[go: up one dir, main page]

NO153217B - PROCEDURE FOR RECOVERING CYANIDES AND PRIOR TO BATH METALS FROM RINSE SOLUTIONS RESP. electrolyte - Google Patents

PROCEDURE FOR RECOVERING CYANIDES AND PRIOR TO BATH METALS FROM RINSE SOLUTIONS RESP. electrolyte Download PDF

Info

Publication number
NO153217B
NO153217B NO802849A NO802849A NO153217B NO 153217 B NO153217 B NO 153217B NO 802849 A NO802849 A NO 802849A NO 802849 A NO802849 A NO 802849A NO 153217 B NO153217 B NO 153217B
Authority
NO
Norway
Prior art keywords
cyanides
cyanide
bath
metals
metal
Prior art date
Application number
NO802849A
Other languages
Norwegian (no)
Other versions
NO802849L (en
NO153217C (en
Inventor
Michael Franz-Xaver Peuser
Jose Benedito Bartolo
Original Assignee
Peuser Michael Franz Xaver
Jose Benedito Bartolo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peuser Michael Franz Xaver, Jose Benedito Bartolo filed Critical Peuser Michael Franz Xaver
Publication of NO802849L publication Critical patent/NO802849L/en
Publication of NO153217B publication Critical patent/NO153217B/en
Publication of NO153217C publication Critical patent/NO153217C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/20Regeneration of process solutions of rinse-solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

Oppfinnelsen vedrører en enkel fremgangsmåte for utfelling, regenerering og gjenanvendelse av cyanider fra renseopp-løsninger som anvendes i industrielle fremgangsmåter for elektroavsetning av metaller. Det er i galvaniseringsindu-strien at det er behov for mer økonomiske og praktiske systemer og fremgangsmåter for rensebehandling av renseopp-løsningene. Arbeidet som er utviklet på denne sektor av elektrokjemien er heller komplisert og krever spesialpersonell utdannet for bruk av det anvendte utstyr. Det er et dyrt arbeide på grunn av de høye omkostninger for energi og spesial-arbeidere. De store mengder av kjemiske produkter som tapes i den galvaniske industri er vanlig kjent og fremkommer som et resultat avdbehandling for å ødelegge gifter, oppslemm-inger som har høyt tungmetallinnhold som vil gå tapt. The invention relates to a simple method for the precipitation, regeneration and reuse of cyanides from cleaning solutions used in industrial methods for electrodeposition of metals. It is in the galvanizing industry that there is a need for more economical and practical systems and methods for the cleaning treatment of the cleaning solutions. The work developed in this sector of electrochemistry is rather complicated and requires special personnel trained in the use of the equipment used. It is an expensive job due to the high costs of energy and specialist workers. The large quantities of chemical products that are lost in the galvanic industry are common knowledge and appear as a result of treatment to destroy poisons, slurries that have a high heavy metal content that will be lost.

Regenerering av cyanider fra renseoppløsninger fra cyanidiske prosesser for elektroavsetning av metaller betjener seg av å dispergere med kjemiske produkter, i behandling av de cyanidholdige renseoppløsninger, overføring av de opp-løselige cyanider til uoppløselige cyanider, og således muliggjør deres fjerning ved filtrering eller avsetning. Regeneration of cyanides from cleaning solutions from cyanidic processes for the electrodeposition of metals makes use of dispersing with chemical products, in treating the cyanide-containing cleaning solutions, transferring the soluble cyanides to insoluble cyanides, thus enabling their removal by filtration or deposition.

Det uoppløselige cyanid kan derfor bli gjenanvendt industri-elt. Den omtalte prosess ved anvendelse på den tekniske side av elektrokjemien, betyr en nyhet utover vanlige fremgangsmåter for behandling av residuer som fremkommer i galvaniske fremgangsmåter. The insoluble cyanide can therefore be reused industrially. The mentioned process, when applied to the technical side of electrochemistry, represents a novelty beyond usual methods for treating residues that arise in galvanic methods.

Fagfolk på området ved at behandling av cyanidholdige rensoppløsninger er vesentlig beskjeftiget med gifteliminer-ende fremgangsmåter ved destruksjon av cyanidet. En annen prosess, resirkuleringen, er basert på fordampning av oppløs-ningsmdilet i renseoppløsningene ved å benytte energi til å konsentrere fluidet som vil gjenanvendes i de repsektive neddypninger. Professionals in the field of treating cyanide-containing cleaning solutions are mainly concerned with poison-eliminating methods by destroying the cyanide. Another process, the recycling, is based on evaporation of the solvent in the cleaning solutions by using energy to concentrate the fluid which will be reused in the repective immersions.

Andre fremgangsmåter er også kjent som benytter ioneut-vekslere, innbefattende høy kapitalinvestering for utstyr og tap av kjemiske produkter ved deres destruksjon. Other methods are also known which use ion exchangers, involving high capital investment for equipment and loss of chemical products upon their destruction.

US-patent nr. 3 736 239 vedrører blandinger av metallsalter og derved blandinger av metallcyanider under anvendelse av avmetalliseringsoppløsninger, hvori alle mulige metaller er oppløst. Derved er det ikke sikret en utfelling av metallcyanider som er brukbar for gjenanvendelse. Dess-uten benyttes ifølge dette patent nikkelsalter, hvorved det danner seg nikkelcyanider. Det finnes ikke galvanisk nikkel-bad på cyanidisk basis, hvor man kan bruke nikkelcyanid, og nikkel er utelukket fra foreliggende oppfinnelse, da de metaller som benyttes her har atomvekter mellom 60 og 200. Fremgangsmåten ifølge US-patent nr. 3 736 239 har ikke vist seg anvendbar i praksis, da det danner seg utfellinger som ikke er anvendbare, ikke mer er skyllbare og bare er en be-lastning for deponering. US Patent No. 3,736,239 relates to mixtures of metal salts and thereby mixtures of metal cyanides using demetallizing solutions, in which all possible metals are dissolved. Thereby, a precipitation of metal cyanides that is usable for recycling is not ensured. In addition, according to this patent, nickel salts are used, whereby nickel cyanides are formed. There is no galvanic nickel bath on a cyanide basis, where nickel cyanide can be used, and nickel is excluded from the present invention, as the metals used here have atomic weights between 60 and 200. The method according to US patent no. 3,736,239 has not proved to be usable in practice, as precipitates are formed which are not usable, are no longer flushable and are only a burden for disposal.

US-patent nr. 2 845 330 vedrører avvannsbehandling, hvor det benyttes fremgangsmåte hvor det ved siden av kobbercyanid også utfelles kobberkarbonat og kobberhydroksyd, da det i ethvert cyanidisk kobberbad og dets skyllevann, alltid er tilstede store mengder av karbonater ved siden av et hydroksydinnhold. US patent no. 2,845,330 relates to waste water treatment, where a method is used in which, in addition to copper cyanide, copper carbonate and copper hydroxide are also precipitated, since in any cyanidic copper bath and its rinse water, large amounts of carbonates are always present in addition to a hydroxide content.

Fremgangsmåten ifølge oppfinnelsen muliggjør den totale utfelling av cyanidene i uoppløselig form sammen med cyanidmetaller og deres regenerering for industrille gjenanvendelse. The method according to the invention enables the total precipitation of the cyanides in insoluble form together with cyanide metals and their regeneration for industrial reuse.

Oppfinnelsen vedrører altså en fremgangsmåte til gjenvinning av cyanider og fortrinnsvis også badmetaller fra skylleoppløsninger resp. elektrolyttbad, idet fremgangsmåten er karakterisert ved at de i oppløsningen tilstedeværende cyanider reduseres ved overføring til en lavere valens ved tilsetning av et oksyderbart salt, eventuelt under innstillingen av pH-verdien, slik at cyanidene samt badmetallet etter tilsetning av et salt av badmetallet utskilles i en gjenanvendbar form. The invention therefore relates to a method for the recovery of cyanides and preferably also bath metals from rinsing solutions or electrolyte bath, as the method is characterized by the fact that the cyanides present in the solution are reduced by transfer to a lower valence by the addition of an oxidizable salt, possibly during the adjustment of the pH value, so that the cyanides and the bath metal are separated after the addition of a salt of the bath metal in a reusable form.

Som salt av badmetallet kan det hensiktsmessig tilsettes et klorid eller sulfat. As a salt of the bath metal, a chloride or sulphate can be suitably added.

Ved opparbeidelsen av kobbercyanidkompleksbadene tilsettes CuC^ og/eller CuSO^ sammen med alkalimetallsulfitt med en pH mellom 1,5 og 4, slik at rent CuCN utfelles. During the processing of the copper cyanide complex baths, CuC^ and/or CuSO^ are added together with alkali metal sulphite with a pH between 1.5 and 4, so that pure CuCN is precipitated.

Overensstemmende med mengden av cyanid i rense-oppløsningene skal adekvate mengder av metallsalter tilsettes, disse vil tilsvare metallet assosiert med cyanidet i rense-oppløsningen og i den galvaniske dypping. Eksempelvis sinksulfat og/eller klorid for renseoppløsningen av den cyanidiske sinkdypping eller forøvrig kobbersulfat og/eller klorid for renseoppløsningen av den cyanidiske kobberdyppingen, forbindelse med syre eller alkali-salter som kontrollerer pH-verdien av renseoppløsningen og valensen av metallionene overensstemmende med metalltypen, oppnår således en fullstendig over-føring av alt fritt cyanid eller cyanider forbundet i komplekse salter til et enkelt metallisk cyanid, uoppløselig i vann med en adekvat pH i renseoppløsningen uten å frigjøre cyanidiske gasser. Corresponding to the amount of cyanide in the cleaning solutions, adequate amounts of metal salts must be added, these will correspond to the metal associated with the cyanide in the cleaning solution and in the galvanic dipping. For example, zinc sulphate and/or chloride for the cleaning solution of the cyanidic zinc dipping or otherwise copper sulphate and/or chloride for the cleaning solution of the cyanidic copper dipping, compound with acid or alkali salts that control the pH value of the cleaning solution and the valence of the metal ions in accordance with the type of metal, thus achieving a complete conversion of all free cyanide or cyanides bound in complex salts to a single metallic cyanide, insoluble in water of an adequate pH in the cleaning solution without liberating cyanide gases.

Alt cyanid i vann er således overført til et uoppløselig salt, og kan fjernes fra renseoppløsningen ved avsetning eller filtrering. All cyanide in water has thus been transferred to an insoluble salt, and can be removed from the cleaning solution by sedimentation or filtration.

Ved å benytte for hver type av metall i galvani-seringen av metallfremgangsmåter separate rensetanker uten fare for sammenblanding av metaller, kan de metalliske cyanider som utfelles ved hjelp av fremgangsmåten ifølge oppfinnelsen dvs. regenerering av cyanider fra renseoppløsninger av cyanidiske prosesser for elektroavsetning av metaller, benyttes om igjen direkte i de respektive dyppinger etter deres rensing (den uoppløselige utfelling) i filtrene eller ved avsetning med vann, inntil rensevannet får en tetthet på 1.00 0 eller 0° Bé som således frigjør det utfelte cyanid fra de andre oppløselige komponenter. Samme fremgangsmåte kan også benyttes for utfelling og/eller regenerering av cyanid fra en hvilken som helst cyanidisk væske som allerede er benyttet i galvanisering av sink, kadmium, kobber, sølv, gulv og deres legeringer. By using separate cleaning tanks for each type of metal in the galvanization of metal processes without the risk of mixing metals, the metallic cyanides that are precipitated by means of the method according to the invention, i.e. the regeneration of cyanides from cleaning solutions of cyanidic processes for the electrodeposition of metals, used again directly in the respective dippings after their purification (the insoluble precipitation) in the filters or by deposition with water, until the purification water has a density of 1.00 0 or 0° Bé which thus frees the precipitated cyanide from the other soluble components. The same method can also be used for the precipitation and/or regeneration of cyanide from any cyanidic liquid which has already been used in the electroplating of zinc, cadmium, copper, silver, floors and their alloys.

Eksperimenter har vist enkeltheten ved regenerering av cyanider fra renseoppløsninger av cyanidiske prosesser for elektroavsetning av metaller, hvor det ikke er behov for spesialisert teknisk personell, eller spesielt utstyr; heller ikke forbrukes kjemiske produkter for senere destruksjon. Experiments have shown the simplicity of regeneration of cyanides from cleaning solutions of cyanide processes for electrodeposition of metals, where there is no need for specialized technical personnel, or special equipment; nor are chemical products used for later destruction.

Det gjenvinnes effektivt de verdifulle kjemiske produkter fra vann, hvor verdien av det metalliske salt som benyttes for utfelling og regenerering er to til seks ganger lavere enn det gjenvunnede material. The valuable chemical products are effectively recovered from water, where the value of the metallic salt used for precipitation and regeneration is two to six times lower than the recovered material.

For å vise den tekniske og økonomiske verdi av fremgangsmåten for regenerering av cyanider fra renseoppløs-ninger av cyanidiske prosesser for elektroavsetning av metaller skal det angis to eksempler: In order to show the technical and economic value of the process for regenerating cyanides from cleaning solutions of cyanidic processes for electrodeposition of metals, two examples shall be given:

Når en liter av sinkdyppen spyles til rensetanken er følgende materialer nødvendige for utfelling av opp-løselig cyanid og deler av natriumhydroksyd (kaustisk soda): 200 g sinksulfat ved Cr$ 14,00/kg = Cr$ 2,80 When one liter of the zinc dip is flushed to the cleaning tank, the following materials are required for precipitation of soluble cyanide and parts of sodium hydroxide (caustic soda): 200 g of zinc sulfate at Cr$ 14.00/kg = Cr$ 2.80

Verdien av regenerert og utfelt materiale senere er: The value of regenerated and precipitated material later is:

Dette betyr at verdien av regenerert materiale er 5,8 ganger verdien av det materiale som anvendes for regenerering. Vannet viser etter denne behandling ingen cyanider, ingen tungmetaller og det forblir bare natriumsulfat og spor av natriumhydroksyd som lett nøytraliseres. This means that the value of regenerated material is 5.8 times the value of the material used for regeneration. After this treatment, the water shows no cyanides, no heavy metals and only sodium sulfate and traces of sodium hydroxide remain, which are easily neutralized.

Følgelig vil en liter kobberdypp når den spyles til rensetanken kreve følgende mengder materiale for å utfelle oppløselig cyanid: 161 g kobberklorid ved Cr$ 111,60 p/kg = Cr$ 17,96 Consequently, one liter of copper dip when flushed to the treatment tank will require the following amounts of material to precipitate soluble cyanide: 161 g of copper chloride at Cr$ 111.60 p/kg = Cr$ 17.96

Verdien av regenerert og utfelt materiale vil da bli følgende: 210 g kobbercyanid ved Cr$ 180,00 p/kg = Cr$ 37,80 The value of regenerated and precipitated material will then be the following: 210 g of copper cyanide at Cr$ 180.00 p/kg = Cr$ 37.80

Verdien av gjenvunnet materiale er derfor 2,1 ganger verdien av det anvendte metalliske salt for regenerering. Vannet har etter behandlingen ingen cyanider og ingen tungmetaller og det forblir bare natriumklorid som ikke er noe problem for vannbehandling. The value of recovered material is therefore 2.1 times the value of the metallic salt used for regeneration. After the treatment, the water has no cyanides and no heavy metals and only sodium chloride remains, which is no problem for water treatment.

De to ovennevnte tilfeller viser tydelig tekniske og økonomiske verdier for regenerering av cyanider fra renseoppløsninger av cyanidiske prosesser for elektroavsetning av metaller. The two above-mentioned cases clearly show technical and economic values for the regeneration of cyanides from cleaning solutions of cyanidic processes for electrodeposition of metals.

De vanlige fremgangsmåter for behandling av cyanidholdige vann viser følgende verdier vedrørende bruk av kjemiske produkter for destruksjon og ikke gjenvinnbare cyanider: The usual procedures for the treatment of cyanide-containing water show the following values regarding the use of chemical products for destruction and non-recoverable cyanides:

Første tilfelle: En liter sinkbad-dypping: First case: One liter zinc bath dipping:

Annet tilfelle: For en liter kobberdypping: Other case: For one liter of copper dipping:

Disse beregninger innbefatter ennu ikke omkostninger for filtrering og separering av oppslemningen, kapitalinvestering for utstyr og driftsutgifter for lagring av disse residuer i egnede lokaliteter. These calculations do not yet include costs for filtering and separating the slurry, capital investment for equipment and operating costs for storing these residues in suitable locations.

I disse sammenligninger, de fysikalske verdier er konstant internasjonale; pengeverdiene kan gå opp i for-hold til omkostningene av kjemiske produkter pr. land. Pengeverdiene må ansees som sammenligning og den omtrentlige ekvi-valent i Brasil av en US-dollar er tredve cruzeiros (1.00 Cr$ 30,00). In these comparisons, the physical values are constantly international; the monetary values may increase in relation to the costs of chemical products per country. The monetary values must be considered as a comparison and the approximate equivalent in Brazil of one US dollar is thirty cruzeiros (1.00 Cr$ 30.00).

I de fleste land er kobber, sink, kadmium, sølv, gull og cyanider importerte materialer, som berettiger å unngå tap av disse produkter i renseoppløsninger i galvanisk industri. In most countries, copper, zinc, cadmium, silver, gold and cyanides are imported materials, which justify avoiding the loss of these products in cleaning solutions in the galvanic industry.

Den galvaniske industri har problemer vedrørende etterfølgingen av offisielle standarder som er ansvarlig for bibehold og beskyttelse av økologien. Det kreves en effektiv og fullstendig behandling av industrielle skadelige avfalls-produkter. The galvanic industry has problems regarding the follow-up of official standards that are responsible for maintaining and protecting the ecology. An efficient and complete treatment of industrial harmful waste products is required.

Den høye toksisitet av. cyanider er velkjent og derfor er nødvendigheten og nøyaktig kontroll av offisielle organer ved den galvaniske industri berettiget. The high toxicity of. cyanides are well known and therefore the necessity and precise control by official bodies of the galvanic industry is justified.

Fremgangsmåten for regenerering av cyanider fra renseoppløsninger av cyanidiske prosesser for elektroavsetning av metaller er således den eneste som muliggjør behandling av avfallsvann med cyanider med profitt for brukeren ved regenerering av materialet via visuell kontroll av behandlingen og således eliminering av nødvendigheten av nytt utstyr og unn-gåelse av angrep på økologien. The procedure for regenerating cyanides from cleaning solutions of cyanide processes for the electrodeposition of metals is thus the only one that enables the treatment of waste water with cyanides with profit for the user by regenerating the material via visual control of the treatment and thus eliminating the need for new equipment and avoiding of attacks on the ecology.

Regenerering av cyanider fra renseoppløsninger Regeneration of cyanides from cleaning solutions

av cyanidiske prosesser for elektroavsetning av metaller kan også være en teknikk som kan anvendes til forskjellige andre fremgangsmåter for regenerering av cyanider og viktigheten av denne for kjemiske og elektrokjemiske industrier i alle land skulle det ikke være nødvendig å omtale. of cyanide processes for the electrodeposition of metals can also be a technique that can be used for various other methods for the regeneration of cyanides and the importance of this for chemical and electrochemical industries in all countries should not need to be mentioned.

Følgende fire kjemiske formler viser utviklingen av reaksjonen av uoppløselig kobbercyanid med kaliumcyanid oppløst for å danne komplekssalt av oppløselig kobbercyanid, The following four chemical formulas show the progress of the reaction of insoluble copper cyanide with potassium cyanide dissolved to form the complex salt of soluble copper cyanide,

og viser videre hvorledes den komplekse oppløselige kobbercyanid ved tilsetning av kobberklorid overfører seg selv til det uoppløselige kobbercyanid ved trinnet for behandling av rense-oppløsningen: and further shows how the complex soluble copper cyanide upon addition of copper chloride transfers itself to the insoluble copper cyanide at the step of treating the cleaning solution:

I formel 4) er det ingen vanskelighet å ut-veksle kobberklorid med kobbersulfat. In formula 4) there is no difficulty in replacing copper chloride with copper sulphate.

Ved bruk av uoppløselig sinkcyanid med natrium-cyanid i forbindelse med sinkdypping, oppnås det oppløselige komplekse salt sinkcyanid som kan utfelles med sinksulfat ved behandling av renseoppløsningen ifølge ligning: When using insoluble zinc cyanide with sodium cyanide in connection with zinc dipping, the soluble complex salt zinc cyanide is obtained which can be precipitated with zinc sulfate by treating the cleaning solution according to the equation:

Utfellingsformelen kan generaliseres med hen-syn til -M- symbolet av et metall, hvorav atomvekten ligger mellom 60 og 200 og således muliggjør regenerering av cyanider og respektive metaller i renseoppløsningene. The precipitation formula can be generalized with regard to the -M- symbol of a metal, the atomic weight of which is between 60 and 200 and thus enables the regeneration of cyanides and respective metals in the cleaning solutions.

Den tekniske og økonomiske betydning av utfelling av cyanider fra renseoppløsninger fra cyanidiske prosesser for elektroavsetning av metaller kan således sees ved tilsetning av metallsaltene sammen med salter og/eller syrer for å korrigere pH-verdien av vannet og i forbindelse med salter, gasser og/eller syrer for å korrigere valensen av metallionene hvis nødvendig. The technical and economic importance of precipitation of cyanides from cleaning solutions from cyanidic processes for electrodeposition of metals can thus be seen by adding the metal salts together with salts and/or acids to correct the pH value of the water and in connection with salts, gases and/or acids to correct the valence of the metal ions if necessary.

Claims (3)

1. Fremgangsmåte til gjenvinning av cyanider og fortrinnsvis også badmetaller fra skylleoppløsninger resp. elektrolyttbad, karakterisert ved at de i oppløsningen tilstedeværende cyanider reduseres ved overføring til en lavere valens ved tilsetning av et oksyderbart salt, eventuelt under innstilling av pH-verdien, slik at cyanidene samt badmetallet, etter tilsetning av et salt av badmetallet utskilles i en gjenanvendbar form.1. Procedure for the recovery of cyanides and preferably also bath metals from rinsing solutions or electrolyte bath, characterized by the fact that the cyanides present in the solution are reduced by transfer to a lower valency by the addition of an oxidizable salt, possibly by adjusting the pH value, so that the cyanides and the bath metal, after the addition of a salt of the bath metal, are excreted in a reusable form . 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det som salt av badmetallet tilsettes et klorid eller sulfat.2. Method according to claim 1, characterized in that a chloride or sulphate is added as a salt of the bath metal. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at det ved opparbeidelsen av kobbercyanidkompleksbadene, tilsettes CuCl-, og/eller CuSO^, sammen med alkalimetallsulfitt ved en pH mellom 1,5 og 4, slik at rent CuCN utfelles.3. Method according to claim 1 or 2, characterized in that during the preparation of the copper cyanide complex baths, CuCl- and/or CuSO^ are added together with alkali metal sulphite at a pH between 1.5 and 4, so that pure CuCN is precipitated.
NO802849A 1979-01-29 1980-09-26 PROCEDURE FOR RECOVERING CYANIDES AND PRIOR TO BATH METALS FROM RINSE SOLUTIONS RESP. Electrolyte bath. NO153217C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BR7900702A BR7900702A (en) 1979-01-29 1979-01-29 CYANIDE RECOVERY FROM WASHING WATERS OF METAL ELECTRODEPOSITION CYANIDRAL PROCESSES

Publications (3)

Publication Number Publication Date
NO802849L NO802849L (en) 1980-09-26
NO153217B true NO153217B (en) 1985-10-28
NO153217C NO153217C (en) 1986-02-05

Family

ID=4014093

Family Applications (1)

Application Number Title Priority Date Filing Date
NO802849A NO153217C (en) 1979-01-29 1980-09-26 PROCEDURE FOR RECOVERING CYANIDES AND PRIOR TO BATH METALS FROM RINSE SOLUTIONS RESP. Electrolyte bath.

Country Status (28)

Country Link
EP (1) EP0022839A4 (en)
JP (1) JPS56500136A (en)
AR (1) AR231428A1 (en)
AU (1) AU537457B2 (en)
BE (1) BE881417A (en)
BR (1) BR7900702A (en)
CA (1) CA1160018A (en)
CH (1) CH645077A5 (en)
CS (1) CS221253B2 (en)
DD (1) DD148795A5 (en)
ES (1) ES8100815A1 (en)
FI (1) FI67356C (en)
GB (1) GB2055900B (en)
GR (1) GR67263B (en)
HU (1) HU182603B (en)
IE (1) IE49370B1 (en)
IL (1) IL59207A (en)
IT (1) IT1188898B (en)
MX (1) MX153331A (en)
NL (1) NL8020027A (en)
NO (1) NO153217C (en)
PL (1) PL128213B1 (en)
PT (1) PT70738A (en)
RO (1) RO80891A (en)
SE (1) SE441521B (en)
WO (1) WO1980001563A1 (en)
YU (1) YU19780A (en)
ZA (1) ZA80402B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT375683B (en) * 1982-06-15 1984-08-27 Wolfram Manner METHOD FOR THE RECOVERY OF INGREDIENTS FROM ACID OR ACIDIFIED SOURING, ACIDATING OR GALVANOLOLES
CA2057217C (en) * 1990-12-11 1999-08-31 Bruce Edward Holbein A process for the decontamination of toxic, heavy-metal containing soils
JP6201114B2 (en) * 2012-11-01 2017-09-27 株式会社片山化学工業研究所 Treatment method of wastewater containing cyanide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1614523A (en) * 1922-05-13 1927-01-18 American Cyanamid Co Process of producing heavy metal cyanides
US2845330A (en) * 1955-08-15 1958-07-29 Holden Artemas F Method of recovering cyanides from waste aqueous solutions containing metal cyanides
US3736239A (en) * 1971-03-18 1973-05-29 Us Interior Neutralization of metal containing wastes
SU528265A1 (en) * 1972-09-26 1976-09-15 Государственный научно-исследовательский и проектный институт по обогащению руд цветных металлов "Казмеханобр" The method of purification of wastewater from copper and cyanides
JPS50656A (en) * 1973-05-08 1975-01-07

Also Published As

Publication number Publication date
DD148795A5 (en) 1981-06-10
BE881417A (en) 1980-05-16
CA1160018A (en) 1984-01-10
NL8020027A (en) 1980-11-28
PT70738A (en) 1980-02-01
FI800250A (en) 1980-07-30
PL221661A1 (en) 1980-10-20
CS221253B2 (en) 1983-04-29
NO802849L (en) 1980-09-26
AU5499980A (en) 1980-08-07
CH645077A5 (en) 1984-09-14
WO1980001563A1 (en) 1980-08-07
IT8047738A1 (en) 1981-07-29
GB2055900B (en) 1984-04-04
IL59207A (en) 1985-08-30
AU537457B2 (en) 1984-06-28
PL128213B1 (en) 1984-01-31
IL59207A0 (en) 1980-05-30
RO80891B (en) 1983-08-30
FI67356B (en) 1984-11-30
GR67263B (en) 1981-06-26
FI67356C (en) 1985-03-11
ES488033A0 (en) 1980-12-16
ZA80402B (en) 1981-08-26
IE800161L (en) 1980-07-29
IT8047738A0 (en) 1980-01-29
SE8006649L (en) 1980-09-23
JPS56500136A (en) 1981-02-12
MX153331A (en) 1986-09-17
EP0022839A4 (en) 1981-06-26
RO80891A (en) 1983-09-26
BR7900702A (en) 1980-12-09
YU19780A (en) 1983-01-21
HU182603B (en) 1984-02-28
SE441521B (en) 1985-10-14
IT1188898B (en) 1988-01-28
IE49370B1 (en) 1985-09-18
EP0022839A1 (en) 1981-01-28
NO153217C (en) 1986-02-05
AR231428A1 (en) 1984-11-30
GB2055900A (en) 1981-03-11
ES8100815A1 (en) 1980-12-16

Similar Documents

Publication Publication Date Title
EP0005415B1 (en) A process of regenerating an ammoniacal etching solution
CN102452743A (en) Method for treating complex-containing nickel plating wastewater
EP0075882B1 (en) Process for regenerating cleaning fluid
WO1993002227A1 (en) Process and apparatus for treating fluoride containing acid solutions
CN102732722A (en) Zinc hydrometallurgy method for removing fluorine and chlorine by extraction
US3975244A (en) Electrolytic refining
NO153217B (en) PROCEDURE FOR RECOVERING CYANIDES AND PRIOR TO BATH METALS FROM RINSE SOLUTIONS RESP. electrolyte
US4394356A (en) Recuperation of cyanides from rinsing solutions of cyanidric processes for eletrodeposition of metals
EP0157190B1 (en) Etching process for aluminium
US5524780A (en) Control of regeneration of ammoniacal copper etchant
US4416745A (en) Process for recovering nickel from spent electroless nickel plating solutions
CA1040133A (en) Electrolytically refining silver with complexing of copper ions
CN101209874A (en) Process for treating and recovering waste acidic copper etchant by using metal aluminum
US5076884A (en) Process of precipitating zirconium or hafnium from spent pickling solutions
WO1995023880A1 (en) Treatement of electrolyte solutions
RU2066707C1 (en) Method for utilization of nickel from spent solutions of chemical nickel-plating
Bless A review of electroplating nickel bath life extension, nickel recovery & copper recovery from nickel baths
NO311251B1 (en) Process for Removing Calcium Ions and Silicon Compounds from a Liquid in an Alkali Metal Chlorate Process
JP2001020085A (en) Treatment of etching waste liquid and device for treatment of etching waste liquid
SU1447932A1 (en) Method of treating the solution of electrolytic refining of copper
JP3170981B2 (en) Surface treatment method for aluminum material
Eisenmann Nickel Recovery from Electroplating Rinsewaters by Electrodialysis
JPS5914094B2 (en) How to recover metallic tin from halogen bath tin plating
NO854633L (en) PROCEDURE FOR THE NEUTRALIZATION OF Aqueous ACID SOLUTION.
Sheedy Nickel Recovery for Duplex Operations