NO155276B - PROCEDURE FOR CATALYTIC DIVISION OF HYPOOCLORITE AND CATALYST FOR APPLICATION BY THE PROCEDURE. - Google Patents
PROCEDURE FOR CATALYTIC DIVISION OF HYPOOCLORITE AND CATALYST FOR APPLICATION BY THE PROCEDURE. Download PDFInfo
- Publication number
- NO155276B NO155276B NO802947A NO802947A NO155276B NO 155276 B NO155276 B NO 155276B NO 802947 A NO802947 A NO 802947A NO 802947 A NO802947 A NO 802947A NO 155276 B NO155276 B NO 155276B
- Authority
- NO
- Norway
- Prior art keywords
- catalyst
- hypochlorite
- pellets
- cobalt
- hydroxide
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 22
- 230000003197 catalytic effect Effects 0.000 title claims description 7
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims description 96
- 239000008188 pellet Substances 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 229920000098 polyolefin Polymers 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 4
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229920001169 thermoplastic Polymers 0.000 claims description 3
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims description 2
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 4
- 239000008187 granular material Substances 0.000 claims 2
- 229910000000 metal hydroxide Inorganic materials 0.000 claims 2
- 229910044991 metal oxide Inorganic materials 0.000 claims 2
- 150000004706 metal oxides Chemical class 0.000 claims 2
- -1 Hypochlorite ions Chemical class 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- 238000003776 cleavage reaction Methods 0.000 description 8
- 230000007017 scission Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000002351 wastewater Substances 0.000 description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910001424 calcium ion Inorganic materials 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000004061 bleaching Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- 229920006370 Kynar Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004133 Sodium thiosulphate Substances 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
- C02F1/705—Reduction by metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/18—Removal of treatment agents after treatment
- C02F2303/185—The treatment agent being halogen or a halogenated compound
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Removal Of Specific Substances (AREA)
Description
Hypoklorittioner i vandig oppløsning virker korroderende Hypochlorite ions in aqueous solution are corrosive
på mange metaller og er sterkt <q>iftig for alle organismer som lever i vann. Industrielle avfallsutslipp som inneholder vandig hypokloritt er resultatet av mange fremgangsmåter slik som ved fremstillingen av hypokloritt- og tørrbleking. Før dette avfall kan føres ut i offentliqe vann on many metals and is highly toxic to all organisms that live in water. Industrial waste discharges containing aqueous hypochlorite are the result of many processes such as in the manufacture of hypochlorite and dry bleaching. Before this waste can be discharged into public water
er det nødvendig med behandling for å fjerne hypoklorittioner. is treatment necessary to remove hypochlorite ions.
Forskjellige metoder som omfatter fotokjemisk-, termisk- Different methods that include photochemical, thermal
og kjemisk-induserte avspaltninger er blitt foreslått for å fjerne hypokloritt fra fortynnet vandig oppløsning. For anvendelse i stor industriell målestokk er kjemiske metoder de mest vanlig anvendte. Kjemiske metoder, som omfatter anvendelsen av f.eks. H202,NaSH,HC1 og S02 er alle dyre når det gjelder meget store mengder av fortynnet vandig hypokloritt. Systemer for behandling av avfall som forbruker store mengder av disse kjemikalier skaper en vesentlig økonomisk belastning ved fremgangsmåtene de tar del i. and chemically induced cleavages have been proposed to remove hypochlorite from dilute aqueous solution. For application on a large industrial scale, chemical methods are the most commonly used. Chemical methods, which include the use of e.g. H 2 O 2 , NaSH, HC 1 and SO 2 are all expensive when dealing with very large quantities of dilute aqueous hypochlorite. Waste treatment systems that consume large quantities of these chemicals create a significant financial burden on the processes they take part in.
Det eksisterer et behov for en økologisk effektiv og økonomisk sund metode for spaltning av store mengder fortynnet hypokloritt. Ett grunnlag for et slikt system er spaltningen av hypokloritt ved heterogene fast-sjikt-katalysatorer for å gi kloridion og oksygen. Et antall slike katalysatorer omfattende oksydene og hydroksydene av jern, kobber, magnesium, nikkel og kobolt er blitt beskrevet i littera-turen. Av disse katalysatorer er de som er fremstilt fra kobolt de mest aktive. There is a need for an ecologically efficient and economically sound method for the decomposition of large quantities of dilute hypochlorite. One basis for such a system is the decomposition of hypochlorite by heterogeneous fixed-bed catalysts to give chloride ion and oxygen. A number of such catalysts including the oxides and hydroxides of iron, copper, magnesium, nickel and cobalt have been described in the literature. Of these catalysts, those made from cobalt are the most active.
På grunn av visse praktiske ulemper har fast-sjikt-katalysatorer ikke fått en utstrakt kommersiell anvendelse for spaltning av hypokloritt. F.eks. forårsaker hypokloritt-oppløsningens høye alkalinitet at bindingsunderstøttelsen for de fleste tabletterte og ekstruderte katalysatorer disintegrerer, og reduserer katalysatoren totalt eller delvis til en fin oppslemning. På grunn av problemene for-bundet med utvinning og resyklisering av findelte katalysatorpartikler i vandige media, har denne teknologi ikke funnet utstrakt anvendelse. Dessuten, når fast-sjikt-katalysatorer utsettes for avfallsoppløsninger som inneholder både kalsiumioner og hypokloritt, slik som avfall fra tørr-blekingsfremstillingen, mister katalysatoren hurtig aktivitet på grunn av kalsiumkarbonatspaltning i katalysatorporene. Reaktivering av inaktivert katalysator er vanske-lig. Due to certain practical disadvantages, fixed-bed catalysts have not been widely used commercially for the decomposition of hypochlorite. E.g. the high alkalinity of the hypochlorite solution causes the binding support for most tableted and extruded catalysts to disintegrate, reducing the catalyst in whole or in part to a fine slurry. Due to the problems associated with the recovery and recycling of finely divided catalyst particles in aqueous media, this technology has not found widespread application. Also, when fixed-bed catalysts are exposed to waste solutions containing both calcium ions and hypochlorite, such as waste from the dry bleaching process, the catalyst rapidly loses activity due to calcium carbonate decomposition in the catalyst pores. Reactivation of inactivated catalyst is difficult.
Følgelig er det en hensikt med foreliggende oppfinnelse å fremskaffe en effektiv og økonomisk sund metode for spaltning av hypokloritt inneholdt i vandige industrielle avfalls-strømmer, inklusive de søm inneholder oppløste og suspen-derte kalsiumsalter. En ytterligere hensikt med nærværende oppfinnelse er å fremskaffe en katalysator for anvendelse ved foreliggende oppfinnelsé som er effektiv, ikke-foru-rensende og har lang levetid. Accordingly, it is an aim of the present invention to provide an efficient and economically sound method for splitting hypochlorite contained in aqueous industrial waste streams, including those containing dissolved and suspended calcium salts. A further object of the present invention is to provide a catalyst for use in the present invention which is efficient, non-polluting and has a long life.
Nærværende oppfinnelse vedrører katalysatorpelletsThe present invention relates to catalyst pellets
med evne til å spalte hypokloritt, som består av en pulverisert aktiv katalysator og et harpiksbindemiddel som beskrevet i krav 4. Katalysatorpellets'ene ifølge nærværende oppfinnelse er spesielt with the ability to split hypochlorite, which consists of a powdered active catalyst and a resin binder as described in claim 4. The catalyst pellets according to the present invention are particularly
egnete for behandling av avfallsstrømmer som inneholder hypokloritt i faste sjikt og har forbedret motstandsevne overfor disintegrering sammenlignet med kjente tablet- suitable for the treatment of waste streams that contain hypochlorite in solid layers and have improved resistance to disintegration compared to known tablet
ter te og ekstruderte katalysatorer. Fremgangsmåte ved katalytisk spaltning med den her beskrevne katalysator, såsom ved fast-sjikt-spaltning av hypokloritt, utgjør et annet formål med nærværende oppfinnelse, og er beskrevet i krav l's karakteriserende del. ter tea and extruded catalysts. Method of catalytic cleavage with the catalyst described here, such as in fixed-bed cleavage of hypochlorite, constitutes another object of the present invention, and is described in the characterizing part of claim 1.
De vandige oppløsninger som inneholder hypokloritt som The aqueous solutions containing hypochlorite which
kan behandles ifølge fremgangsmåten for nærværende oppfinnelse og med katalysatorpellets som er beskrevet her, kan være enhver vandig oppløsning som inneholder hypoklorittioner slik som hypoklorsyre eller salter av hypoklorsyrer, spesielt alkalimetall- og jordalkalimetallsaltene. can be treated according to the method of the present invention and with the catalyst pellets described herein, can be any aqueous solution containing hypochlorite ions such as hypochlorous acid or salts of hypochlorous acids, especially the alkali metal and alkaline earth metal salts.
En vanlig kilde til vandige strømmer som inneholder hypoklorittioner er avfallsvannet fra rensing i et klorfortet- A common source of aqueous streams containing hypochlorite ions is the waste water from purification in a chlorinated
ningsanlegg hvor de ikke-kondenserbare sluttgasser,"tail-gases" renses med en kaustisk oppløsning for å hindre gjenværende klor fra å komme ut. i atmosfæren. Denne rense-strøm inneholder alkalimetallhypokloritt som må spaltes før den føres ut i offentlig vann. Andre kilder til van- plant where the non-condensable tail-gases are cleaned with a caustic solution to prevent residual chlorine from escaping. in the atmosphere. This cleaning stream contains alkali metal hypochlorite which must be decomposed before it is discharged into public water. Other sources of non-
dige avfallsvann som inneholder hypokloritt som kan behand- waste water containing hypochlorite that can be treated
les ifølge metoden for nærværende oppfinnelse forekommer ved fremstillingen av klor-kaustikk og tørrbleking. les according to the method of the present invention occurs during the production of chlorine caustic and dry bleaching.
Metoden for behandling av forskjellige kjemiske strømmer The method of treatment of various chemical streams
i en fast-sjikt-ireaktor er velkjent og danner som sådan ikke en del av denne oppfinnelse. På lignende måte er en rekke materialer egnet for spaltningen av hypoklorittion kjent. Disse danner heller ikke en del av oppfinnelsen. in a fixed bed reactor is well known and as such does not form part of this invention. Similarly, a number of materials suitable for the cleavage of the hypochlorite ion are known. These do not form part of the invention either.
Det er den spesielle katalysatorform og dens anvendelse It is the particular catalyst form and its application
ved spaltning av hypokloritt som danner grunnlag for nærværende oppfinnelse. I det vesentlige formes kjente katalysatorer for spaltning av hypokloritt til pellets med et organisk harpiksbindemiddel i en matrise og disse pellets anvendes ved den kjente fremgangsmåte for spaltning av hypokloritt i et fast sjikt. by splitting hypochlorite which forms the basis of the present invention. In essence, known catalysts for splitting hypochlorite are formed into pellets with an organic resin binder in a matrix and these pellets are used in the known method for splitting hypochlorite in a solid layer.
Substanser som er egnet for katalysering av hypokloritt-spaltningen omfatter oksyder eller hydroksyder av jern, kobber,magnesium,nikkel eller kobolt. Substances suitable for catalyzing the hypochlorite decomposition include oxides or hydroxides of iron, copper, magnesium, nickel or cobalt.
Harpiksbindemidlet som danner den andre vesentlige komponent The resin binder which forms the other essential component
av katalysatorpellets'ene ifølge nærværende oppfinnelse består av organiske harpikser, som er termoplastiske og består av faste polyolefiner eller halogenerte polyolefiner. Det er bare vesentlig at harpiksen er relativt stabil i lange tidsperioder under kontakt med hypokloritt og at den har evne til å danne en pellet som er forholdsvis stabil overfor mekanisk disintegrering såvel som kjemisk disintegrering i bruk. Spesielt er det funnet at polyolefiner, halogenerte polyolefiner og polyvinyliden- of the catalyst pellets according to the present invention consist of organic resins, which are thermoplastic and consist of solid polyolefins or halogenated polyolefins. It is only essential that the resin is relatively stable for long periods of time in contact with hypochlorite and that it has the ability to form a pellet that is relatively stable against mechanical disintegration as well as chemical disintegration in use. In particular, it has been found that polyolefins, halogenated polyolefins and polyvinylidene-
halogenidpolymerer er egnete. Representative for disse materialer er polyetylen, polypropylen, polytetrafluoretylen og polyvinylidenfluorid. halide polymers are suitable. Representative of these materials are polyethylene, polypropylene, polytetrafluoroethylene and polyvinylidene fluoride.
Forholdet mellom substansen med evne til å spalte hypokloritt og det organiske harpiksbindemiddel kan variere meget, men generelt vil det ligge innen forholdet 100:1 til 1:10. Forhold på 1:1 til 15:1 er generelt foretrukne. Vekt-forholdet på ca. 5:1 er blitt funnet å være egnet hvor substansen med evne til å katalysere hypoklorittspalt-ningen er koboltoksyd og den organiske harpiks er enhver av en rekke termoplastiske polymerer. De vesentlige kri-terier for utvelgelsen av et egnet forhold er at tilstrekkelig organisk harpiks må være tilstede for å fremskaffe en matrise som er stabil overfor mekanisk håndtering og at mengden organisk harpiks ikke overstiger den som vil tillate gjennomtrengning av katalysatorpellets ved hypo-klorittoppløsningen. The ratio between the substance capable of splitting hypochlorite and the organic resin binder can vary greatly, but generally it will be within the ratio of 100:1 to 1:10. Ratios of 1:1 to 15:1 are generally preferred. The weight ratio of approx. 5:1 has been found to be suitable where the substance capable of catalyzing the hypochlorite decomposition is cobalt oxide and the organic resin is any of a number of thermoplastic polymers. The essential criteria for the selection of a suitable ratio are that sufficient organic resin must be present to provide a matrix that is stable to mechanical handling and that the amount of organic resin does not exceed that which will allow penetration of catalyst pellets by the hypochlorite solution.
Størrelsen av pellets'ene er ikke ekstremt kritisk. Hensyn skal tas til at pellets'ene er lette å håndtere og er per-meable. Derfor er ekstremt store pellets uønskete, på grunn av den mulige vanskelighet ved hypoklorittgjennom-trengning og den derav følgende effektive anvendelse av katalysatorkomponenten. Pellets i en sylindrisk form med en diameter på ca. 3,2 mm og en lengde på ca.4,8 mm er blitt funnet å være egnet for anvendelse ifølge nærværende oppfinnelse. Mindre katalysatorpartikler av granular-typen er også blitt anvendt med større effektivitet enn pellets'ene på grunn av det forholdsvis større tilgjenge-lige overflateareal. Den foretrukne partikkelstørrelse er 18 - 35 mesh. The size of the pellets is not extremely critical. Consideration must be given to the fact that the pellets are easy to handle and are portable. Therefore, extremely large pellets are undesirable, because of the possible difficulty in hypochlorite penetration and the consequent efficient use of the catalyst component. Pellets in a cylindrical shape with a diameter of approx. 3.2 mm and a length of about 4.8 mm has been found to be suitable for use according to the present invention. Smaller catalyst particles of the granular type have also been used with greater efficiency than the pellets due to the relatively larger available surface area. The preferred particle size is 18 - 35 mesh.
Pellets'ene fremstilles slik at findelte katalysatorer for spaltning av hypokloritt dispergeres inngående i den organiske harpiksmatrise. En metode for å oppnå dette er å male pulveriserte katalysatorer og pulverisert organisk harpiks, f.eks. i en kulemølle, og forme de intimt blande-te pulveriserte blanding til tabletter eller pellets ved å komprimere dem i en vanlig maskin og deretter sintre pellets' ene ved eller omkring den organiske harpiks' mykningstemperatur. Det er ønskelig at oppvarmningen finner sted ved en temperatur tilstrekkelig høy til at sintring kan finne sted, men ikke så høy at man ødelegger pellets'ens fysikalske form. Katalysatorpartiklene av granular type er blitt fremstilt ved knusing av pellets'ene og sikting til et bestemt størrelsesområde. En ekvivalent katalysator kan fremstilles direkte ved ekstrudering fulgt av sintring. The pellets are produced so that finely divided catalysts for splitting hypochlorite are dispersed throughout the organic resin matrix. One method of achieving this is to grind powdered catalysts and powdered organic resin, e.g. in a ball mill, and form the intimately mixed pulverized mixture into tablets or pellets by compressing them in a conventional machine and then sintering the pellets at or around the softening temperature of the organic resin. It is desirable that the heating takes place at a temperature sufficiently high for sintering to take place, but not so high that the physical form of the pellets is destroyed. The catalyst particles of granular type have been produced by crushing the pellets and sieving to a specific size range. An equivalent catalyst can be prepared directly by extrusion followed by sintering.
Nærværende oppfinnelse kan anvendes ved spaltning av hypoklorittavfallsvann som inneholder kalsiumion. Dette gir spesielle problemer, da kalsiumion tilsynelatende bidrar til katalysatordeaktivering ved spaltning av kalsiumkarbonat i "katalysatorporene". Ved et spesielt aspekt ifølge nærværende oppfinnelse er det funnet fordelaktig å fjerne kalsiumion ved presipitering av kalsiumet som et uoppløse-lig salt, slik som kalsiumkarbonat, som fjernes før hypo-klorittoppløsningen får komme i kontakt med katalysatoren. Det er imidlertid også mulig å behandle hypoklorittoppløsnin-gene som inneholder kalsiumion direkte og periodisk rege-nerere katalysatoren. The present invention can be used for splitting hypochlorite waste water containing calcium ions. This presents particular problems, as calcium ion apparently contributes to catalyst deactivation by splitting calcium carbonate in the "catalyst pores". In a particular aspect according to the present invention, it has been found advantageous to remove calcium ion by precipitating the calcium as an insoluble salt, such as calcium carbonate, which is removed before the hypochlorite solution is allowed to come into contact with the catalyst. However, it is also possible to treat the hypochlorite solutions containing calcium ion directly and periodically regenerate the catalyst.
De følgende eksempler vil ytterligere illustrere fremstillingen av katalysatorpellets'ene ifølge nærværende oppfinnelse og deres anvendelse i et fast-sjikt-system for spaltning av hypoklorittoppløsninger. The following examples will further illustrate the production of the catalyst pellets according to the present invention and their use in a fixed-bed system for splitting hypochlorite solutions.
EKSEMPEL 1 EXAMPLE 1
Et koboltoksydpulver avsatt på silika ble fremstilt ved langsomt å presipitere kobolthydroksyd fra en vandig opp-løsning av koboltnitrat som inneholder suspendert kisel-gur ved tilsetningen av base. Produktet ble vasket med vann, tørket og kalsinert ved 450°C i 2 timer. Det resulterende pulver inneholdt 35 vekt% kobolt som koboltoksyd. A cobalt oxide powder deposited on silica was prepared by slowly precipitating cobalt hydroxide from an aqueous solution of cobalt nitrate containing suspended diatomaceous earth by the addition of base. The product was washed with water, dried and calcined at 450°C for 2 hours. The resulting powder contained 35% by weight of cobalt as cobalt oxide.
Til 15 g av forannevnte pulver tilsettes 5 g polyvinyliden-fluoridstøpepulver ("Kynar 401"). Blandingen anbringes i en kulemølle størrrelse 000 sammen med 1/4 av full kapasi-tet med keramikk-kuler og malt i 1 time. Den pulveriserte blanding tabletteres til sylindriske tabletter ca. 3,2 mm i diameter og 4,8 mm lange ved 6 76 kgp/cm 2 og de resulterende tabletter sintres i en ovn ved 180°C i 1 time. De polymere matrisetabletter er meget aktive med hensyn til hypoklorittspaltning og bevarer sin fysikalske integritet på ubestemt tid under reaksjonsbetingelser. To 15 g of the aforementioned powder, 5 g of polyvinylidene fluoride casting powder ("Kynar 401") is added. The mixture is placed in a ball mill size 000 together with 1/4 of the full capacity of ceramic balls and ground for 1 hour. The powdered mixture is tableted into cylindrical tablets approx. 3.2 mm in diameter and 4.8 mm long at 676 kgp/cm 2 and the resulting tablets are sintered in an oven at 180°C for 1 hour. The polymeric matrix tablets are highly active with respect to hypochlorite cleavage and retain their physical integrity indefinitely under reaction conditions.
En fast-sjikt katalytisk reaktor ble tilført 100 g katalysator. Simulert industrielt hypoklorittavfallsvann (fremstilt som beskrevet nedenfor) behandlet for fjerning av oppløselig kalsium (0,499 % tilgjengelig klor) ble ført gjennom reaktoren med en hastighet på 2,25 ml/min.. Ved 25°C ble en avløpsoppløsning som inneholder 0,058 % tilgjengelig klor erholdt, svarende til en 88,4 %'s omdannel-se av hypokloritt til kloridion og oksygen. A fixed-bed catalytic reactor was charged with 100 g of catalyst. Simulated industrial hypochlorite wastewater (prepared as described below) treated to remove soluble calcium (0.499% available chlorine) was passed through the reactor at a rate of 2.25 mL/min. At 25°C, an effluent solution containing 0.058% available chlorine was obtained, corresponding to an 88.4% conversion of hypochlorite to chloride ion and oxygen.
Simulert industrielt hypokloritt-avfallsvann ble fremstilt ved å oppløse 32,4 g kaliumhypokloritt (69,4 % tilgjengelig klor), 166 g natriumklorid og 74,1 g kaliumklorid i 1000 ml destillert vann. Den resulterende oppløsning ble klargjort ved felling og hypoklorittinnholdet bestemt ved titrering med natriumtiosulfat (~1,25 % tilgjengelig klor) Andre konsentrasjoner ble fremstilt ved suksessive fortyn-ninger . Simulated industrial hypochlorite wastewater was prepared by dissolving 32.4 g of potassium hypochlorite (69.4% available chlorine), 166 g of sodium chloride, and 74.1 g of potassium chloride in 1000 mL of distilled water. The resulting solution was clarified by precipitation and the hypochlorite content determined by titration with sodium thiosulphate (~1.25% available chlorine). Other concentrations were prepared by successive dilutions.
Kalsiumfri hypoklorittoppløsning ble fremstilt ved å behandle det foran simulterte industrielle hypoklorittavfallsvann med en støkiometrisk mengde natriumkarbonat (1 mol karbonat pr. mol kalsium). Den resulterende suspensjon ble klargjort ved felling,og den klare ovenstående væske ble etter filtrering behandlet med katalysatoren. Calcium-free hypochlorite solution was prepared by treating the pre-simulated industrial hypochlorite wastewater with a stoichiometric amount of sodium carbonate (1 mol carbonate per mol calcium). The resulting suspension was clarified by precipitation, and the clear supernatant after filtration was treated with the catalyst.
EKSEMPEL 2 EXAMPLE 2
Dette eksempel er identisk med eksempel 1 bortsett fra at nikkel anvendes i stedet for kobolt. This example is identical to example 1 except that nickel is used instead of cobalt.
EKSEMPEL 3 EXAMPLE 3
Dette eksempel er identisk med eksempel 1 bortsett fra at polyetylenpulver anvendes i stedet for polyvinylidenfluo-ridpulver, og de resulterende tabletter ble sintrert i en ovn ved 120°C i 1 time. This example is identical to Example 1 except that polyethylene powder is used instead of polyvinylidene fluoride powder, and the resulting tablets were sintered in an oven at 120°C for 1 hour.
De resulterende polymere matrisetabletter er aktive med hensyn til hypoklorittspaltning og bibeholder sin fysikalske integritet på ubestemt tid under reaksjonsbetingelse-ne. The resulting polymeric matrix tablets are active with respect to hypochlorite cleavage and retain their physical integrity indefinitely under the reaction conditions.
EKSEMPEL 4 EXAMPLE 4
Dette eksempel er identisk med eksempel 1 bortsett fra at polytetrafluoretylen anvendes i stedet -For doI yvinylidenfluo-ridpulver, og de resulterende tabletter ble sintrert i en ovn ved 2 70°C i 1 time. This example is identical to example 1 except that polytetrafluoroethylene is used instead of -For doI yvinylidene fluoride powder, and the resulting tablets were sintered in an oven at 270°C for 1 hour.
De resulterende polymere matrisetabletter er aktive med hensyn til hypoklorittspaltning og bibeholder pin fysikalske integritet på ubestemt tid under reaksjonsbetingelse-ne. The resulting polymeric matrix tablets are active with respect to hypochlorite cleavage and retain their physical integrity indefinitely under the reaction conditions.
Katalysatorprøver fremstilt ifølge fremgangsmåtene beskrevet i eksempel 1-4 ble vurdert ved anvendelse av både 1% natriumhypoklorittoppløsning (kalsiumfri) og simulert industrielt hypoklorittavfallsvann. Med 1% natriumhypo-klorittoppløsning ble det ikke målt noe fall i katalytisk aktivitet i løpet av 4 ukers kontinuerlig drift. Ingen disintegrering av katalysatoren ble iakttatt og totalt kobolt i utløpsvannet var mindre enn 0,5 ppm. Catalyst samples prepared according to the methods described in examples 1-4 were evaluated using both 1% sodium hypochlorite solution (calcium-free) and simulated industrial hypochlorite wastewater. With 1% sodium hypochlorite solution, no drop in catalytic activity was measured during 4 weeks of continuous operation. No disintegration of the catalyst was observed and total cobalt in the effluent was less than 0.5 ppm.
Når simulert industrielt hypoklorittavfallsvann ble anvendt som innmatning til reaktoren gikk vesentlig katalytisk aktivitet tapt i løpet av 48 timer. Katalysatordeaktivering ble tilskrevet kalsiumkarbonatspaltning i "katalysatorporene". Katalysatoraktiviteten ble gjenvunnet ved å anvende fremgangsmåten beskrevet i eksempel 5. When simulated industrial hypochlorite wastewater was used as feed to the reactor, substantial catalytic activity was lost within 48 hours. Catalyst deactivation was attributed to calcium carbonate cleavage in the "catalyst pores". Catalyst activity was recovered using the method described in Example 5.
EKSEMPEL 5 EXAMPLE 5
En fast-sjikt katalytisk reaktor med et tverrsnittsareal på 2,5 cm<2> ble tilført 100 g (-^100 cm<3>) koboltoksyd/Kynar-katalysator som ble anvendt i eksempel 1. Kalsiumholdig simulert industriel t hypoklorittavf allsvann (~1,25% tilgjengelig klor) fremstilt ifølge eksempel 1 ble ført gjennom reaktoren med en hastighet på 2,5 ml/min (25°C). Etter én dags kontinuerlig drift var 93 % av hypoklorittinnmat-ningen til reaktoren blitt omdannet til kloridion og oksygen. Etter to dager var omdannelsen 88%, etter tre dager var omdannelsen 83 %, etter fire dager var omdannelsen 77 A fixed-bed catalytic reactor with a cross-sectional area of 2.5 cm<2> was fed with 100 g (-^100 cm<3>) of cobalt oxide/Kynar catalyst which was used in example 1. Calcium-containing simulated industrial t hypochlorite-free general water (~ 1.25% available chlorine) prepared according to Example 1 was passed through the reactor at a rate of 2.5 ml/min (25°C). After one day of continuous operation, 93% of the hypochlorite feed to the reactor had been converted into chloride ion and oxygen. After two days the conversion was 88%, after three days the conversion was 83%, after four days the conversion was 77
% og etter fem dager var omdannelsen 71 %. På dette trinn ble katalysatoren regenerert ved å rense med friskt vann med en hastighet på 300 ml/min i tre timer. Hypoklorittav-fall ble igjen ført over katalysatoren med en hastighet på 2,5 ml/min. Hypoklorittomdannelsen etter regenerering var 96,5 %. Kontinuerlig drift fulgt av regenerering når omdannelsene faller til under 80%, ble fortsatt i 64 dager uten noen indikasjon på at denne fremgangsmåte ikke kunne fortsettes på ubestemt tid uten tap av katalysatoreffekti-vitét. % and after five days the conversion was 71%. At this stage, the catalyst was regenerated by flushing with fresh water at a rate of 300 ml/min for three hours. Hypochlorite precipitates were again passed over the catalyst at a rate of 2.5 ml/min. The hypochlorite conversion after regeneration was 96.5%. Continuous operation followed by regeneration when conversions fall below 80% was continued for 64 days with no indication that this process could not be continued indefinitely without loss of catalyst effectiveness.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8192579A | 1979-10-04 | 1979-10-04 |
Publications (3)
Publication Number | Publication Date |
---|---|
NO802947L NO802947L (en) | 1981-04-06 |
NO155276B true NO155276B (en) | 1986-12-01 |
NO155276C NO155276C (en) | 1987-03-11 |
Family
ID=22167276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO802947A NO155276C (en) | 1979-10-04 | 1980-10-03 | PROCEDURE FOR CATALYTIC DIVISION OF HYPOOCLORITE AND CATALYST FOR APPLICATION BY THE PROCEDURE. |
Country Status (13)
Country | Link |
---|---|
JP (1) | JPS5697544A (en) |
AU (1) | AU540994B2 (en) |
BE (1) | BE885547A (en) |
BR (1) | BR8006247A (en) |
CA (1) | CA1165307A (en) |
DE (1) | DE3037546A1 (en) |
FR (1) | FR2466280B1 (en) |
GB (1) | GB2059793B (en) |
IT (1) | IT1144008B (en) |
MX (1) | MX156526A (en) |
NL (1) | NL191312C (en) |
NO (1) | NO155276C (en) |
SE (1) | SE440219B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5393724A (en) * | 1992-04-30 | 1995-02-28 | Tosoh Corporation | Process for removing oxidizable substance or reducible substance, composite containing metal oxide or hydroxide, and process for production thereof |
JPH07102351B2 (en) * | 1992-08-10 | 1995-11-08 | 西村陶業株式会社 | Calcium sulfite compact for water treatment |
DE69920881T2 (en) * | 1999-06-02 | 2006-02-09 | Ecolab Inc., St. Paul | Process for activation and / or self-cleaning of industrial or household wastewater |
JP2001070937A (en) * | 1999-09-06 | 2001-03-21 | Kurita Water Ind Ltd | Oxidant-containing water treatment membrane and treatment method |
US9289741B2 (en) | 2012-02-01 | 2016-03-22 | Battelle Memorial Institute | Suspended-slurry reactor |
US20180015422A1 (en) * | 2014-12-08 | 2018-01-18 | Mitsubishi Heavy Industries, Ltd. | Water treatment apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL269502A (en) * | 1960-09-23 | |||
GB1219184A (en) * | 1967-04-01 | 1971-01-13 | Ruhrchemie Ag | Process for the preparation of catalysts |
JPS4869784A (en) * | 1971-12-24 | 1973-09-21 | ||
GB1419767A (en) * | 1972-03-23 | 1975-12-31 | Imp Chemical Ind Ld | Cobalt oxide catalysts |
US3898176A (en) * | 1972-08-08 | 1975-08-05 | Wacker Chemie Gmbh | Process for preparing mechanically resistant catalysts |
-
1980
- 1980-09-16 AU AU62447/80A patent/AU540994B2/en not_active Ceased
- 1980-09-23 NL NL8005291A patent/NL191312C/en not_active IP Right Cessation
- 1980-09-26 GB GB8031125A patent/GB2059793B/en not_active Expired
- 1980-09-29 BR BR8006247A patent/BR8006247A/en not_active IP Right Cessation
- 1980-10-01 MX MX184157A patent/MX156526A/en unknown
- 1980-10-01 SE SE8006869A patent/SE440219B/en not_active IP Right Cessation
- 1980-10-03 NO NO802947A patent/NO155276C/en unknown
- 1980-10-03 CA CA000361514A patent/CA1165307A/en not_active Expired
- 1980-10-03 IT IT49817/80A patent/IT1144008B/en active
- 1980-10-03 DE DE19803037546 patent/DE3037546A1/en active Granted
- 1980-10-03 FR FR808021271A patent/FR2466280B1/en not_active Expired - Lifetime
- 1980-10-03 JP JP13787180A patent/JPS5697544A/en active Granted
- 1980-10-06 BE BE0/202344A patent/BE885547A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
IT8049817A0 (en) | 1980-10-03 |
FR2466280B1 (en) | 1990-05-04 |
AU6244780A (en) | 1981-04-09 |
JPS5697544A (en) | 1981-08-06 |
NL8005291A (en) | 1981-04-07 |
BE885547A (en) | 1981-04-06 |
DE3037546C2 (en) | 1991-08-08 |
SE440219B (en) | 1985-07-22 |
CA1165307A (en) | 1984-04-10 |
SE8006869L (en) | 1981-04-05 |
NL191312C (en) | 1995-05-16 |
GB2059793B (en) | 1983-05-05 |
BR8006247A (en) | 1981-04-07 |
IT1144008B (en) | 1986-10-29 |
MX156526A (en) | 1988-09-07 |
GB2059793A (en) | 1981-04-29 |
NO155276C (en) | 1987-03-11 |
JPH0212620B2 (en) | 1990-03-22 |
FR2466280A1 (en) | 1981-04-10 |
NL191312B (en) | 1994-12-16 |
NO802947L (en) | 1981-04-06 |
AU540994B2 (en) | 1984-12-13 |
DE3037546A1 (en) | 1981-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaur et al. | Removal of heavy metals from waste water by using various adsorbents-a review | |
EP0276044B1 (en) | Effluent treatment | |
US4732688A (en) | Effluent treatment | |
US4764286A (en) | Catalytic decomposition of sodium hypochlorite in highly alkaline solutions | |
DE4304026A1 (en) | Exhausted granular organic ion exchange resins disposal for useful active carbon - by converting to carbon@ pellets by carbonising in mainly inert atmos. and activating in oxidising atmos. for cation exchange styrene] acrylic] acid resin | |
AU666328B2 (en) | Producing aqueous industrial sodium hydroxide solution | |
US4400304A (en) | Catalyst pellets with resin binder for decomposition of hypochlorite | |
NO155276B (en) | PROCEDURE FOR CATALYTIC DIVISION OF HYPOOCLORITE AND CATALYST FOR APPLICATION BY THE PROCEDURE. | |
CA1261709A (en) | Metal recovery | |
JP3579654B2 (en) | Heavy metal removal agent containing phosphate compound | |
CN101234274A (en) | Filtration medium and preparation, filter element, purifier and drinking machine using the same | |
JP2012091167A (en) | Method for treating water containing nutrient salts and oxidizing substance | |
CA1180317A (en) | Catalytic decomposition of hypochlorite using substituted cobalt oxide spinels | |
CZ11894A3 (en) | Process for preparing industrial aqueous solution of sodium chloride and the use thereof | |
DK160245B (en) | Porous catalyst matrix and its use for decomposition of hypochlorite in aqueous solution | |
JP3695845B2 (en) | Water purification material | |
SU810612A1 (en) | Water dechlorination method | |
JPS61149240A (en) | Molded catalyst for decomposing hypochlorite and preparation thereof | |
US1771518A (en) | Purification of water | |
JP2002066592A (en) | Method for manufacturing activating material for nitrate nitrogen removal | |
RU2421277C1 (en) | Method of producing sorbent for water treatment | |
CN102674522A (en) | Composite phenol removal agent capable of removing high-concentration phenyl hydroxide waste water and application method thereof | |
JPH10265209A (en) | Activated carbon | |
CN115155545A (en) | Porous material for reducing ammonia nitrogen in pond culture tail water and preparation method thereof | |
JP2007167790A (en) | Method for producing bottom solidified product |