmengde utgjør ca. det 30-dobbelte av den til dehalogenering teoretisk nødven-dige hydrogenmengde. is effected by means of an inert carrier gas or with the hydrogen used for hydration. The required gas resp. amount of hydrogen amounts to approx. 30 times the amount of hydrogen theoretically required for dehalogenation.
Ved gjennomføring av denne fremgangsmåte har det nu vist seg at anvendelsen av en inert bæregass eller av hydrogen i de nevnte mengder er teknisk uhel-dig og spesielt uøkonomisk da de i dehalo-generingsreaksjonen deltagende reaksj ons-komponenter i for fortynnet tilstand stry-ker over katalysatorens således at den ved engangs overføring av gassen over katalysatoren passerte mengde er for liten, og derved byr adskillelsen av de i sterkt fortynnet tilstand dannede reaksj onsproduk-ter på store vanskeligheter. Videre kan det ikke unngås at deler av de dannede reaksj onsprodukter, spesielt de med forholdsvis høyt partialtrykk, som f. eks. eddiksyre eller spesielt klorhydrogen utskilles ufull-stendig og således unnviker utad med bæregassen. Endelig gir det i stor fortynning i bæregassen inneholdte klorhydrogen ved utvaskning av gassen med vann bare en syre av lav konsentrasjon som eventuelt må oppkonsentreres. By carrying out this method, it has now been shown that the use of an inert carrier gas or of hydrogen in the mentioned quantities is technically unfortunate and particularly uneconomic as the reaction components participating in the dehalogenation reaction in a too diluted state pass over of the catalyst so that the quantity passed through a single transfer of the gas over the catalyst is too small, and thereby the separation of the reaction products formed in a highly diluted state presents great difficulties. Furthermore, it cannot be avoided that parts of the formed reaction products, especially those with a relatively high partial pressure, such as e.g. acetic acid or especially hydrogen chloride is incompletely secreted and thus escapes outwards with the carrier gas. Finally, when the hydrogen chloride contained in the carrier gas is highly diluted, when the gas is washed out with water, it only gives an acid of low concentration, which may have to be concentrated.
Det er nu overraskende funnet at man kan overvinne ulempene ved de forannevnte fremgangsmåter, spesielt ved fremgangsmåten ifølge det tyske patent nr. 1 072 980, og kan se bort fra anvendelsen av store mengder av en bæregass når man fører halogeneddiksyrene resp. kloreringsvæsken som skal hydreres, i finfordelt dråpeform som tåke sammen med hydrogen over katalysatoren. It has now surprisingly been found that the disadvantages of the above-mentioned methods can be overcome, especially in the method according to German patent no. 1 072 980, and the use of large amounts of a carrier gas can be dispensed with when carrying the halogenoacetic acids resp. the chlorination liquid to be hydrogenated, in finely divided droplet form as a mist, together with hydrogen over the catalyst.
Oppfinnelsen vedrører altså en fremgangsmåte til partiell dehalogenering av di- og resp. eller trihalogeneddiksyre ved overføring av di- og resp. eller trihalogeneddiksyre eller en tilsvarende oppløsning av disse syrer, spesielt en blanding som oppstår som biprodukt ved halogeneringen av eddiksyre til monohalogeneddiksyre og som betegnes som sirkulasjonsvæske, sam-menmed hydrogen over en hydreringskatalysator, som er påført en bærer, idet fremgangsmåten er karakterisert ved at man ! forstøver det foroppvarmede utgangsprodukt ved hjelp av et hydrogenoverskudd eller en blanding av hydrogen og en inertgass til enl fin væsketåke og fører sistnevnte i blanding med hydrogen gjennom en med en hydreringskatalysator fylt katalysatorovn, hvor det opprettholdes en temperatur på 60° — 140°C, hvorpå man ved hjelp av avkjøling adskiller den fra kon-|1 taktovnen uttredende reaksj onsblanding i en etterfølgende utskiller i flytende, dehalogenert produkt på den ene side og gassformede bestanddeler på den andre side, som fjernes over utskillerens hode. The invention therefore relates to a method for partial dehalogenation of di- and resp. or trihaloacetic acid by transfer of di- and resp. or trihaloacetic acid or a corresponding solution of these acids, in particular a mixture that occurs as a by-product of the halogenation of acetic acid to monohaloacetic acid and which is referred to as circulation liquid, together with hydrogen over a hydration catalyst, which is applied to a carrier, the method being characterized by ! atomizes the preheated starting product by means of an excess of hydrogen or a mixture of hydrogen and an inert gas into a fine liquid mist and passes the latter in mixture with hydrogen through a catalyst furnace filled with a hydrogenation catalyst, where a temperature of 60° — 140°C is maintained, whereupon by means of cooling, the reaction mixture emerging from the contact furnace is separated in a subsequent separator into liquid, dehalogenated product on the one hand and gaseous components on the other side, which are removed over the head of the separator.
For forstøvning av utgangsproduktet som fordelaktig foroppvarmes på forhånd til den i katalysator ovnen herskende temperatur, anvender man hensiktsmessig en dyse ved hjelp hvilke utgangsmaterialet enten forstøves ved hjelp av en hydrogen-strøm eller en blanding av hydrogen og en inertgass, som f. eks. nitrogen eller kar-bondioksyd og lignende, inn i katalysator - ovnen. Den fra dysen utstrømmende væsketåke som er sammenblandet med hydrogen, dehalogeneres ved overstrykning av katalysatoren således at fra katalysator - ovnen trer det ut den dehalogenerte blanding sammen med halogenhydrogenet og overskytende hydrogen resp. inertgass. Til dehalogenering er de kjente hydrerings-kataysatorer egnet, som f. eks. metallene fra det periodiske systems 8. gruppe, for-trinnsvis platinagruppens metaller, enkelt-vis eller i blanding, resp. som legering, idet disse metaller i form av deres salter som er påført på et egnet bærestoff, kommer til anvendelse. Selve dehalogeneringsproses-sen kan gjennomføres under atmosfære-trykk eller under nedsatt trykk, idet arbeide i vakuum, eksempelvis under et trykk mellom ca. 20 mm Hg til under atmosfære-trykk, virker gunstig på det dannede frem-gangsmåteprodukts farveløshet. For atomization of the starting product, which is advantageously preheated in advance to the prevailing temperature in the catalyst furnace, a nozzle is suitably used with the help of which the starting material is either atomized by means of a hydrogen stream or a mixture of hydrogen and an inert gas, such as e.g. nitrogen or carbon dioxide and the like, into the catalyst - the furnace. The liquid mist flowing out of the nozzle, which is mixed with hydrogen, is dehalogenated by brushing over the catalyst so that the dehalogenated mixture emerges from the catalyst - furnace together with the hydrogen halide and excess hydrogen resp. inert gas. For dehalogenation, the known hydrogenation catalysts are suitable, such as e.g. the metals from the 8th group of the periodic system, preferably the metals of the platinum group, individually or in a mixture, resp. as an alloy, as these metals are used in the form of their salts applied to a suitable carrier. The dehalogenation process itself can be carried out under atmospheric pressure or under reduced pressure, working in a vacuum, for example under a pressure between approx. 20 mm Hg to below atmospheric pressure, has a beneficial effect on the colorlessness of the process product formed.
Den fra katalysatorovnen uttredende reaksj onsbanding adskilles i etterfølgende utskiller etter foregående avkjøling i flytende og gassformede bestanddeler, idet sistnevnte fjernes øverst og underkastes en fornyet trinnvis etteravkjøling, eksempelvis ved en temperatur mellom ca. +50° og +3°C. De i utskilleren dannede væske-formede bestanddeler av reaksj onsblan-dingen består overveiende av den monohalogeneddiksyre, som inneholder mindre mengder dihalogeneddiksyre, eddiksyre og klorhydrogen. Fra de fra utskilleren fjer-nede gasser kan hydrogenhalogenidet fjernes ved hjelp av vann vasking, således at jjenblivende restgass står til disposisjon til fornyet anvendelse i katalysatorovnen resp. til utgangsproduktets forstøvning. The reaction band emerging from the catalyst furnace is separated in subsequent separators after previous cooling into liquid and gaseous components, the latter being removed at the top and subjected to a renewed stepwise post-cooling, for example at a temperature between approx. +50° and +3°C. The liquid components of the reaction mixture formed in the separator consist predominantly of the monohaloacetic acid, which contains smaller amounts of dihaloacetic acid, acetic acid and hydrogen chloride. From the gases removed from the separator, the hydrogen halide can be removed by means of water washing, so that the remaining residual gas is available for renewed use in the catalyst furnace or to the atomization of the starting product.
En eksempelvis utførelsesform av fremgangsmåten ifølge oppfinnelsen er vist på tegningen hvor 1 angir et forrådskar hvorfra utgangsproduktet som skal hy-Ireres, over ledning 2, etter foregående jppvarmning i oppvarmeren 3 tilføres katalysatorovnen ved hjelp av fordysning. An exemplary embodiment of the method according to the invention is shown in the drawing, where 1 indicates a storage vessel from which the output product to be heated, via line 2, after previous heating in the heater 3, is supplied to the catalyst furnace by means of atomization.
Utgangsproduktets forstøvning fore-går ved hjelp av en dyse 5 ved hjelp av hydrogen som strømmer til dysen 5 over ledning 6. I katalysatorovnen 4 opprettholdes en temperatur på 60° til 140°C. Den i utgangsproduktet inneholdte di- og trihalogeneddiksyre blir ved passering av katalysatoren i nærvær av hydrogen under hydrogenhalogeniddannelse omtrent fullstendig dehalogenert til monohalogeneddiksyre. Den fra katalysatorovnen 4 unn-vikende væsketåke og dampene kommer over ledning 7 under samtidig avkjøling i kjøleren 8 til utskilleren 9, hvori den flytende monohalogeneddiksyre samles og kan tas ut over ledningen 10. Over toppen av utskilleren 9 fjernes over ledning 11 reaksj onsblandingens gassformede bestanddeler og etteravkjøles trinnvis for etter-kondensasj on i et eventuelt med et som solkjøler utformet kjøleaggregat 12. Den på denne måte for flytende bestanddeler rensede gass innføres over ledning 13 i den nedre del av vasketårnet 14, og utvaskes i motstrøm med vann som tilføres til vasketårnet 14 over ledning 15. Tilsvarende den anvendte vaskevannmengde kan det ved bunnen av vasketårnet 14 over ledning 16 uttas en halogenhydrogensyre av ønskelig konsentrasjon. Den for hydrogenhalogenid rensede avgass, som dessuten inneholder overskytende hydrogen og eventuelt inertgass fjernes fra vasketårnet 14 over ledning 17 og blir etter foregående tørk-ning ført over ledning 6 på nytt, sammen med friskt hydrogen inn i katalysatorovnen 4. The starting product is atomized using a nozzle 5 using hydrogen which flows to the nozzle 5 via line 6. In the catalyst furnace 4, a temperature of 60° to 140°C is maintained. The di- and trihaloacetic acid contained in the starting product is almost completely dehalogenated to monohaloacetic acid by passing through the catalyst in the presence of hydrogen during hydrogen halide formation. The liquid mist and vapors escaping from the catalyst furnace 4 come via line 7 while simultaneously cooling in the cooler 8 to the separator 9, in which the liquid monohaloacetic acid collects and can be taken out via line 10. Above the top of the separator 9, the gaseous components of the reaction mixture are removed via line 11 and is further cooled step by step for post-condensation in a cooling unit 12, possibly with a solar cooler. 14 over line 15. Corresponding to the amount of washing water used, a halogenated hydrogen acid of the desired concentration can be withdrawn at the bottom of the washing tower 14 over line 16. The hydrogen halide-purified exhaust gas, which also contains excess hydrogen and possibly inert gas, is removed from the washing tower 14 via line 17 and, after previous drying, is led via line 6 again, together with fresh hydrogen into the catalyst furnace 4.
Fremgangsmåten ifølge oppfinnelsen har i forhold til de kjente arbeidsmåter fordelen! med utgangsproduktets gode do-serbarhet, såvel som at det ikke benyttes store mengder av en bæregass, hvorved det unngås tap av dannede reaksj onsproduk-ter. Videre økes rom-tids-utbytte, og ved arbeide i flytende fase unngås en overopp-hetning og harpiksdannelse på katalysatoren. Endelig overflødiggjøres spesielle opp-løsningsmiddeltilsetninger til utgangsproduktet, slik det er vanlig ved arbeider i gassfase, og det som biprodukt dannede hydrogenhalogenid kan uten spesielle for-holdsregler overføres i en tilsvarende syre av ønskelig konsentrasjon. The method according to the invention has the advantage compared to the known working methods! with the starting product's good dosability, as well as the fact that large quantities of a carrier gas are not used, whereby the loss of formed reaction products is avoided. Furthermore, the space-time yield is increased, and by working in the liquid phase, overheating and resin formation on the catalyst is avoided. Finally, special solvent additions to the starting product are made redundant, as is common when working in the gas phase, and the hydrogen halide formed as a by-product can be transferred without special precautions into a corresponding acid of the desired concentration.
Eksempel 1. Example 1.
I katalysatorovnen som inneholder 1000 ml eller 390 g kornformet silikagel, hvorpå det som katalysator var påført 8 g palladiumklorid, ble det pr. time ved hjelp av 75 ml hydrogen inndyset 250 g utgangs-material med sammensetning: 40,4 pst. monokloreddiksyre 54,8 pst. dikloreddiksyre In the catalyst furnace containing 1000 ml or 390 g of granular silica gel, on which 8 g of palladium chloride had been applied as a catalyst, it was per hour using 75 ml hydrogen injected 250 g starting material with composition: 40.4% monochloroacetic acid 54.8% dichloroacetic acid
1.0 pst: trikloreddiksyre 3,6 pst. eddiksyre 0,1 pst. hydrogenklorid. 1.0%: trichloroacetic acid 3.6% acetic acid 0.1% hydrogen chloride.
I katalysatorovnen ble det opprettholdt en temperatur på 114 — 118°C. Det ble arbeidet ved normalt trykk. Det i utskilleren danende sluttprodukt hadde følgende sammensetning: In the catalyst furnace, a temperature of 114-118°C was maintained. The work was carried out at normal pressure. The final product formed in the separator had the following composition:
89,6 pst. monokloreddiksyre 89.6 percent monochloroacetic acid
4,6 pst. dikloreddiksyre 5.6 pst. eddiksyre 0,1 pst. hydrogenklorid. 4.6% dichloroacetic acid 5.6% acetic acid 0.1% hydrogen chloride.
Sluttproduktets utbytte og det i den konsentrerte saltsyre inneholdte hydrogenklorid beregnet på anvendt utgangsma-terial og forbrukt hydrogen utgjorde 98,8 pst. The yield of the final product and the hydrogen chloride contained in the concentrated hydrochloric acid, calculated on the starting material used and the hydrogen consumed, amounted to 98.8 per cent.
Eksempel 2. Example 2.
I katalysatorovnen som inneholder 1000 ml av den i eksempel 1 anvendte katalysator ble det ved hjelp av 50 ml hydrogen pr. time inndyset 250 g utgangsma-terial av sammensetning: 62,4 pst. dikloreddiksyre 27.6 pst. monokloreddiksyre In the catalyst furnace containing 1000 ml of the catalyst used in example 1, with the help of 50 ml of hydrogen per hour injected 250 g starting material of composition: 62.4 percent dichloroacetic acid 27.6 percent monochloroacetic acid
1.2 pst. trikloreddiksyre 9.1 pst. eddiksyre 0,1 pst. hydrogenklorid. 1.2% trichloroacetic acid 9.1% acetic acid 0.1% hydrogen chloride.
I katalysatorovnen ble det opprettholdt en temperatur på 116° — 117°C og et trykk på 300 mm Hg. Det i utskilleren dannede sluttprodukt hadde følgende sammensetning: In the catalyst furnace, a temperature of 116°-117°C and a pressure of 300 mm Hg were maintained. The final product formed in the separator had the following composition:
84.7 pst. monokloreddiksyre 84.7 percent monochloroacetic acid
5.3 pst. dikloreddiksyre 9.7 pst. eddiksyre 0,1 pst. hydrogenklorid. 5.3% dichloroacetic acid 9.7% acetic acid 0.1% hydrogen chloride.
Sluttproduktets utbytte og det i den konsentrerte saltsyre inneholdt hydrogenklorid beregnet på anvendt utgangsma-terial og forbrukt hydrogen utgjorde 99,3 pst. The yield of the final product and the hydrogen chloride contained in the concentrated hydrochloric acid calculated on the starting material used and the hydrogen consumed amounted to 99.3 per cent.
Eksempel 3. Example 3.
Inn i katalysatorovnen som inneholder 1000 ml av deri i eksempel 1 anvendte katalysator ble det pr. time ved hjelp av 35 liter hydrogen inndyset 250 g av en ved klorering av eddiksyre dannet kloreddik-syreblanding av sammensetning Into the catalyst furnace, which contains 1000 ml of the catalyst used therein in example 1, was per hour using 35 liters of hydrogen inject 250 g of a chloroacetic acid mixture of composition formed by chlorination of acetic acid
25,6 pst. monokloreddiksyre 34.2 pst. dikloreddiksyre 34,8 pst. trikloreddiksyre 25.6% monochloroacetic acid 34.2% dichloroacetic acid 34.8% trichloroacetic acid
5.0 pst. eddiksyre. 5.0 percent acetic acid.
Temperaturen i katalysatorovnen utgjorde 70°C. Det ble arbeidet ved atmos-færetrykk. Det i utskilleren dannede sluttprodukt hadde følgende sammensetning: 28,4 pst. monokloreddiksyre The temperature in the catalyst furnace was 70°C. The work was done at atmospheric pressure. The final product formed in the separator had the following composition: 28.4 percent monochloroacetic acid
61.3 pst. dikloreddiksyre 4.1 pst. trikloreddiksyre 5,6 pst. eddiksyre. 61.3% dichloroacetic acid 4.1% trichloroacetic acid 5.6% acetic acid.
Sluttproduktets utbytte og det i den konsentrerte saltsyre inneholdte hydrogenklorid, beregnet på anvendt utgangsma-terial og forbrukt hydrogen utgjorde 98,1 pst. The yield of the final product and the hydrogen chloride contained in the concentrated hydrochloric acid, calculated on the starting material used and the hydrogen consumed, amounted to 98.1 per cent.
Eksempel 4. Example 4.
Det ble pr. time inndyset 300 g av en ved bromermg av eddiksyre dannet brom-eddiksyreblanding av sammensetning: 58,2 pst. monobromeddiksyre 32,1 pst. dibromeddiksyre 9,4 pst. eddiksyre ved hjelp av 30 liter hydrogen under et trykk på 300 mm Hg inn i katalysatorovnen, som hadde en katalysatorfylling, tilsvarende det som er angitt i eksempel 1. I katalysatorovnen ble det opprettholdt en temperatur på 80°C. Det i utskilleren dannede sluttprodukt hadde følgende sammensetning: 89.0 pst. monobromeddiksyre It was per hour injected 300 g of a bromo-acetic acid mixture formed by bromine mg of acetic acid of composition: 58.2 percent monobromoacetic acid 32.1 percent dibromoacetic acid 9.4 percent acetic acid by means of 30 liters of hydrogen under a pressure of 300 mm Hg into the catalyst furnace, which had a catalyst filling, corresponding to that indicated in example 1. In the catalyst furnace, a temperature of 80°C was maintained. The final product formed in the separator had the following composition: 89.0 percent monobromoacetic acid
0,5 pst. dibromeddiksyre 10.1 pst. eddiksyre. 0.5% dibromoacetic acid 10.1% acetic acid.
Utbyttet av sluttproduktet av dannet hydrogenbromid, beregnet på anvendt ma-terial og forbrukt hydrogen utgjorde 98,3 pst. The yield of the final product of formed hydrogen bromide, calculated on the material used and the hydrogen consumed, was 98.3 per cent.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/225,274 US4340619A (en) | 1981-01-15 | 1981-01-15 | Process for the preparation of poly(disilyl)silazane polymers and the polymers therefrom |
Publications (3)
Publication Number | Publication Date |
---|---|
NO812260L NO812260L (en) | 1982-07-16 |
NO155935B true NO155935B (en) | 1987-03-16 |
NO155935C NO155935C (en) | 1987-06-24 |
Family
ID=22844258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO812260A NO155935C (en) | 1981-01-15 | 1981-07-02 | R'3SINH-CONTINUOUS SILAZAN POLYMES AND PROCEDURES FOR PRODUCING THEREOF. |
Country Status (21)
Country | Link |
---|---|
US (1) | US4340619A (en) |
JP (1) | JPS57117532A (en) |
KR (1) | KR850000130B1 (en) |
AR (1) | AR226940A1 (en) |
AT (1) | AT381321B (en) |
AU (1) | AU538465B2 (en) |
BE (1) | BE889029A (en) |
BR (1) | BR8200189A (en) |
CA (1) | CA1161986A (en) |
CH (1) | CH650266A5 (en) |
DE (1) | DE3119197C2 (en) |
DK (1) | DK286781A (en) |
FI (1) | FI68256C (en) |
FR (1) | FR2497812B1 (en) |
GB (1) | GB2091279B (en) |
IT (1) | IT1167751B (en) |
MX (1) | MX160138A (en) |
NL (1) | NL8101944A (en) |
NO (1) | NO155935C (en) |
SE (1) | SE451457B (en) |
ZA (1) | ZA818502B (en) |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4788309A (en) | 1985-04-26 | 1988-11-29 | Sri International | Method of forming compounds having Si-N groups and resulting products |
US4404153A (en) * | 1981-01-15 | 1983-09-13 | Dow Corning Corporation | Process for the preparation of poly(disilyl)silazane polymers and the polymers therefrom |
US4395460A (en) * | 1981-09-21 | 1983-07-26 | Dow Corning Corporation | Preparation of polysilazane polymers and the polymers therefrom |
GB2119777B (en) * | 1982-01-21 | 1985-07-10 | Nippon Carbon Co Ltd | Process for the preparation of sintered bodies |
US4417042A (en) * | 1982-02-17 | 1983-11-22 | General Electric Company | Scavengers for one-component alkoxy-functional RTV compositions and processes |
US4783516A (en) * | 1983-03-31 | 1988-11-08 | Union Carbide Corporation | Polysilane precursors containing olefinic groups for silicon carbide |
US4460638A (en) * | 1983-04-06 | 1984-07-17 | Dow Corning Corporation | Fiber reinforced glass matrix composites |
US4540803A (en) * | 1983-11-28 | 1985-09-10 | Dow Corning Corporation | Hydrosilazane polymers from [R3 Si]2 NH and HSiCl3 |
US4543344A (en) * | 1983-11-28 | 1985-09-24 | Dow Corning Corporation | Silicon nitride-containing ceramic material prepared by pyrolysis of hydrosilazane polymers from (R3 Si)2 NH and HSiCl3 |
US4482689A (en) * | 1984-03-12 | 1984-11-13 | Dow Corning Corporation | Process for the preparation of polymetallo(disily)silazane polymers and the polymers therefrom |
US4535007A (en) * | 1984-07-02 | 1985-08-13 | Dow Corning Corporation | Silicon nitride-containing ceramics |
US4668642A (en) * | 1984-09-11 | 1987-05-26 | Dow Corning Corporation | Ceramic materials from silazane polymers |
CA1241972A (en) * | 1984-09-11 | 1988-09-13 | Dow Corning Corporation | Ceramic materials from silazane polymers |
US4757035A (en) * | 1984-09-21 | 1988-07-12 | Dow Corning Corporation | Ceramic materials with increased crystallinity from silazane polymers |
FR2577933B1 (en) * | 1985-02-27 | 1987-02-20 | Rhone Poulenc Rech | PROCESS FOR THE PREPARATION OF ORGANOPOLYSILAZANES AND ORGANOPOLY (DISILYL) SILAZANES WITH IMPROVED THERMAL RESISTANCE AND THE USE THEREOF IN PARTICULAR AS A CERAMIC PRECURSOR |
US5008422A (en) * | 1985-04-26 | 1991-04-16 | Sri International | Polysilazanes and related compositions, processes and uses |
US4767831A (en) * | 1985-06-24 | 1988-08-30 | Dow Corning Corporation | Process for preparing ceramic materials |
EP0206449A3 (en) * | 1985-06-24 | 1987-06-24 | Dow Corning Corporation | A process for preparing ceramic materials |
FR2584080B1 (en) * | 1985-06-26 | 1987-12-31 | Rhone Poulenc Rech | METHOD OF THERMAL TREATMENT OF A POLYSILAZANE CONTAINING SIH GROUPS AND SI-N- GROUPS |
US4789507A (en) * | 1985-10-28 | 1988-12-06 | Hoechst Celanese Corporation | Production of preceramic and ceramic fibers from friable, thermally sensitive organosilicon preceramic polymers |
JPS62156135A (en) * | 1985-12-28 | 1987-07-11 | Toa Nenryo Kogyo Kk | Polyorgano (hydro) silazane |
US5503817A (en) * | 1986-01-16 | 1996-04-02 | Hoechst Celanese Corp. | Curing of preceramic articles with gaseous hydrogen halide |
US4863799A (en) * | 1986-05-22 | 1989-09-05 | Hoechst Celanese Corp. | Sheath core spun organosilicon preceramic fibers and processes for production |
JPS62290730A (en) * | 1986-06-10 | 1987-12-17 | Shin Etsu Chem Co Ltd | Production of organosilazane polymer and production of ceramics using said polymer |
DE3620635A1 (en) * | 1986-06-20 | 1987-12-23 | Wacker Chemie Gmbh | METHOD FOR REDUCING THE HALOGEN CONTENT OF HALOGEN-CONTAINING POLYCARBOSILANS AND POLYSILANS |
US4746480A (en) * | 1986-08-11 | 1988-05-24 | Hoechst Celanese Corporation | Process for providing a protective oxide coating on ceramic fibers |
JPS6370145U (en) * | 1986-10-24 | 1988-05-11 | ||
JPS63117037A (en) * | 1986-10-31 | 1988-05-21 | Shin Etsu Chem Co Ltd | Organosilazane polymer and production of ceramics therefrom |
US4869854A (en) * | 1986-10-31 | 1989-09-26 | Shin-Etsu Chemical Co., Ltd. | Process for manufacturing organic silazane polymers and ceramics therefrom |
US4743662A (en) * | 1986-11-03 | 1988-05-10 | Dow Corning Corporation | Infusible preceramic polymers via plasma treatment |
DE3639511A1 (en) * | 1986-11-20 | 1988-06-01 | Wacker Chemie Gmbh | Process for the preparation of silazane polymers |
US4822697A (en) * | 1986-12-03 | 1989-04-18 | Dow Corning Corporation | Platinum and rhodium catalysis of low temperature formation multilayer ceramics |
US4756977A (en) * | 1986-12-03 | 1988-07-12 | Dow Corning Corporation | Multilayer ceramics from hydrogen silsesquioxane |
US4826733A (en) * | 1986-12-03 | 1989-05-02 | Dow Corning Corporation | Sin-containing coatings for electronic devices |
US4749631B1 (en) * | 1986-12-04 | 1993-03-23 | Multilayer ceramics from silicate esters | |
US4911992A (en) * | 1986-12-04 | 1990-03-27 | Dow Corning Corporation | Platinum or rhodium catalyzed multilayer ceramic coatings from hydrogen silsesquioxane resin and metal oxides |
US4753855A (en) * | 1986-12-04 | 1988-06-28 | Dow Corning Corporation | Multilayer ceramic coatings from metal oxides for protection of electronic devices |
US4962175A (en) * | 1986-12-22 | 1990-10-09 | Dow Corning Corporation | Alkylpoly (polysilyl) azane preceramic polymers |
US4753856A (en) * | 1987-01-02 | 1988-06-28 | Dow Corning Corporation | Multilayer ceramic coatings from silicate esters and metal oxides |
JPS63210133A (en) * | 1987-02-25 | 1988-08-31 | Shin Etsu Chem Co Ltd | Organosilazane polymer and production of ceramics therefrom |
US4835238A (en) * | 1987-06-08 | 1989-05-30 | Dow Corning Corporation | Polysilacyclobutasilazanes |
US4774312A (en) * | 1987-06-08 | 1988-09-27 | Dow Corning Corporation | Polydisilacyclobutasilazanes |
US4916200A (en) * | 1987-06-08 | 1990-04-10 | Dow Corning Corporation | Silane modified polysilacyclobutasilazanes |
FR2616436B1 (en) * | 1987-06-10 | 1989-12-29 | Europ Propulsion | SI-N AND SI-SI BINDING COPOLYMERS, POLYCARBOSILAZANES OBTAINED BY PYROLYSIS OF SAID COPOLYMERS AND USE OF SAID POLYCARBOSILAZANES FOR THE PREPARATION OF SILICON CARBONITRIDE |
US4810443A (en) * | 1987-07-02 | 1989-03-07 | Dow Corning Coporation | Method for forming filaments from a resin |
US4847027A (en) * | 1987-07-06 | 1989-07-11 | Dow Corning Corporation | Infusible preceramic polymers via nitric oxide treatment |
US4800221A (en) * | 1987-08-25 | 1989-01-24 | Dow Corning Corporation | Silicon carbide preceramic polymers |
US4772516A (en) * | 1987-11-09 | 1988-09-20 | Mahone Louis G | Stable methylpolydisilylazane polymers |
US4929742A (en) * | 1988-11-28 | 1990-05-29 | Dow Corning Corporation | Silane modified polysilacyclobutasilazanes |
US5547623A (en) * | 1989-08-21 | 1996-08-20 | Dow Corning Corporation | Method for continuous spinning and pyrolysis of ceramic filaments from a resin |
FR2652081A1 (en) * | 1989-09-21 | 1991-03-22 | Rhone Poulenc Chimie | PROCESS FOR PREPARING AN SI3N4-SIC COMPOSITE |
US5256487A (en) * | 1989-12-08 | 1993-10-26 | The B. F. Goodrich Company | High char yield silazane derived preceramic polymers and cured compositions thereof |
US5545687A (en) * | 1990-02-21 | 1996-08-13 | Dow Corning Corporation | Preparation of high density boron carbide ceramics with preceramic polymer binders |
US5051215A (en) * | 1990-03-21 | 1991-09-24 | Dow Corning Corporation | Curing preceramic polymers by exposure to nitrogen dioxide |
US5783139A (en) * | 1990-04-18 | 1998-07-21 | Curran; Dennis John Gerard | Ceramic materials |
DE4217579A1 (en) * | 1992-05-27 | 1993-12-02 | Wacker Chemie Gmbh | Process for the production of polysilazanes |
US5292830A (en) * | 1991-06-20 | 1994-03-08 | Tonen Corporation | Thermosetting copolymers, silicon carbide-based fiber and processes for producing same |
CA2104340A1 (en) * | 1992-08-31 | 1994-03-01 | Grish Chandra | Hermetic protection for integrated circuits |
US6146559A (en) | 1994-07-28 | 2000-11-14 | Dow Corning Corporation | Preparation of high density titanium diboride ceramics with preceramic polymer binders |
US5449646A (en) | 1994-07-29 | 1995-09-12 | Dow Corning Corporation | Preparation of high density zirconium diboride ceramics with preceramic polymer binders |
US5447893A (en) | 1994-08-01 | 1995-09-05 | Dow Corning Corporation | Preparation of high density titanium carbide ceramics with preceramic polymer binders |
CA2154216A1 (en) | 1994-08-01 | 1996-02-02 | Gregg Alan Zank | Preparation of high density zirconium carbide ceramics with preceramic polymer binders |
US5613993A (en) * | 1995-08-29 | 1997-03-25 | The United States Of America As Represented By The Secretary Of The Army | Process for encapsulating a shaped body for hot isostatic pressing by sol-gel method |
US5776235A (en) * | 1996-10-04 | 1998-07-07 | Dow Corning Corporation | Thick opaque ceramic coatings |
US5807611A (en) * | 1996-10-04 | 1998-09-15 | Dow Corning Corporation | Electronic coatings |
US5711987A (en) * | 1996-10-04 | 1998-01-27 | Dow Corning Corporation | Electronic coatings |
KR20090097948A (en) * | 2006-12-28 | 2009-09-16 | 다우 코닝 도레이 캄파니 리미티드 | Porous silicon-containing carbon-based composite material and electrode and battery composed thereof |
WO2008123311A1 (en) * | 2007-03-27 | 2008-10-16 | Tokyo Institute Of Technology | Method for producing positive electrode material for secondary battery |
US7842774B2 (en) * | 2007-07-24 | 2010-11-30 | United Technologies Corporation | Preceramic silazane polymer for ceramic materials |
WO2009096501A1 (en) | 2008-01-30 | 2009-08-06 | Dow Corning Toray Co., Ltd. | Silicon-containing particle, process for producing the same, organic-polymer composition, ceramic, and process for producing the same |
CN102015844B (en) * | 2008-04-30 | 2013-11-06 | 道康宁东丽株式会社 | Silicon-containing particles, method for manufacturing thereof, oil composition, ceramic material, and method for manufacturing thereof |
US20120121981A1 (en) | 2009-07-31 | 2012-05-17 | Yukinari Harimoto | Electrode Active Material, Electrode, And Electricity Storage Device |
EP2466670A1 (en) | 2009-07-31 | 2012-06-20 | Dow Corning Toray Co., Ltd. | Electrode active material, electrode, and electricity storage device |
US8987402B2 (en) | 2010-02-26 | 2015-03-24 | General Electric Company | Stoichiometric silicon carbide fibers from thermo-chemically cured polysilazanes |
US9045347B2 (en) * | 2010-02-26 | 2015-06-02 | General Electric Company | Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes |
JP2012178224A (en) | 2011-01-31 | 2012-09-13 | Dow Corning Toray Co Ltd | Manufacturing method of surface carbon-coating silicon-containing carbon-based composite material |
JP2013157221A (en) | 2012-01-30 | 2013-08-15 | Dow Corning Toray Co Ltd | Silicon-containing carbon-based composite material |
US9593210B1 (en) * | 2015-06-03 | 2017-03-14 | General Electric Company | Methods of preparing polysilazane resin with low halogen content |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL22431A (en) * | 1964-11-12 | 1968-11-27 | Fuchs J | Process for the production of disilazanes and the products obtained by this method |
US3553242A (en) * | 1968-04-26 | 1971-01-05 | Monsanto Co | Process for preparing 1,3-disilyl-1,3,2,4-diazadisiletidines |
US3738906A (en) * | 1970-08-21 | 1973-06-12 | Atlantic Res Corp | Pyrolytic graphite silicon carbide microcomposites |
US3755397A (en) * | 1971-06-01 | 1973-08-28 | Dow Corning | Silylating agent |
GB1370478A (en) * | 1971-11-19 | 1974-10-16 | Rolls Royce | Injection of a ceramic into a mould |
DE2218960A1 (en) * | 1972-04-19 | 1973-11-08 | Bayer Ag | MOLDED BODIES FROM MOGENIC MIXTURES OF SILICON CARBIDE AND SILICON NITRIDE AND PROCESS FOR THEIR PRODUCTION |
DE2243527A1 (en) * | 1972-09-05 | 1974-04-18 | Bayer Ag | MOLDED BODIES FROM HOMOGENOUS MIXTURES OF SILICON CARBIDE AND SILICON NITRIDE AND THE PROCESS FOR THEIR PRODUCTION |
DE2364989C3 (en) * | 1973-12-28 | 1979-10-18 | Consortium Fuer Elektrochemische Industrie Gmbh, 8000 Muenchen | Process for the production of layers of silicon carbide on a silicon substrate |
US4067955A (en) * | 1975-10-03 | 1978-01-10 | Ford Motor Company | Method of forming a silicon carbide article |
JPS52112700A (en) * | 1976-02-28 | 1977-09-21 | Tohoku Daigaku Kinzoku Zairyo | Amorphous organopolysilicone composite for preparing silicone carbide |
GB1590011A (en) * | 1976-08-17 | 1981-05-28 | Kyoto Ceramic | Method of producing dense sintered silicon carbide body from polycarbosilane |
GB2039787B (en) * | 1978-11-13 | 1982-12-08 | Res Inst For Special Inorganic | Producing corrosion resistant articles |
-
1981
- 1981-01-15 US US06/225,274 patent/US4340619A/en not_active Expired - Fee Related
- 1981-04-02 CA CA000374461A patent/CA1161986A/en not_active Expired
- 1981-04-03 GB GB8110493A patent/GB2091279B/en not_active Expired
- 1981-04-08 AU AU69178/81A patent/AU538465B2/en not_active Ceased
- 1981-04-21 KR KR1019810001355A patent/KR850000130B1/en active
- 1981-04-21 NL NL8101944A patent/NL8101944A/en not_active Application Discontinuation
- 1981-04-30 IT IT21468/81A patent/IT1167751B/en active
- 1981-05-06 JP JP56068089A patent/JPS57117532A/en active Granted
- 1981-05-14 DE DE3119197A patent/DE3119197C2/en not_active Expired
- 1981-05-25 FR FR8110326A patent/FR2497812B1/en not_active Expired
- 1981-06-01 BE BE0/204953A patent/BE889029A/en not_active IP Right Cessation
- 1981-06-24 SE SE8103956A patent/SE451457B/en not_active IP Right Cessation
- 1981-06-29 DK DK286781A patent/DK286781A/en not_active Application Discontinuation
- 1981-06-30 FI FI812043A patent/FI68256C/en not_active IP Right Cessation
- 1981-07-02 NO NO812260A patent/NO155935C/en unknown
- 1981-12-08 ZA ZA818502A patent/ZA818502B/en unknown
- 1981-12-11 AR AR287779A patent/AR226940A1/en active
-
1982
- 1982-01-08 AT AT0003882A patent/AT381321B/en not_active IP Right Cessation
- 1982-01-11 CH CH140/82A patent/CH650266A5/en not_active IP Right Cessation
- 1982-01-14 BR BR8200189A patent/BR8200189A/en unknown
- 1982-01-14 MX MX190974A patent/MX160138A/en unknown
Also Published As
Publication number | Publication date |
---|---|
FI68256B (en) | 1985-04-30 |
BE889029A (en) | 1981-12-01 |
SE451457B (en) | 1987-10-12 |
DE3119197A1 (en) | 1982-07-22 |
CH650266A5 (en) | 1985-07-15 |
BR8200189A (en) | 1982-11-09 |
CA1161986A (en) | 1984-02-07 |
FI812043L (en) | 1982-07-16 |
JPS57117532A (en) | 1982-07-22 |
FR2497812A1 (en) | 1982-07-16 |
IT8121468A0 (en) | 1981-04-30 |
ATA3882A (en) | 1986-02-15 |
ZA818502B (en) | 1982-12-29 |
US4340619A (en) | 1982-07-20 |
AR226940A1 (en) | 1982-08-31 |
NO155935C (en) | 1987-06-24 |
FR2497812B1 (en) | 1986-04-11 |
IT1167751B (en) | 1987-05-13 |
DE3119197C2 (en) | 1985-07-18 |
SE8103956L (en) | 1982-07-16 |
GB2091279A (en) | 1982-07-28 |
MX160138A (en) | 1989-12-06 |
AT381321B (en) | 1986-09-25 |
DK286781A (en) | 1982-07-16 |
AU6917881A (en) | 1982-07-22 |
FI68256C (en) | 1985-08-12 |
KR850000130B1 (en) | 1985-02-27 |
NO812260L (en) | 1982-07-16 |
JPS6138933B2 (en) | 1986-09-01 |
KR830005285A (en) | 1983-08-13 |
GB2091279B (en) | 1984-11-21 |
NL8101944A (en) | 1982-08-02 |
AU538465B2 (en) | 1984-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO155935B (en) | R'3 SINH-CONTAINING SILAZAN POLYMES AND PROCEDURES FOR PREPARING THEREOF. | |
CN101311151B (en) | Process for the preparation of 3,3-dimethylbutanal | |
AU616551B2 (en) | Process for starting-up an ethylene oxide reactor | |
JPH07121894B2 (en) | Preparation of aromatic diamino compounds using modified Rani catalyst | |
KR940008911B1 (en) | Method for producing and manufacturing direct aromatic monoamines and aromatic diamines via controlled nitration from benzene or benzene derivatives | |
JP2801358B2 (en) | Method for producing high-purity aniline | |
JP2840929B2 (en) | Method for producing difluoromethane | |
US3700605A (en) | Catalysts | |
EP0002308A1 (en) | Catalytic hydrogenation process for the manufacture of aromatic amines | |
US6291729B1 (en) | Halofluorocarbon hydrogenolysis | |
US10683247B1 (en) | Catalysts and integrated processes for producing trifluoroiodomethane | |
CN108911968B (en) | Method for purifying monochloroacetic acid by catalytic rectification | |
JPS606925B2 (en) | Process for producing unsaturated hydrocarbons | |
JP3268890B2 (en) | Method for producing 1,3-cyclohexanedicarboxylic acid | |
JPS6069047A (en) | Production of 1,1,1,3,3,3-hexafluoropropan-2-ol | |
US4003984A (en) | Production of sulfuryl fluoride | |
CN110639552A (en) | Platinum-based composite carbon-aluminum catalyst and method for continuously producing 2B oil | |
US2671803A (en) | Dehalogenation of halogeno acetic acids by hydrogenation | |
CN105130816A (en) | Preparing process of di-isobutyl hexahydrophthalate | |
JP2011523957A (en) | Continuous process for producing hexafluoroisopropanol | |
GB1575883A (en) | Production of 1,2-dichloroethane | |
JPH0420845B2 (en) | ||
KR100365023B1 (en) | A process for recovering acetic acid from methylacetate | |
JP3769312B2 (en) | Method for producing succinic acid | |
US4152525A (en) | Method of recovering butadiene gas from an acetoxylation process |