[go: up one dir, main page]

NO155935B - R'3 SINH-CONTAINING SILAZAN POLYMES AND PROCEDURES FOR PREPARING THEREOF. - Google Patents

R'3 SINH-CONTAINING SILAZAN POLYMES AND PROCEDURES FOR PREPARING THEREOF. Download PDF

Info

Publication number
NO155935B
NO155935B NO812260A NO812260A NO155935B NO 155935 B NO155935 B NO 155935B NO 812260 A NO812260 A NO 812260A NO 812260 A NO812260 A NO 812260A NO 155935 B NO155935 B NO 155935B
Authority
NO
Norway
Prior art keywords
acid
catalyst
hydrogen
product
liquid
Prior art date
Application number
NO812260A
Other languages
Norwegian (no)
Other versions
NO155935C (en
NO812260L (en
Inventor
John Henry Gaul Jr
Original Assignee
Dow Corning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning filed Critical Dow Corning
Publication of NO812260L publication Critical patent/NO812260L/en
Publication of NO155935B publication Critical patent/NO155935B/en
Publication of NO155935C publication Critical patent/NO155935C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/977Preparation from organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/16Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S521/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S521/919Sintered product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Silicon Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

Fremgangsmåte til partiell dehalogenering av di- og resp. eller trihalogeneddiksyre. Method for partial dehalogenation of di- and resp. or trihaloacetic acid.

Ved fremstillingen av monokloreddiksyre, f. eks. ved direkte klorering av eddiksyre, oppstår det som biprodukter som be-kjent di- og trikloreddiksyre. Man kan holde dannelsen av disse biprodukter in-nen visse grenser, eksempelvis ved den kontinuerlige tekniske fremstilling av monokloreddiksyre ved at man kontinuerlig fjerner ca. 10 til 15 pst. av kloreringsvæsken («sirkulasjonsvæsken») fra krets-løpet. Denne væske som ved siden av di-og trikloreddiksyre dessuten inneholder monokloreddiksyre og ikke omsatt eddiksyre, kan ved klorering helt omsettes til trikloreddiksyre, hvorav det da f. eks. kan fremstilles det tilsvarende natriumsalt. Da behovet for trikloreddiksyre imidlertid er forholdsvis lite er hovedmengden av den nevnte væske et avfallsprodukt som må kasseres. In the production of monochloroacetic acid, e.g. by direct chlorination of acetic acid, it occurs as by-products such as known di- and trichloroacetic acid. The formation of these by-products can be kept within certain limits, for example in the continuous technical production of monochloroacetic acid by continuously removing approx. 10 to 15 percent of the chlorination liquid (the "circulation liquid") from the circuit. This liquid, which besides di- and trichloroacetic acid also contains monochloroacetic acid and unreacted acetic acid, can be completely converted to trichloroacetic acid by chlorination, of which then e.g. the corresponding sodium salt can be prepared. However, as the need for trichloroacetic acid is relatively small, the main amount of the aforementioned liquid is a waste product that must be discarded.

I det tyske patent nr. 910 778 er det In the German patent no. 910 778 it is

allerede vist en vei til å opparbeide den verdiløse kloreringsvæske til nyttig væske ved at man leder den i damptilstand ved en temperatur på 180° — 250°C i nærvær av hydrogen over en egnet hydreringskatalysator. Derved overføres blandingen praktisk talt fullstendig i eddiksyre som er meget anvendbar. Bortsett fra at behovet for eddiksyre imidlertid kan dekkes på already shown a way to work up the worthless chlorination liquid into a useful liquid by passing it in a vapor state at a temperature of 180° — 250°C in the presence of hydrogen over a suitable hydrogenation catalyst. Thereby, the mixture is practically completely transferred into acetic acid, which is very useful. Apart from the fact that the need for acetic acid can be met

annen måte har denne fremgangsmåte den ulempe at den anvendte katalysator blir inaktiv allerede etter ca. 14 dagers drifts-tid på grunn av sterk harpiksdannelse. otherwise, this method has the disadvantage that the catalyst used becomes inactive already after approx. 14 days operating time due to strong resin formation.

Den må deretter regenereres ved avbren-ning av de polymerisasjonsprodukter som forårsaker harpiksdannelsen. Erfarings-messig lar denne regenerasjon seg bare gjennomføre en—to ganger, da deretter harpiksdannelsen er fremskredet så langt at katalysatoren ved avbrenningen helt ødelegges således at den forholdsvis kost-bare edelmetallkatalysator bare har en kort levetid. It must then be regenerated by burning off the polymerization products that cause the resin formation. In terms of experience, this regeneration can only be carried out once or twice, as the resin formation has then progressed to such an extent that the catalyst is completely destroyed during burning, so that the relatively expensive precious metal catalyst only has a short life.

En med hensyn til katalysatorslitasjen mere skånende fremgangsmåte til overfø-ring av kloreringsvæsken i et teknisk ver-difullt produkt beskrives i det tyske patent nr. 1 072 980, som vedrører fremstillingen av monohalogeneddiksyre ved partiell dehalogenering av di- og resp. eller trihalogeneddiksyre, altså en blanding som er iden-tisk med den forannevnte kloreringsvæske. Fremgangsmåten består i det vesentlige i at man dehalogenerer partielt di- og resp. eller trihalogeneddiksyre ved overføring i damptilstand sammen med hydrogen over en hydreringskatalysator ved en temperatur melom 60 og 140°C. Arbeider man da i A more gentle method with regard to catalyst wear for transferring the chlorination liquid into a technically valuable product is described in German patent no. 1 072 980, which relates to the production of monohaloacetic acid by partial dehalogenation of di- and resp. or trihaloacetic acid, i.e. a mixture which is identical to the aforementioned chlorination liquid. The procedure essentially consists in partially dehalogenating di- and resp. or trihaloacetic acid by transfer in the vapor state together with hydrogen over a hydrogenation catalyst at a temperature between 60 and 140°C. Do you then work in

området fra 100°C til 140°C, så oppstår the range from 100°C to 140°C, then occurs

overveiende monohalogeneddiksyre, mens i temperaturområdet fra 60°C til 100°C over-veier dannelsen av dihalogeneddiksyre. predominantly monohaloacetic acid, while in the temperature range from 60°C to 100°C the formation of dihaloacetic acid predominates.

For ved de forholdsvis lave dehalogene-ringstemperaturer å sikre en tilstrekkelig In order to ensure a sufficient at the relatively low dehalogenation temperatures

omsetning er det nødvendig å tilføre de fra kloreringsvæsken utviklede damper hur-tigst mulig til katalysatoren, hvilket be- reaction, it is necessary to supply the vapors developed from the chlorination liquid as quickly as possible to the catalyst, which

virkes ved hjelp av en inert bæregass eller med det for hydrering anvendte hydrogen. Den hertil nødvendige gass- resp. hydrogenmengde utgjør ca. det 30-dobbelte av den til dehalogenering teoretisk nødven-dige hydrogenmengde. is effected by means of an inert carrier gas or with the hydrogen used for hydration. The required gas resp. amount of hydrogen amounts to approx. 30 times the amount of hydrogen theoretically required for dehalogenation.

Ved gjennomføring av denne fremgangsmåte har det nu vist seg at anvendelsen av en inert bæregass eller av hydrogen i de nevnte mengder er teknisk uhel-dig og spesielt uøkonomisk da de i dehalo-generingsreaksjonen deltagende reaksj ons-komponenter i for fortynnet tilstand stry-ker over katalysatorens således at den ved engangs overføring av gassen over katalysatoren passerte mengde er for liten, og derved byr adskillelsen av de i sterkt fortynnet tilstand dannede reaksj onsproduk-ter på store vanskeligheter. Videre kan det ikke unngås at deler av de dannede reaksj onsprodukter, spesielt de med forholdsvis høyt partialtrykk, som f. eks. eddiksyre eller spesielt klorhydrogen utskilles ufull-stendig og således unnviker utad med bæregassen. Endelig gir det i stor fortynning i bæregassen inneholdte klorhydrogen ved utvaskning av gassen med vann bare en syre av lav konsentrasjon som eventuelt må oppkonsentreres. By carrying out this method, it has now been shown that the use of an inert carrier gas or of hydrogen in the mentioned quantities is technically unfortunate and particularly uneconomic as the reaction components participating in the dehalogenation reaction in a too diluted state pass over of the catalyst so that the quantity passed through a single transfer of the gas over the catalyst is too small, and thereby the separation of the reaction products formed in a highly diluted state presents great difficulties. Furthermore, it cannot be avoided that parts of the formed reaction products, especially those with a relatively high partial pressure, such as e.g. acetic acid or especially hydrogen chloride is incompletely secreted and thus escapes outwards with the carrier gas. Finally, when the hydrogen chloride contained in the carrier gas is highly diluted, when the gas is washed out with water, it only gives an acid of low concentration, which may have to be concentrated.

Det er nu overraskende funnet at man kan overvinne ulempene ved de forannevnte fremgangsmåter, spesielt ved fremgangsmåten ifølge det tyske patent nr. 1 072 980, og kan se bort fra anvendelsen av store mengder av en bæregass når man fører halogeneddiksyrene resp. kloreringsvæsken som skal hydreres, i finfordelt dråpeform som tåke sammen med hydrogen over katalysatoren. It has now surprisingly been found that the disadvantages of the above-mentioned methods can be overcome, especially in the method according to German patent no. 1 072 980, and the use of large amounts of a carrier gas can be dispensed with when carrying the halogenoacetic acids resp. the chlorination liquid to be hydrogenated, in finely divided droplet form as a mist, together with hydrogen over the catalyst.

Oppfinnelsen vedrører altså en fremgangsmåte til partiell dehalogenering av di- og resp. eller trihalogeneddiksyre ved overføring av di- og resp. eller trihalogeneddiksyre eller en tilsvarende oppløsning av disse syrer, spesielt en blanding som oppstår som biprodukt ved halogeneringen av eddiksyre til monohalogeneddiksyre og som betegnes som sirkulasjonsvæske, sam-menmed hydrogen over en hydreringskatalysator, som er påført en bærer, idet fremgangsmåten er karakterisert ved at man ! forstøver det foroppvarmede utgangsprodukt ved hjelp av et hydrogenoverskudd eller en blanding av hydrogen og en inertgass til enl fin væsketåke og fører sistnevnte i blanding med hydrogen gjennom en med en hydreringskatalysator fylt katalysatorovn, hvor det opprettholdes en temperatur på 60° — 140°C, hvorpå man ved hjelp av avkjøling adskiller den fra kon-|1 taktovnen uttredende reaksj onsblanding i en etterfølgende utskiller i flytende, dehalogenert produkt på den ene side og gassformede bestanddeler på den andre side, som fjernes over utskillerens hode. The invention therefore relates to a method for partial dehalogenation of di- and resp. or trihaloacetic acid by transfer of di- and resp. or trihaloacetic acid or a corresponding solution of these acids, in particular a mixture that occurs as a by-product of the halogenation of acetic acid to monohaloacetic acid and which is referred to as circulation liquid, together with hydrogen over a hydration catalyst, which is applied to a carrier, the method being characterized by ! atomizes the preheated starting product by means of an excess of hydrogen or a mixture of hydrogen and an inert gas into a fine liquid mist and passes the latter in mixture with hydrogen through a catalyst furnace filled with a hydrogenation catalyst, where a temperature of 60° — 140°C is maintained, whereupon by means of cooling, the reaction mixture emerging from the contact furnace is separated in a subsequent separator into liquid, dehalogenated product on the one hand and gaseous components on the other side, which are removed over the head of the separator.

For forstøvning av utgangsproduktet som fordelaktig foroppvarmes på forhånd til den i katalysator ovnen herskende temperatur, anvender man hensiktsmessig en dyse ved hjelp hvilke utgangsmaterialet enten forstøves ved hjelp av en hydrogen-strøm eller en blanding av hydrogen og en inertgass, som f. eks. nitrogen eller kar-bondioksyd og lignende, inn i katalysator - ovnen. Den fra dysen utstrømmende væsketåke som er sammenblandet med hydrogen, dehalogeneres ved overstrykning av katalysatoren således at fra katalysator - ovnen trer det ut den dehalogenerte blanding sammen med halogenhydrogenet og overskytende hydrogen resp. inertgass. Til dehalogenering er de kjente hydrerings-kataysatorer egnet, som f. eks. metallene fra det periodiske systems 8. gruppe, for-trinnsvis platinagruppens metaller, enkelt-vis eller i blanding, resp. som legering, idet disse metaller i form av deres salter som er påført på et egnet bærestoff, kommer til anvendelse. Selve dehalogeneringsproses-sen kan gjennomføres under atmosfære-trykk eller under nedsatt trykk, idet arbeide i vakuum, eksempelvis under et trykk mellom ca. 20 mm Hg til under atmosfære-trykk, virker gunstig på det dannede frem-gangsmåteprodukts farveløshet. For atomization of the starting product, which is advantageously preheated in advance to the prevailing temperature in the catalyst furnace, a nozzle is suitably used with the help of which the starting material is either atomized by means of a hydrogen stream or a mixture of hydrogen and an inert gas, such as e.g. nitrogen or carbon dioxide and the like, into the catalyst - the furnace. The liquid mist flowing out of the nozzle, which is mixed with hydrogen, is dehalogenated by brushing over the catalyst so that the dehalogenated mixture emerges from the catalyst - furnace together with the hydrogen halide and excess hydrogen resp. inert gas. For dehalogenation, the known hydrogenation catalysts are suitable, such as e.g. the metals from the 8th group of the periodic system, preferably the metals of the platinum group, individually or in a mixture, resp. as an alloy, as these metals are used in the form of their salts applied to a suitable carrier. The dehalogenation process itself can be carried out under atmospheric pressure or under reduced pressure, working in a vacuum, for example under a pressure between approx. 20 mm Hg to below atmospheric pressure, has a beneficial effect on the colorlessness of the process product formed.

Den fra katalysatorovnen uttredende reaksj onsbanding adskilles i etterfølgende utskiller etter foregående avkjøling i flytende og gassformede bestanddeler, idet sistnevnte fjernes øverst og underkastes en fornyet trinnvis etteravkjøling, eksempelvis ved en temperatur mellom ca. +50° og +3°C. De i utskilleren dannede væske-formede bestanddeler av reaksj onsblan-dingen består overveiende av den monohalogeneddiksyre, som inneholder mindre mengder dihalogeneddiksyre, eddiksyre og klorhydrogen. Fra de fra utskilleren fjer-nede gasser kan hydrogenhalogenidet fjernes ved hjelp av vann vasking, således at jjenblivende restgass står til disposisjon til fornyet anvendelse i katalysatorovnen resp. til utgangsproduktets forstøvning. The reaction band emerging from the catalyst furnace is separated in subsequent separators after previous cooling into liquid and gaseous components, the latter being removed at the top and subjected to a renewed stepwise post-cooling, for example at a temperature between approx. +50° and +3°C. The liquid components of the reaction mixture formed in the separator consist predominantly of the monohaloacetic acid, which contains smaller amounts of dihaloacetic acid, acetic acid and hydrogen chloride. From the gases removed from the separator, the hydrogen halide can be removed by means of water washing, so that the remaining residual gas is available for renewed use in the catalyst furnace or to the atomization of the starting product.

En eksempelvis utførelsesform av fremgangsmåten ifølge oppfinnelsen er vist på tegningen hvor 1 angir et forrådskar hvorfra utgangsproduktet som skal hy-Ireres, over ledning 2, etter foregående jppvarmning i oppvarmeren 3 tilføres katalysatorovnen ved hjelp av fordysning. An exemplary embodiment of the method according to the invention is shown in the drawing, where 1 indicates a storage vessel from which the output product to be heated, via line 2, after previous heating in the heater 3, is supplied to the catalyst furnace by means of atomization.

Utgangsproduktets forstøvning fore-går ved hjelp av en dyse 5 ved hjelp av hydrogen som strømmer til dysen 5 over ledning 6. I katalysatorovnen 4 opprettholdes en temperatur på 60° til 140°C. Den i utgangsproduktet inneholdte di- og trihalogeneddiksyre blir ved passering av katalysatoren i nærvær av hydrogen under hydrogenhalogeniddannelse omtrent fullstendig dehalogenert til monohalogeneddiksyre. Den fra katalysatorovnen 4 unn-vikende væsketåke og dampene kommer over ledning 7 under samtidig avkjøling i kjøleren 8 til utskilleren 9, hvori den flytende monohalogeneddiksyre samles og kan tas ut over ledningen 10. Over toppen av utskilleren 9 fjernes over ledning 11 reaksj onsblandingens gassformede bestanddeler og etteravkjøles trinnvis for etter-kondensasj on i et eventuelt med et som solkjøler utformet kjøleaggregat 12. Den på denne måte for flytende bestanddeler rensede gass innføres over ledning 13 i den nedre del av vasketårnet 14, og utvaskes i motstrøm med vann som tilføres til vasketårnet 14 over ledning 15. Tilsvarende den anvendte vaskevannmengde kan det ved bunnen av vasketårnet 14 over ledning 16 uttas en halogenhydrogensyre av ønskelig konsentrasjon. Den for hydrogenhalogenid rensede avgass, som dessuten inneholder overskytende hydrogen og eventuelt inertgass fjernes fra vasketårnet 14 over ledning 17 og blir etter foregående tørk-ning ført over ledning 6 på nytt, sammen med friskt hydrogen inn i katalysatorovnen 4. The starting product is atomized using a nozzle 5 using hydrogen which flows to the nozzle 5 via line 6. In the catalyst furnace 4, a temperature of 60° to 140°C is maintained. The di- and trihaloacetic acid contained in the starting product is almost completely dehalogenated to monohaloacetic acid by passing through the catalyst in the presence of hydrogen during hydrogen halide formation. The liquid mist and vapors escaping from the catalyst furnace 4 come via line 7 while simultaneously cooling in the cooler 8 to the separator 9, in which the liquid monohaloacetic acid collects and can be taken out via line 10. Above the top of the separator 9, the gaseous components of the reaction mixture are removed via line 11 and is further cooled step by step for post-condensation in a cooling unit 12, possibly with a solar cooler. 14 over line 15. Corresponding to the amount of washing water used, a halogenated hydrogen acid of the desired concentration can be withdrawn at the bottom of the washing tower 14 over line 16. The hydrogen halide-purified exhaust gas, which also contains excess hydrogen and possibly inert gas, is removed from the washing tower 14 via line 17 and, after previous drying, is led via line 6 again, together with fresh hydrogen into the catalyst furnace 4.

Fremgangsmåten ifølge oppfinnelsen har i forhold til de kjente arbeidsmåter fordelen! med utgangsproduktets gode do-serbarhet, såvel som at det ikke benyttes store mengder av en bæregass, hvorved det unngås tap av dannede reaksj onsproduk-ter. Videre økes rom-tids-utbytte, og ved arbeide i flytende fase unngås en overopp-hetning og harpiksdannelse på katalysatoren. Endelig overflødiggjøres spesielle opp-løsningsmiddeltilsetninger til utgangsproduktet, slik det er vanlig ved arbeider i gassfase, og det som biprodukt dannede hydrogenhalogenid kan uten spesielle for-holdsregler overføres i en tilsvarende syre av ønskelig konsentrasjon. The method according to the invention has the advantage compared to the known working methods! with the starting product's good dosability, as well as the fact that large quantities of a carrier gas are not used, whereby the loss of formed reaction products is avoided. Furthermore, the space-time yield is increased, and by working in the liquid phase, overheating and resin formation on the catalyst is avoided. Finally, special solvent additions to the starting product are made redundant, as is common when working in the gas phase, and the hydrogen halide formed as a by-product can be transferred without special precautions into a corresponding acid of the desired concentration.

Eksempel 1. Example 1.

I katalysatorovnen som inneholder 1000 ml eller 390 g kornformet silikagel, hvorpå det som katalysator var påført 8 g palladiumklorid, ble det pr. time ved hjelp av 75 ml hydrogen inndyset 250 g utgangs-material med sammensetning: 40,4 pst. monokloreddiksyre 54,8 pst. dikloreddiksyre In the catalyst furnace containing 1000 ml or 390 g of granular silica gel, on which 8 g of palladium chloride had been applied as a catalyst, it was per hour using 75 ml hydrogen injected 250 g starting material with composition: 40.4% monochloroacetic acid 54.8% dichloroacetic acid

1.0 pst: trikloreddiksyre 3,6 pst. eddiksyre 0,1 pst. hydrogenklorid. 1.0%: trichloroacetic acid 3.6% acetic acid 0.1% hydrogen chloride.

I katalysatorovnen ble det opprettholdt en temperatur på 114 — 118°C. Det ble arbeidet ved normalt trykk. Det i utskilleren danende sluttprodukt hadde følgende sammensetning: In the catalyst furnace, a temperature of 114-118°C was maintained. The work was carried out at normal pressure. The final product formed in the separator had the following composition:

89,6 pst. monokloreddiksyre 89.6 percent monochloroacetic acid

4,6 pst. dikloreddiksyre 5.6 pst. eddiksyre 0,1 pst. hydrogenklorid. 4.6% dichloroacetic acid 5.6% acetic acid 0.1% hydrogen chloride.

Sluttproduktets utbytte og det i den konsentrerte saltsyre inneholdte hydrogenklorid beregnet på anvendt utgangsma-terial og forbrukt hydrogen utgjorde 98,8 pst. The yield of the final product and the hydrogen chloride contained in the concentrated hydrochloric acid, calculated on the starting material used and the hydrogen consumed, amounted to 98.8 per cent.

Eksempel 2. Example 2.

I katalysatorovnen som inneholder 1000 ml av den i eksempel 1 anvendte katalysator ble det ved hjelp av 50 ml hydrogen pr. time inndyset 250 g utgangsma-terial av sammensetning: 62,4 pst. dikloreddiksyre 27.6 pst. monokloreddiksyre In the catalyst furnace containing 1000 ml of the catalyst used in example 1, with the help of 50 ml of hydrogen per hour injected 250 g starting material of composition: 62.4 percent dichloroacetic acid 27.6 percent monochloroacetic acid

1.2 pst. trikloreddiksyre 9.1 pst. eddiksyre 0,1 pst. hydrogenklorid. 1.2% trichloroacetic acid 9.1% acetic acid 0.1% hydrogen chloride.

I katalysatorovnen ble det opprettholdt en temperatur på 116° — 117°C og et trykk på 300 mm Hg. Det i utskilleren dannede sluttprodukt hadde følgende sammensetning: In the catalyst furnace, a temperature of 116°-117°C and a pressure of 300 mm Hg were maintained. The final product formed in the separator had the following composition:

84.7 pst. monokloreddiksyre 84.7 percent monochloroacetic acid

5.3 pst. dikloreddiksyre 9.7 pst. eddiksyre 0,1 pst. hydrogenklorid. 5.3% dichloroacetic acid 9.7% acetic acid 0.1% hydrogen chloride.

Sluttproduktets utbytte og det i den konsentrerte saltsyre inneholdt hydrogenklorid beregnet på anvendt utgangsma-terial og forbrukt hydrogen utgjorde 99,3 pst. The yield of the final product and the hydrogen chloride contained in the concentrated hydrochloric acid calculated on the starting material used and the hydrogen consumed amounted to 99.3 per cent.

Eksempel 3. Example 3.

Inn i katalysatorovnen som inneholder 1000 ml av deri i eksempel 1 anvendte katalysator ble det pr. time ved hjelp av 35 liter hydrogen inndyset 250 g av en ved klorering av eddiksyre dannet kloreddik-syreblanding av sammensetning Into the catalyst furnace, which contains 1000 ml of the catalyst used therein in example 1, was per hour using 35 liters of hydrogen inject 250 g of a chloroacetic acid mixture of composition formed by chlorination of acetic acid

25,6 pst. monokloreddiksyre 34.2 pst. dikloreddiksyre 34,8 pst. trikloreddiksyre 25.6% monochloroacetic acid 34.2% dichloroacetic acid 34.8% trichloroacetic acid

5.0 pst. eddiksyre. 5.0 percent acetic acid.

Temperaturen i katalysatorovnen utgjorde 70°C. Det ble arbeidet ved atmos-færetrykk. Det i utskilleren dannede sluttprodukt hadde følgende sammensetning: 28,4 pst. monokloreddiksyre The temperature in the catalyst furnace was 70°C. The work was done at atmospheric pressure. The final product formed in the separator had the following composition: 28.4 percent monochloroacetic acid

61.3 pst. dikloreddiksyre 4.1 pst. trikloreddiksyre 5,6 pst. eddiksyre. 61.3% dichloroacetic acid 4.1% trichloroacetic acid 5.6% acetic acid.

Sluttproduktets utbytte og det i den konsentrerte saltsyre inneholdte hydrogenklorid, beregnet på anvendt utgangsma-terial og forbrukt hydrogen utgjorde 98,1 pst. The yield of the final product and the hydrogen chloride contained in the concentrated hydrochloric acid, calculated on the starting material used and the hydrogen consumed, amounted to 98.1 per cent.

Eksempel 4. Example 4.

Det ble pr. time inndyset 300 g av en ved bromermg av eddiksyre dannet brom-eddiksyreblanding av sammensetning: 58,2 pst. monobromeddiksyre 32,1 pst. dibromeddiksyre 9,4 pst. eddiksyre ved hjelp av 30 liter hydrogen under et trykk på 300 mm Hg inn i katalysatorovnen, som hadde en katalysatorfylling, tilsvarende det som er angitt i eksempel 1. I katalysatorovnen ble det opprettholdt en temperatur på 80°C. Det i utskilleren dannede sluttprodukt hadde følgende sammensetning: 89.0 pst. monobromeddiksyre It was per hour injected 300 g of a bromo-acetic acid mixture formed by bromine mg of acetic acid of composition: 58.2 percent monobromoacetic acid 32.1 percent dibromoacetic acid 9.4 percent acetic acid by means of 30 liters of hydrogen under a pressure of 300 mm Hg into the catalyst furnace, which had a catalyst filling, corresponding to that indicated in example 1. In the catalyst furnace, a temperature of 80°C was maintained. The final product formed in the separator had the following composition: 89.0 percent monobromoacetic acid

0,5 pst. dibromeddiksyre 10.1 pst. eddiksyre. 0.5% dibromoacetic acid 10.1% acetic acid.

Utbyttet av sluttproduktet av dannet hydrogenbromid, beregnet på anvendt ma-terial og forbrukt hydrogen utgjorde 98,3 pst. The yield of the final product of formed hydrogen bromide, calculated on the material used and the hydrogen consumed, was 98.3 per cent.

Claims (2)

1. Fremgangsmåte til partiell dehalogenering av di- og resp. eller trihalogeneddiksyre ved at di- og resp. eller trihalogeneddiksyre eller en tilsvarende oppløs-ning av disse syrer, spesielt en ved halogeneringen av eddiksyre til monohalogeneddiksyre som biprodukt dannet og som «sirkulasjonsvæske» betegnet blanding, foroppvarmes og føres sammen med hydrogen over en hydreringskatalysator som er påført en bærer, ved forhøyet temperatur, karakterisert ved at man forstøver det foroppvarmede utgangsprodukt ved hjelp av et hydrogenoverskudd eller en blanding av hydrogen og en inertgass til en fin væsketåke og fører sistnevnte gjennom en med en hydreringskatalysator fylt katalysatorovn, hvor det opprettholdes en temperatur på 60° — 140°C, hvorpå man adskiller den fra katalysatorovnen uttredende reaksjonsblanding ved hjelp av av-kjøling i en etterfølgende utskiller på den ene side i flytende dihalogenert produkt og på den annen side i gassformede bestanddeler som fjernes over utskillerens topp.1. Method for partial dehalogenation of di- and resp. or trihaloacetic acid in that di- and resp. or trihaloacetic acid or a corresponding solution of these acids, in particular a mixture formed by the halogenation of acetic acid to monohaloacetic acid as a by-product and designated as "circulation liquid", is preheated and passed together with hydrogen over a hydration catalyst that is applied to a carrier, at an elevated temperature, characterized by atomizing the preheated starting product using an excess of hydrogen or a mixture of hydrogen and an inert gas into a fine liquid mist and passing the latter through a catalyst furnace filled with a hydrogenation catalyst, where a temperature of 60° — 140°C is maintained, after which the reaction mixture emerging from the catalyst furnace is separated by cooling in a subsequent separator, on the one hand into liquid dihalogenated product and on the other hand into gaseous components which are removed over the top of the separator. 2. Fremgangsmtåe ifølge påstand 1, karakterisert ved at man fører utgangsproduktet ved et trykk under atmos-færetrykk, men over 20 mm trykk over katalysatoren.2. Process according to claim 1, characterized in that the starting product is fed at a pressure below atmospheric pressure, but above 20 mm pressure above the catalyst.
NO812260A 1981-01-15 1981-07-02 R'3SINH-CONTINUOUS SILAZAN POLYMES AND PROCEDURES FOR PRODUCING THEREOF. NO155935C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/225,274 US4340619A (en) 1981-01-15 1981-01-15 Process for the preparation of poly(disilyl)silazane polymers and the polymers therefrom

Publications (3)

Publication Number Publication Date
NO812260L NO812260L (en) 1982-07-16
NO155935B true NO155935B (en) 1987-03-16
NO155935C NO155935C (en) 1987-06-24

Family

ID=22844258

Family Applications (1)

Application Number Title Priority Date Filing Date
NO812260A NO155935C (en) 1981-01-15 1981-07-02 R'3SINH-CONTINUOUS SILAZAN POLYMES AND PROCEDURES FOR PRODUCING THEREOF.

Country Status (21)

Country Link
US (1) US4340619A (en)
JP (1) JPS57117532A (en)
KR (1) KR850000130B1 (en)
AR (1) AR226940A1 (en)
AT (1) AT381321B (en)
AU (1) AU538465B2 (en)
BE (1) BE889029A (en)
BR (1) BR8200189A (en)
CA (1) CA1161986A (en)
CH (1) CH650266A5 (en)
DE (1) DE3119197C2 (en)
DK (1) DK286781A (en)
FI (1) FI68256C (en)
FR (1) FR2497812B1 (en)
GB (1) GB2091279B (en)
IT (1) IT1167751B (en)
MX (1) MX160138A (en)
NL (1) NL8101944A (en)
NO (1) NO155935C (en)
SE (1) SE451457B (en)
ZA (1) ZA818502B (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788309A (en) 1985-04-26 1988-11-29 Sri International Method of forming compounds having Si-N groups and resulting products
US4404153A (en) * 1981-01-15 1983-09-13 Dow Corning Corporation Process for the preparation of poly(disilyl)silazane polymers and the polymers therefrom
US4395460A (en) * 1981-09-21 1983-07-26 Dow Corning Corporation Preparation of polysilazane polymers and the polymers therefrom
GB2119777B (en) * 1982-01-21 1985-07-10 Nippon Carbon Co Ltd Process for the preparation of sintered bodies
US4417042A (en) * 1982-02-17 1983-11-22 General Electric Company Scavengers for one-component alkoxy-functional RTV compositions and processes
US4783516A (en) * 1983-03-31 1988-11-08 Union Carbide Corporation Polysilane precursors containing olefinic groups for silicon carbide
US4460638A (en) * 1983-04-06 1984-07-17 Dow Corning Corporation Fiber reinforced glass matrix composites
US4540803A (en) * 1983-11-28 1985-09-10 Dow Corning Corporation Hydrosilazane polymers from [R3 Si]2 NH and HSiCl3
US4543344A (en) * 1983-11-28 1985-09-24 Dow Corning Corporation Silicon nitride-containing ceramic material prepared by pyrolysis of hydrosilazane polymers from (R3 Si)2 NH and HSiCl3
US4482689A (en) * 1984-03-12 1984-11-13 Dow Corning Corporation Process for the preparation of polymetallo(disily)silazane polymers and the polymers therefrom
US4535007A (en) * 1984-07-02 1985-08-13 Dow Corning Corporation Silicon nitride-containing ceramics
US4668642A (en) * 1984-09-11 1987-05-26 Dow Corning Corporation Ceramic materials from silazane polymers
CA1241972A (en) * 1984-09-11 1988-09-13 Dow Corning Corporation Ceramic materials from silazane polymers
US4757035A (en) * 1984-09-21 1988-07-12 Dow Corning Corporation Ceramic materials with increased crystallinity from silazane polymers
FR2577933B1 (en) * 1985-02-27 1987-02-20 Rhone Poulenc Rech PROCESS FOR THE PREPARATION OF ORGANOPOLYSILAZANES AND ORGANOPOLY (DISILYL) SILAZANES WITH IMPROVED THERMAL RESISTANCE AND THE USE THEREOF IN PARTICULAR AS A CERAMIC PRECURSOR
US5008422A (en) * 1985-04-26 1991-04-16 Sri International Polysilazanes and related compositions, processes and uses
US4767831A (en) * 1985-06-24 1988-08-30 Dow Corning Corporation Process for preparing ceramic materials
EP0206449A3 (en) * 1985-06-24 1987-06-24 Dow Corning Corporation A process for preparing ceramic materials
FR2584080B1 (en) * 1985-06-26 1987-12-31 Rhone Poulenc Rech METHOD OF THERMAL TREATMENT OF A POLYSILAZANE CONTAINING SIH GROUPS AND SI-N- GROUPS
US4789507A (en) * 1985-10-28 1988-12-06 Hoechst Celanese Corporation Production of preceramic and ceramic fibers from friable, thermally sensitive organosilicon preceramic polymers
JPS62156135A (en) * 1985-12-28 1987-07-11 Toa Nenryo Kogyo Kk Polyorgano (hydro) silazane
US5503817A (en) * 1986-01-16 1996-04-02 Hoechst Celanese Corp. Curing of preceramic articles with gaseous hydrogen halide
US4863799A (en) * 1986-05-22 1989-09-05 Hoechst Celanese Corp. Sheath core spun organosilicon preceramic fibers and processes for production
JPS62290730A (en) * 1986-06-10 1987-12-17 Shin Etsu Chem Co Ltd Production of organosilazane polymer and production of ceramics using said polymer
DE3620635A1 (en) * 1986-06-20 1987-12-23 Wacker Chemie Gmbh METHOD FOR REDUCING THE HALOGEN CONTENT OF HALOGEN-CONTAINING POLYCARBOSILANS AND POLYSILANS
US4746480A (en) * 1986-08-11 1988-05-24 Hoechst Celanese Corporation Process for providing a protective oxide coating on ceramic fibers
JPS6370145U (en) * 1986-10-24 1988-05-11
JPS63117037A (en) * 1986-10-31 1988-05-21 Shin Etsu Chem Co Ltd Organosilazane polymer and production of ceramics therefrom
US4869854A (en) * 1986-10-31 1989-09-26 Shin-Etsu Chemical Co., Ltd. Process for manufacturing organic silazane polymers and ceramics therefrom
US4743662A (en) * 1986-11-03 1988-05-10 Dow Corning Corporation Infusible preceramic polymers via plasma treatment
DE3639511A1 (en) * 1986-11-20 1988-06-01 Wacker Chemie Gmbh Process for the preparation of silazane polymers
US4822697A (en) * 1986-12-03 1989-04-18 Dow Corning Corporation Platinum and rhodium catalysis of low temperature formation multilayer ceramics
US4756977A (en) * 1986-12-03 1988-07-12 Dow Corning Corporation Multilayer ceramics from hydrogen silsesquioxane
US4826733A (en) * 1986-12-03 1989-05-02 Dow Corning Corporation Sin-containing coatings for electronic devices
US4749631B1 (en) * 1986-12-04 1993-03-23 Multilayer ceramics from silicate esters
US4911992A (en) * 1986-12-04 1990-03-27 Dow Corning Corporation Platinum or rhodium catalyzed multilayer ceramic coatings from hydrogen silsesquioxane resin and metal oxides
US4753855A (en) * 1986-12-04 1988-06-28 Dow Corning Corporation Multilayer ceramic coatings from metal oxides for protection of electronic devices
US4962175A (en) * 1986-12-22 1990-10-09 Dow Corning Corporation Alkylpoly (polysilyl) azane preceramic polymers
US4753856A (en) * 1987-01-02 1988-06-28 Dow Corning Corporation Multilayer ceramic coatings from silicate esters and metal oxides
JPS63210133A (en) * 1987-02-25 1988-08-31 Shin Etsu Chem Co Ltd Organosilazane polymer and production of ceramics therefrom
US4835238A (en) * 1987-06-08 1989-05-30 Dow Corning Corporation Polysilacyclobutasilazanes
US4774312A (en) * 1987-06-08 1988-09-27 Dow Corning Corporation Polydisilacyclobutasilazanes
US4916200A (en) * 1987-06-08 1990-04-10 Dow Corning Corporation Silane modified polysilacyclobutasilazanes
FR2616436B1 (en) * 1987-06-10 1989-12-29 Europ Propulsion SI-N AND SI-SI BINDING COPOLYMERS, POLYCARBOSILAZANES OBTAINED BY PYROLYSIS OF SAID COPOLYMERS AND USE OF SAID POLYCARBOSILAZANES FOR THE PREPARATION OF SILICON CARBONITRIDE
US4810443A (en) * 1987-07-02 1989-03-07 Dow Corning Coporation Method for forming filaments from a resin
US4847027A (en) * 1987-07-06 1989-07-11 Dow Corning Corporation Infusible preceramic polymers via nitric oxide treatment
US4800221A (en) * 1987-08-25 1989-01-24 Dow Corning Corporation Silicon carbide preceramic polymers
US4772516A (en) * 1987-11-09 1988-09-20 Mahone Louis G Stable methylpolydisilylazane polymers
US4929742A (en) * 1988-11-28 1990-05-29 Dow Corning Corporation Silane modified polysilacyclobutasilazanes
US5547623A (en) * 1989-08-21 1996-08-20 Dow Corning Corporation Method for continuous spinning and pyrolysis of ceramic filaments from a resin
FR2652081A1 (en) * 1989-09-21 1991-03-22 Rhone Poulenc Chimie PROCESS FOR PREPARING AN SI3N4-SIC COMPOSITE
US5256487A (en) * 1989-12-08 1993-10-26 The B. F. Goodrich Company High char yield silazane derived preceramic polymers and cured compositions thereof
US5545687A (en) * 1990-02-21 1996-08-13 Dow Corning Corporation Preparation of high density boron carbide ceramics with preceramic polymer binders
US5051215A (en) * 1990-03-21 1991-09-24 Dow Corning Corporation Curing preceramic polymers by exposure to nitrogen dioxide
US5783139A (en) * 1990-04-18 1998-07-21 Curran; Dennis John Gerard Ceramic materials
DE4217579A1 (en) * 1992-05-27 1993-12-02 Wacker Chemie Gmbh Process for the production of polysilazanes
US5292830A (en) * 1991-06-20 1994-03-08 Tonen Corporation Thermosetting copolymers, silicon carbide-based fiber and processes for producing same
CA2104340A1 (en) * 1992-08-31 1994-03-01 Grish Chandra Hermetic protection for integrated circuits
US6146559A (en) 1994-07-28 2000-11-14 Dow Corning Corporation Preparation of high density titanium diboride ceramics with preceramic polymer binders
US5449646A (en) 1994-07-29 1995-09-12 Dow Corning Corporation Preparation of high density zirconium diboride ceramics with preceramic polymer binders
US5447893A (en) 1994-08-01 1995-09-05 Dow Corning Corporation Preparation of high density titanium carbide ceramics with preceramic polymer binders
CA2154216A1 (en) 1994-08-01 1996-02-02 Gregg Alan Zank Preparation of high density zirconium carbide ceramics with preceramic polymer binders
US5613993A (en) * 1995-08-29 1997-03-25 The United States Of America As Represented By The Secretary Of The Army Process for encapsulating a shaped body for hot isostatic pressing by sol-gel method
US5776235A (en) * 1996-10-04 1998-07-07 Dow Corning Corporation Thick opaque ceramic coatings
US5807611A (en) * 1996-10-04 1998-09-15 Dow Corning Corporation Electronic coatings
US5711987A (en) * 1996-10-04 1998-01-27 Dow Corning Corporation Electronic coatings
KR20090097948A (en) * 2006-12-28 2009-09-16 다우 코닝 도레이 캄파니 리미티드 Porous silicon-containing carbon-based composite material and electrode and battery composed thereof
WO2008123311A1 (en) * 2007-03-27 2008-10-16 Tokyo Institute Of Technology Method for producing positive electrode material for secondary battery
US7842774B2 (en) * 2007-07-24 2010-11-30 United Technologies Corporation Preceramic silazane polymer for ceramic materials
WO2009096501A1 (en) 2008-01-30 2009-08-06 Dow Corning Toray Co., Ltd. Silicon-containing particle, process for producing the same, organic-polymer composition, ceramic, and process for producing the same
CN102015844B (en) * 2008-04-30 2013-11-06 道康宁东丽株式会社 Silicon-containing particles, method for manufacturing thereof, oil composition, ceramic material, and method for manufacturing thereof
US20120121981A1 (en) 2009-07-31 2012-05-17 Yukinari Harimoto Electrode Active Material, Electrode, And Electricity Storage Device
EP2466670A1 (en) 2009-07-31 2012-06-20 Dow Corning Toray Co., Ltd. Electrode active material, electrode, and electricity storage device
US8987402B2 (en) 2010-02-26 2015-03-24 General Electric Company Stoichiometric silicon carbide fibers from thermo-chemically cured polysilazanes
US9045347B2 (en) * 2010-02-26 2015-06-02 General Electric Company Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes
JP2012178224A (en) 2011-01-31 2012-09-13 Dow Corning Toray Co Ltd Manufacturing method of surface carbon-coating silicon-containing carbon-based composite material
JP2013157221A (en) 2012-01-30 2013-08-15 Dow Corning Toray Co Ltd Silicon-containing carbon-based composite material
US9593210B1 (en) * 2015-06-03 2017-03-14 General Electric Company Methods of preparing polysilazane resin with low halogen content

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL22431A (en) * 1964-11-12 1968-11-27 Fuchs J Process for the production of disilazanes and the products obtained by this method
US3553242A (en) * 1968-04-26 1971-01-05 Monsanto Co Process for preparing 1,3-disilyl-1,3,2,4-diazadisiletidines
US3738906A (en) * 1970-08-21 1973-06-12 Atlantic Res Corp Pyrolytic graphite silicon carbide microcomposites
US3755397A (en) * 1971-06-01 1973-08-28 Dow Corning Silylating agent
GB1370478A (en) * 1971-11-19 1974-10-16 Rolls Royce Injection of a ceramic into a mould
DE2218960A1 (en) * 1972-04-19 1973-11-08 Bayer Ag MOLDED BODIES FROM MOGENIC MIXTURES OF SILICON CARBIDE AND SILICON NITRIDE AND PROCESS FOR THEIR PRODUCTION
DE2243527A1 (en) * 1972-09-05 1974-04-18 Bayer Ag MOLDED BODIES FROM HOMOGENOUS MIXTURES OF SILICON CARBIDE AND SILICON NITRIDE AND THE PROCESS FOR THEIR PRODUCTION
DE2364989C3 (en) * 1973-12-28 1979-10-18 Consortium Fuer Elektrochemische Industrie Gmbh, 8000 Muenchen Process for the production of layers of silicon carbide on a silicon substrate
US4067955A (en) * 1975-10-03 1978-01-10 Ford Motor Company Method of forming a silicon carbide article
JPS52112700A (en) * 1976-02-28 1977-09-21 Tohoku Daigaku Kinzoku Zairyo Amorphous organopolysilicone composite for preparing silicone carbide
GB1590011A (en) * 1976-08-17 1981-05-28 Kyoto Ceramic Method of producing dense sintered silicon carbide body from polycarbosilane
GB2039787B (en) * 1978-11-13 1982-12-08 Res Inst For Special Inorganic Producing corrosion resistant articles

Also Published As

Publication number Publication date
FI68256B (en) 1985-04-30
BE889029A (en) 1981-12-01
SE451457B (en) 1987-10-12
DE3119197A1 (en) 1982-07-22
CH650266A5 (en) 1985-07-15
BR8200189A (en) 1982-11-09
CA1161986A (en) 1984-02-07
FI812043L (en) 1982-07-16
JPS57117532A (en) 1982-07-22
FR2497812A1 (en) 1982-07-16
IT8121468A0 (en) 1981-04-30
ATA3882A (en) 1986-02-15
ZA818502B (en) 1982-12-29
US4340619A (en) 1982-07-20
AR226940A1 (en) 1982-08-31
NO155935C (en) 1987-06-24
FR2497812B1 (en) 1986-04-11
IT1167751B (en) 1987-05-13
DE3119197C2 (en) 1985-07-18
SE8103956L (en) 1982-07-16
GB2091279A (en) 1982-07-28
MX160138A (en) 1989-12-06
AT381321B (en) 1986-09-25
DK286781A (en) 1982-07-16
AU6917881A (en) 1982-07-22
FI68256C (en) 1985-08-12
KR850000130B1 (en) 1985-02-27
NO812260L (en) 1982-07-16
JPS6138933B2 (en) 1986-09-01
KR830005285A (en) 1983-08-13
GB2091279B (en) 1984-11-21
NL8101944A (en) 1982-08-02
AU538465B2 (en) 1984-08-16

Similar Documents

Publication Publication Date Title
NO155935B (en) R'3 SINH-CONTAINING SILAZAN POLYMES AND PROCEDURES FOR PREPARING THEREOF.
CN101311151B (en) Process for the preparation of 3,3-dimethylbutanal
AU616551B2 (en) Process for starting-up an ethylene oxide reactor
JPH07121894B2 (en) Preparation of aromatic diamino compounds using modified Rani catalyst
KR940008911B1 (en) Method for producing and manufacturing direct aromatic monoamines and aromatic diamines via controlled nitration from benzene or benzene derivatives
JP2801358B2 (en) Method for producing high-purity aniline
JP2840929B2 (en) Method for producing difluoromethane
US3700605A (en) Catalysts
EP0002308A1 (en) Catalytic hydrogenation process for the manufacture of aromatic amines
US6291729B1 (en) Halofluorocarbon hydrogenolysis
US10683247B1 (en) Catalysts and integrated processes for producing trifluoroiodomethane
CN108911968B (en) Method for purifying monochloroacetic acid by catalytic rectification
JPS606925B2 (en) Process for producing unsaturated hydrocarbons
JP3268890B2 (en) Method for producing 1,3-cyclohexanedicarboxylic acid
JPS6069047A (en) Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
US4003984A (en) Production of sulfuryl fluoride
CN110639552A (en) Platinum-based composite carbon-aluminum catalyst and method for continuously producing 2B oil
US2671803A (en) Dehalogenation of halogeno acetic acids by hydrogenation
CN105130816A (en) Preparing process of di-isobutyl hexahydrophthalate
JP2011523957A (en) Continuous process for producing hexafluoroisopropanol
GB1575883A (en) Production of 1,2-dichloroethane
JPH0420845B2 (en)
KR100365023B1 (en) A process for recovering acetic acid from methylacetate
JP3769312B2 (en) Method for producing succinic acid
US4152525A (en) Method of recovering butadiene gas from an acetoxylation process