NO151544B - PROCEDURE FOR AA PREVENT Corrosion of the reinforcement in concrete - Google Patents
PROCEDURE FOR AA PREVENT Corrosion of the reinforcement in concrete Download PDFInfo
- Publication number
- NO151544B NO151544B NO800637A NO800637A NO151544B NO 151544 B NO151544 B NO 151544B NO 800637 A NO800637 A NO 800637A NO 800637 A NO800637 A NO 800637A NO 151544 B NO151544 B NO 151544B
- Authority
- NO
- Norway
- Prior art keywords
- cement
- concrete
- mixture
- water
- calcium nitrite
- Prior art date
Links
- 239000004567 concrete Substances 0.000 title claims description 43
- 238000005260 corrosion Methods 0.000 title claims description 25
- 230000007797 corrosion Effects 0.000 title claims description 25
- 238000000034 method Methods 0.000 title claims description 15
- 230000002787 reinforcement Effects 0.000 title claims description 3
- 239000004568 cement Substances 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 33
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical compound ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000012615 aggregate Substances 0.000 claims description 11
- 239000011396 hydraulic cement Substances 0.000 claims description 11
- 239000004576 sand Substances 0.000 claims description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 239000011150 reinforced concrete Substances 0.000 claims 1
- 239000008030 superplasticizer Substances 0.000 claims 1
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000011398 Portland cement Substances 0.000 description 6
- 235000012241 calcium silicate Nutrition 0.000 description 6
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 6
- 235000019976 tricalcium silicate Nutrition 0.000 description 6
- 229910052918 calcium silicate Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 235000010288 sodium nitrite Nutrition 0.000 description 5
- 229910021534 tricalcium silicate Inorganic materials 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 2
- 239000012496 blank sample Substances 0.000 description 2
- 239000004281 calcium formate Substances 0.000 description 2
- 229940044172 calcium formate Drugs 0.000 description 2
- 235000019255 calcium formate Nutrition 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Natural products O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000011372 high-strength concrete Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004304 potassium nitrite Substances 0.000 description 2
- 235000010289 potassium nitrite Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- -1 tetracalcium aluminum Chemical compound 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- VEMHQNXVHVAHDN-UHFFFAOYSA-J [Cu+2].[Cu+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O Chemical group [Cu+2].[Cu+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VEMHQNXVHVAHDN-UHFFFAOYSA-J 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229920005551 calcium lignosulfonate Polymers 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- RYAGRZNBULDMBW-UHFFFAOYSA-L calcium;3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Ca+2].COC1=CC=CC(CC(CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O RYAGRZNBULDMBW-UHFFFAOYSA-L 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- HOOWDPSAHIOHCC-UHFFFAOYSA-N dialuminum tricalcium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[Al+3].[Al+3].[Ca++].[Ca++].[Ca++] HOOWDPSAHIOHCC-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000011429 hydraulic mortar Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical compound [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 description 1
- 229920000580 poly(melamine) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/48—Metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/06—Quartz; Sand
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/085—Acids or salts thereof containing nitrogen in the anion, e.g. nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/60—Agents for protection against chemical, physical or biological attack
- C04B2103/61—Corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/50—Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Reinforcement Elements For Buildings (AREA)
- Rod-Shaped Construction Members (AREA)
Description
Foreliggende oppfinnelse vedrører en fremgangsmåte av den The present invention relates to a method thereof
art som er angitt i krav l's ingress. species specified in claim l's preamble.
Betonger fremstilt av hydrauliske sementer, hvorav Portland-sement er det mest vanlige eksempel, anvendes som strukturelle bestanddeler i forskjellige anvendelser, så som ved veibygging, dekking av broer, som bygningsstrukturer, flere-etasjes auto-mobillagre o.l. For å forsterke betongens egenskaper og mulig-gjøre utnyttelse slik som ovenfor indikert, så anvendes disse materialer normalt i kombinasjon med jern- eller stål-forsterkende strukturer. Disse forsterkende metallstrukturer, vanligvis i form av metallstenger eller staver utsettes for an-grep av forskjellige korrosive bestanddeler som inneholdes i betongen, så vel som påføring av eksterne korrosive bestanddeler på strukturen, så som kloridsalter o.l., som vanligvis anvendes for fjernelse av is og sne fra veier, broer, fortau o.l. Ytterligere er forskjellige strukturer lokalisert i kystinstallasjoner o.l. utsatt for korrosivt saltangrep fra omgivelsene. Reparasjon og erstatning av slike strukturer som har forfalt som følge av påvirkning av disse korrosive krefter er omfattende og i visse tilfeller krever fullstendig erstatning av strukturen, når den ikke er egnet for dens på-tenkte anvendelse. Concretes made from hydraulic cements, of which Portland cement is the most common example, are used as structural components in various applications, such as road construction, covering bridges, as building structures, multi-storey automobile warehouses, etc. In order to strengthen the concrete's properties and enable utilization as indicated above, these materials are normally used in combination with iron or steel reinforcing structures. These reinforcing metal structures, usually in the form of metal rods or rods, are exposed to attack by various corrosive components contained in the concrete, as well as the application of external corrosive components to the structure, such as chloride salts etc., which are usually used for the removal of ice and snow from roads, bridges, pavements etc. Furthermore, various structures are located in coastal installations etc. exposed to corrosive salt attack from the environment. Repair and replacement of such structures which have deteriorated as a result of the influence of these corrosive forces is extensive and in certain cases requires complete replacement of the structure, when it is not suitable for its intended use.
I forsøk på å motvirke de korrosive effekter som normalt opp-står i betongstrukturer, som ovenfor nevnt, har forskjellige korrosjonsinhiberende midler vært foreslått for anvendelse som tilsatsmidler for anvendelse ved deres fremstilling. For eksempel er anvendelse av natriumnitritt angitt i japansk patent nr. 33-940. I henhold til patentet angis det at natriumnitritt kan tilsettes sementen og betongen under blanding for å inhibere korrosjon av forsterkende jern- eller stålstaver og rammeverk. Det anvendte aggregat var sjøsand. In an attempt to counteract the corrosive effects that normally occur in concrete structures, as mentioned above, various corrosion-inhibiting agents have been proposed for use as additives for use in their manufacture. For example, the use of sodium nitrite is disclosed in Japanese Patent No. 33-940. According to the patent, it is stated that sodium nitrite can be added to the cement and concrete during mixing to inhibit corrosion of reinforcing iron or steel bars and frameworks. The aggregate used was sea sand.
US-patent nr. 3.210.207 angir anvendelse av blandinger av kalsiumformat med mindre mengder av visse nitritt- eller kromatsalter som korrosjonsinhibitorer, for anvendelse som akseleratorer i sement. US Patent No. 3,210,207 discloses the use of mixtures of calcium formate with minor amounts of certain nitrite or chromate salts as corrosion inhibitors, for use as accelerators in cement.
US-patent nr. 3.427.175 angir generisk anvendelse av kalsiumnitritt som akselerator som delvis inhiberer korrosjon i alitt-sementer. Den anvendte kalsiumnitritt kan inneholde mindre mengder natriumnitritt og kan anvendes sammen med kalsiumklorid og andre akseleratorer. US Patent No. 3,427,175 discloses the generic use of calcium nitrite as an accelerator that partially inhibits corrosion in alite cements. The calcium nitrite used may contain smaller amounts of sodium nitrite and may be used together with calcium chloride and other accelerators.
I US-patent nr. 3.801.338 er vist anvendelse av en blanding av kalsiumformat og natriumnitritt som tilsetningsmiddel for sement som skal inneholde metallforsterkning. Det er angitt at det oppnås forbedret kompresjonsstyrke sammen med sulfat-resistens og at det oppnås "en positiv korrosjonsinhiberende effekt". US patent no. 3,801,338 shows the use of a mixture of calcium formate and sodium nitrite as an additive for cement which is to contain metal reinforcement. It is stated that improved compressive strength is achieved along with sulfate resistance and that "a positive corrosion inhibiting effect" is achieved.
Anvendelse av natriumnitritt, som omtalt i noen av de ovenfor nevnte patenter, er funnet å ha en ødeleggende effekt som følge av utslag og fremmer alkaliaggregatreaksjon med betongbestanddelene og er følgelig et dårlig korrosjonsinhiberende middel. Anvendelse av kalisumnitritt er i visse av patentene angitt å være et inhiberende middel når det anvendes i en hvilken som helst type sementblanding. Det er funnet at kalisumnitritt kun gir en minimal korrosjonsresi-stens når det anvendes som angitt i henhold til teknikkens stand. The use of sodium nitrite, as discussed in some of the above-mentioned patents, has been found to have a destructive effect as a result of spalling and promotes alkali aggregate reaction with the concrete constituents and is consequently a poor corrosion inhibitor. The use of potassium nitrite is stated in some of the patents to be an inhibiting agent when used in any type of cement mixture. It has been found that potassium nitrite only provides minimal corrosion resistance when used as indicated according to the state of the art.
Behovet for en effektiv korrosjonsinhibitor eller sementblanding som i det vesentlige er i stand til fullstendig å' inhibere korrosjon av metaller, inneholdt i denne, over et lengre tidsrom er følgelig meget ønskelig innen bygnings- og andre industrier hvor denne materialtype anvendes. The need for an effective corrosion inhibitor or cement mixture which is essentially capable of completely inhibiting corrosion of metals, contained therein, over a longer period of time is consequently very desirable within the construction and other industries where this type of material is used.
Oppfinnelsen vedrører en fremgangsmåte for å inhibere korrosjon av slike metalldeler. Blandingen omfatter en betong med høy styrke fremstilt av en hydraulisk sement og som er i stand til å utvise en kompresjonsstyrke etter 28 døgn på minst 350 kp/cm 2og inneholder minst 2 % kalsiumnitritt. The invention relates to a method for inhibiting corrosion of such metal parts. The mixture comprises a high-strength concrete made from a hydraulic cement and which is capable of exhibiting a compressive strength after 28 days of at least 350 kp/cm 2 and contains at least 2% calcium nitrite.
Foreliggende oppfinnelse er således rettet på en fremgangsmåte for å forhindre korrosjon av metallstykker som inneholdes i betong over et lengre tidsrom. Fremgangsmåten er særpreget ved det som er angitt i krav i's karakteriserende de 1 . The present invention is thus aimed at a method for preventing corrosion of metal pieces contained in concrete over a longer period of time. The method is characterized by what is stated in claim i's characterizing de 1.
Sementbestanddelene som er til stede i de nye betonger er hydrauliske sementer, så som Portland-sement. Disse sementer er velkjente og fremstilles ved kalsinering av en blanding av kalksten og leire til å gi en klinker og ved maling av klinkeren erholdes et fint pulver. Hovedbestanddelene som finnes i Portland-sement er trikalsiumsilikat, dikalsiumsilikat, trikalsiumaluminat og tetrakalsiumaluminiumferritt. Det er antatt at trikalsium- og dikalsiumsilikatene er hoved-bindbestanddelene i Portland-sement. Når trikalsiumsilikat blandes med vann dannes kalsiumsilikathydrat, kjent som tober-moritt gel og kalsiumhydroksyd. Når dikalsiumsilikat kommer i kontakt med vann dannes tilsvarende produkter men med en lavere reaksjonshastighet. Trikalsiumsilikat som utviser den største reaksjonshastighet bestemmer i en stor grad sementens herding. For å tilveiebringe materialer som er egnet for forskjellige formål er tilgjengelig Portland-sementer med forskjellige avbindingshastigheter. Det fremstilles vanligvis fire generelle typer Portland-sementer, som i prin-sipp varierer med hensyn til de relative mengder av trikalsiumsilikat og dikalsiumsilikat. Forholdende av hovedbestanddelene i hver type sement er vist i tabell I. The cement components present in the new concretes are hydraulic cements, such as Portland cement. These cements are well known and are produced by calcining a mixture of limestone and clay to give a clinker and by grinding the clinker a fine powder is obtained. The main constituents found in Portland cement are tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium aluminum ferrite. It is believed that the tricalcium and dicalcium silicates are the main binder components in Portland cement. When tricalcium silicate is mixed with water, calcium silicate hydrate, known as tober-morite gel and calcium hydroxide, is formed. When dicalcium silicate comes into contact with water, similar products are formed but with a lower reaction rate. Tricalcium silicate, which exhibits the greatest reaction rate, largely determines the hardening of the cement. To provide materials suitable for different purposes, Portland cements with different setting rates are available. Four general types of Portland cement are usually produced, which in principle vary with respect to the relative amounts of tricalcium silicate and dicalcium silicate. Proportions of the main components in each type of cement are shown in Table I.
Betongformasjoner utsettes for forskiellige korrosjonsmiijøer. I visse er miljøet en iboværende del av betongen, eksempelvis ved anvendelse av kalsiumkloridakselerator eller ved anvendelse av klorinneholdende materialer eller klorinneholdende vann. Andre omgivelser kan være eksterne, eksempelvis anvendelse av kalsiumklorid og/eller salt ved sne og isfjernelse, eksponering til saltdusj eller saltlaker o.l. Slike omgivelser har en tendens til å angripe og korrodere metalldelene i eller i kontakt med betongen. Foreliggende oppfinnelse til-veiebringer en fremgangsmåte som inhiberer slik korrosjon. Concrete formations are exposed to various corrosion environments. In some cases, the environment is an inherent part of the concrete, for example when using a calcium chloride accelerator or when using chlorine-containing materials or chlorine-containing water. Other environments can be external, for example the use of calcium chloride and/or salt for snow and ice removal, exposure to salt showers or brine etc. Such environments tend to attack and corrode the metal parts in or in contact with the concrete. The present invention provides a method which inhibits such corrosion.
De kritiske faktorer som antatt å bidra vesentlig til det uventede resultat med hensyn til å oppnå i det vesentlige fullstendig korrosjonsinhibering av metalldelene inneholdt i sementen over et lengre tidsrom er anvendelse av en betongblanding med høy kompresjonsstyrke pa minst 350 kp/cm 2 i løpet av 28 døgn, som beskrevet i det etterfølgende i kombinasjon med kalsiumnitritt anvendt i en mengde på minst 2 vekt-%, regnet på tørrvekten av betongblandingen. The critical factors believed to contribute significantly to the unexpected result with regard to achieving essentially complete corrosion inhibition of the metal parts contained in the cement over a longer period of time is the use of a concrete mixture with a high compressive strength of at least 350 kp/cm 2 during 28 day, as described below in combination with calcium nitrite used in an amount of at least 2% by weight, calculated on the dry weight of the concrete mixture.
Foreliggende fremgangsmåte vedrører spesielt betongblandinger i motsetning til sementpastaer eller mørtelblandinger. Sementpastaer består av hydraulisk sement og mørtelblandinger består av en hydraulisk sement, sann og vann. Disse materialer utviser ikke den høye styrke og tilhørende egenskaper som er nødvendig i henhold til den nye blanding som beskrives i det etterfølgende. The present method relates in particular to concrete mixtures as opposed to cement pastes or mortar mixtures. Cement pastes consist of hydraulic cement and mortar mixes consist of a hydraulic cement, sand and water. These materials do not exhibit the high strength and associated properties required by the new composition described below.
Fremgangsmåten i henhold til oppfinnelsen krever utnyttelse av en betongblanding som er i stand til å utvise høy kompresjonsstyrke på minst 350 kp/cm 2 etter 28 døgn, bestemt i henhold til standard prøvemetoder,(eksempelvis ASTM). Betongen er en blanding av hydraulisk sement, sand og aggregater i form av en tørr blanding som er klar for blanding med vann for å forårsake hydratisering. The method according to the invention requires the use of a concrete mixture which is capable of exhibiting a high compressive strength of at least 350 kp/cm 2 after 28 days, determined according to standard test methods, (for example ASTM). The concrete is a mixture of hydraulic cement, sand and aggregates in the form of a dry mixture that is ready to be mixed with water to cause hydration.
Den nødvendige høye styrkeegenskap for betongblandingen kan oppnås på et antall forskjellige måter eller kombinasjoner av slike måter, eksempelvis ved å variere (a) forholdet mellom vann og hydraulisk sement under fremstilling av betongen, (b) sementinnholdet eller faktor, (c) sammensetningen av den hydrauliske sement, spesielt dens silikatinnhold, (d) par-tikkelstørrelsesfinhet for den anvendte hydrauliske sement, og (e) størrelsesfordeling av det anvendte aggregat. The required high strength property of the concrete mixture can be achieved in a number of different ways or combinations of such ways, for example by varying (a) the ratio of water to hydraulic cement during the manufacture of the concrete, (b) the cement content or factor, (c) the composition of the hydraulic cement, particularly its silicate content, (d) particle size fineness of the hydraulic cement used, and (e) size distribution of the aggregate used.
Betongblandingene, med den nødvendige høye styrke krevet i henhold til oppfinnelsen kan fremstilles ved å anvende et forhold mellom vann til sement ved en så lav verdi som oppnås under en samtidig blanding av bestanddelene. Vann til sementforholdet bør være 0,25 - 0,5, fortrinnsvis 0,25 - 0,45. Forholdet kan senkes uten tap av blandingsevne ved utnyttelse av konvensjonelle vann-nedsettende midler og/eller superplastiserende midler på slike måter og i mengder som er velkjente innen teknikkens stand. The concrete mixtures, with the necessary high strength required according to the invention can be prepared by using a ratio of water to cement at as low a value as is achieved during a simultaneous mixing of the components. The water to cement ratio should be 0.25 - 0.5, preferably 0.25 - 0.45. The ratio can be lowered without loss of mixing ability by utilizing conventional water-reducing agents and/or superplasticizers in such ways and in quantities that are well known in the state of the art.
Betongen bør ha et høyt sementinnhold eller faktor, dvs. minst 2 80 - 500 kg sement pr. m 3 betong, fortrinnsvis 3 35 - 50 0 kg. Sementblandingene som er egnet er hydrauliske sementer med et høyt innhold av silikat. Sili-katbestanddelene i form av trikalsiumsilikat (C^S) og dikalsiumsilikat (C2S) bør ha et kombinert innhold på 50 - 90 %, fortrinnsvis 65 - 90 %. The concrete should have a high cement content or factor, i.e. at least 2 80 - 500 kg of cement per m 3 concrete, preferably 3 35 - 50 0 kg. The cement mixtures that are suitable are hydraulic cements with a high content of silicate. The silicate components in the form of tricalcium silicate (C2S) and dicalcium silicate (C2S) should have a combined content of 50 - 90%, preferably 65 - 90%.
En annen faktor som bidrar til den høye styrke av den erholdte betongblanding, nødvendig i henhold til foreliggende oppfinnelse er partikkelfinheten for den anvendte sement. Sementen bør ha en "Blaine" finhet i området 3 200 - 5 000 cm 2/g, fortrinnsvis 3 200 - 4 000 cm 2/g. Another factor which contributes to the high strength of the obtained concrete mixture, necessary according to the present invention, is the particle fineness of the cement used. The cement should have a "Blaine" fineness in the range of 3,200 - 5,000 cm 2 /g, preferably 3,200 - 4,000 cm 2 /g.
Sanden og aggregatet bør tilfredsstille kravene i henhold til American Concrete Institute (ACI) publikasjon 211. Betong med høy styrke oppnås ved å anvende en maksimal mengde store aggregater med en jevn gradering av aggregatene og sandpar-tiklene ned til partikkelstørrelsen for sementen for i det vesentlige fullstendig å eliminere hulrom i den ferdige be-tongkonstruksjon. The sand and aggregate should meet the requirements of American Concrete Institute (ACI) publication 211. High-strength concrete is achieved by using a maximum amount of large aggregates with a uniform gradation of the aggregates and sand particles down to the particle size of the cement for essentially to completely eliminate voids in the finished concrete construction.
Blandingen bør i det vesentlige være homogen og konsolidert. The mixture should be essentially homogeneous and consolidated.
Kalsiumnitritt anvendt i visse mengder og i kombinasjon med den ovenfor beskrevne betong gir en blanding som uventet i det vesentlige eliminerer korrosjon av metallstykker som inneholdes deri over et lengre tidsrom og tillater således et forlenget liv og eliminering av reparasjon av konkretkon-struksjoner fremstilt av slike blandinger. Mengden av nød-vendig kalsiumnitritt er minst 2-3 vekt-%, regnet på vekten av betongblandingen. Calcium nitrite used in certain amounts and in combination with the above-described concrete provides a mixture which unexpectedly substantially eliminates corrosion of metal pieces contained therein over a longer period of time and thus allows for an extended life and elimination of repair of concrete structures made from such mixtures . The amount of necessary calcium nitrite is at least 2-3% by weight, calculated on the weight of the concrete mixture.
Større mengder kan anvendes hvis det er økonomisk forsvarlig. Mengder overstigende 5 vekt-% er regnet som unødvendig. Larger quantities can be used if it is economically justifiable. Amounts exceeding 5% by weight are considered unnecessary.
Kalsiumnitritt kan tilsettes til betongen ved hjelp av forskjellige teknikker. Kalsiumnitritt kan tilsettes sement-klinkeren før malingen og kan omhyggelig blandes med sement-bestanddelen under blandetrinnet. Kalsiumnitritt kan også tilsettes den tørre betongblanding og blandes omhyggelig med denne for en jevn fordeling deri. Kalsiumnitritt kan også oppløses i vannet som anvendes for å fremstille betongblandingen. Betongblandingen kan forblandes med vann og deretter blandes eller bringes i kontakt med kalsiumnitritt. Generelt kan en hvilken som helst blandemetode anvendes som muliggjør en i det vesentlige jevn blanding av kalsiumnitritt med betongblandingen før denne herdes. Calcium nitrite can be added to the concrete using different techniques. Calcium nitrite can be added to the cement clinker before painting and can be carefully mixed with the cement component during the mixing step. Calcium nitrite can also be added to the dry concrete mixture and carefully mixed with it for an even distribution therein. Calcium nitrite can also be dissolved in the water used to prepare the concrete mixture. The concrete mixture can be premixed with water and then mixed or brought into contact with calcium nitrite. In general, any mixing method can be used which enables a substantially uniform mixing of calcium nitrite with the concrete mixture before it hardens.
Andre konvensjonelle tilsetningsmidler kan tilsettes foreliggende blanding på slike måter og mengder som er velkjente innen teknikkens stand. Slike tilsetningsmidler kan eksempelvis innbefatte vann-nedsettende midler så som kalsium-lignosulfonat, glukosepolymerer, polysakkarider o.l., eller superplastiseringsmidler så som polynaftalensulfonater, poly-melaminformaldehydsulfonater o.l. Andre konvensjonelle midler kan anvendes på en kjent måte i den grad de bidrar til forbedrede egenskaper av den erholdte betong og ikke ned-setter den nødvendige, ovenfor beskrevne kompresjonsstyrke. Other conventional additives can be added to the present mixture in such ways and amounts as are well known in the art. Such additives can, for example, include water-reducing agents such as calcium lignosulfonate, glucose polymers, polysaccharides, etc., or superplasticizers such as polynaphthalene sulfonates, polymelamine formaldehyde sulfonates, etc. Other conventional means can be used in a known manner to the extent that they contribute to improved properties of the concrete obtained and do not reduce the necessary compression strength described above.
Oppfinnelsen illustreres i de etterfølgende eksempler hvori alle deler og prosenter er pr. vekt, hvis ikke annet er indikert . The invention is illustrated in the following examples in which all parts and percentages are per weight, unless otherwise indicated.
EKSEMPEL 1 EXAMPLE 1
Betong fremstilt av en ferdig-blanding leverandør (maksimal aggregatstørrelse 2,5 cm) og med en sementfaktor på 335 kg pr. m<3> ble blandet med 2 vekt-% kalsiumnitrat, regnet på sementen og til å ha en slump på 10 cm, et luftinnhold på 4,8 % og en kompresjonsstyrke etter 28 døgn på 398 kp/cm 2, bli innført i en støpeform som målte 180 x 60 cm og med en tykkelse på 15 cm inneholdende en dobbeltmatte arnierings-jern (diameter 1,6 cm), 5 cm fra sentrum og utstrekker seg i formens lengde og 2,5 cm under nivå av den pussede betong. Den anvendte sement hadde en "Blaine"-finhet på 3600 + Concrete produced by a ready-mix supplier (maximum aggregate size 2.5 cm) and with a cement factor of 335 kg per m<3> was mixed with 2% by weight of calcium nitrate, calculated on the cement and to have a slump of 10 cm, an air content of 4.8% and a compressive strength after 28 days of 398 kp/cm 2, be introduced into a mold which measured 180 x 60 cm and with a thickness of 15 cm containing a double matted anchoring iron (diameter 1.6 cm), 5 cm from the center and extending the length of the mold and 2.5 cm below the level of the plastered concrete. The cement used had a "Blaine" fineness of 3600 +
300 cm <2>/g og vann/sement-forholdet var ca. 0,5. 300 cm <2>/g and the water/cement ratio was approx. 0.5.
Syv døgn etter støping, hvor platen var dekket med sekker og plast og holdt våt, ble formen fjernet og platen plassert på peler 1 m over bakken. I løpet av de neste fem uker ble det dannet en dam på toppoverflaten og ved begynnelsen av den sjuende uke ble en 3 %'ig natriumkloridoppløsning (1,2 1) daglig fordelt over overflaten. Seven days after casting, where the slab was covered with sacks and plastic and kept wet, the mold was removed and the slab placed on piles 1 m above the ground. During the next five weeks a pond formed on the top surface and at the beginning of the seventh week a 3% sodium chloride solution (1.2 L) was distributed daily over the surface.
Åpne kretspotensialer ble målt ofte i henhold til fremgangsmåten beskrevet i ACI publikasjon SP-49, sidene 71 - 82, Open circuit potentials were measured frequently according to the procedure described in ACI publication SP-49, pages 71 - 82,
(1975), (California Transportation Laboratory Research Report CA-DOT-TL-5116-12-75-03 January 1975, og Uhlig, Corrosion & Corrosion Control, side 45 (1971)). Etter ca. 6 måneder ble det funnet at arealet som var utsatt for korrosjon (med et mere negativt potensial enn -0,350 volt i forhold til kopper-koppersulfat (CCS) referanse-elektrode) var null på platen som inneholdt kalsiumnitritt og 36,4 % av det totale areal for en blindprøve fremstilt fra de samme bestanddeler uten kalsiumnitritt slik at betongen hadde en slump på 11,1 cm, et luftinnhold på 5,5 % og en kompresjonsstyrke etter 28 døgn på 315 kp/cm^. (1975), (California Transportation Laboratory Research Report CA-DOT-TL-5116-12-75-03 January 1975, and Uhlig, Corrosion & Corrosion Control, page 45 (1971)). After approx. At 6 months, the area exposed to corrosion (with a potential more negative than -0.350 volts relative to the copper-copper sulfate (CCS) reference electrode) was found to be zero on the plate containing calcium nitrite and 36.4% of the total area for a blank sample made from the same ingredients without calcium nitrite so that the concrete had a slump of 11.1 cm, an air content of 5.5% and a compressive strength after 28 days of 315 kp/cm^.
EKSEMPEL 2 EXAMPLE 2
For sammenligningsformål ble en betong inneholdende 2 % kalsiumnitritt fremstilt i en 280 liters blander med en maksimal aggregatstørrelse på 1,6 cm, 335 kg sement pr. m 3 betong, et vann/sementforhold på 0,56 og slump på 5,2 cm, 4,6 % luft og en kompresjonsstyrke etter 28 døgn på 316 kp/cm 2. For comparison purposes, a concrete containing 2% calcium nitrite was prepared in a 280 liter mixer with a maximum aggregate size of 1.6 cm, 335 kg cement per m 3 of concrete, a water/cement ratio of 0.56 and a slump of 5.2 cm, 4.6% air and a compressive strength after 28 days of 316 kp/cm 2.
Etter ca. 6 måneder utviste denne betong, som var støpt på samme måte som 'beskrevet i eksempel 1, at 93 % var involvert i korrosjon, mens en blindprøve (ikke tilsatt kalsiumnitritt, et vann/sementforhold på 0,57, en slump på 12,0 cm, kompresjonsstyrke etter 28 døgn,252 kp/cm 2) var 100 % involvert. After approx. At 6 months, this concrete, cast in the same manner as described in Example 1, showed 93% involvement in corrosion, while a blank (no added calcium nitrite, a water/cement ratio of 0.57, a slump of 12.0 cm, compression strength after 28 days, 252 kp/cm 2) was 100% involved.
Kalsiumnitritt utviste en viss effekt med hensyn til å inhibere korrosjon, målt på samme måte som beskrevet i eksempel 1 ovenfor. Arealet som hadde et åpent kretspotensial på mellom -0,500 V og -0,550 V i forhold til CCS elektroden var 0,3 % for platen inneholdende kalsiumnitritt og 7,4 % for platen uten kalsiumnitritt. Arealet registrert mellom -0,450 V og -0,500 V i forhold til CCS elektroden var 9,4 % for den kalsiumnitritt inneholdende plate og 18,5 % for platen uten kalsiumnitritt. Imidlertid var den korrosjonsinhiberende effekt for dette forsøk ikke så klart uttrykt som i eksempel 1. Calcium nitrite showed some effect in inhibiting corrosion, measured in the same way as described in Example 1 above. The area that had an open circuit potential of between -0.500 V and -0.550 V in relation to the CCS electrode was 0.3% for the plate containing calcium nitrite and 7.4% for the plate without calcium nitrite. The area recorded between -0.450 V and -0.500 V in relation to the CCS electrode was 9.4% for the plate containing calcium nitrite and 18.5% for the plate without calcium nitrite. However, the corrosion inhibiting effect for this experiment was not as clearly expressed as in Example 1.
EKSEMPEL 3 EXAMPLE 3
Ytterligere for sammenligningsformål ble det fremstilt sement-blandinger med lav styrke i det vesentlige på samme måte som beskrevet i eksempel 2, med de følgende parametere: Additionally, for comparison purposes, low strength cement mixtures were prepared in substantially the same manner as described in Example 2, with the following parameters:
Selv om korrosjonen var mindre ved anvendelse av kalsiumnitritt så ble det ikke oppnådd den uventede fullstendige inhibering. Although the corrosion was less when using calcium nitrite, the unexpected complete inhibition was not achieved.
EKSEMPEL 4 EXAMPLE 4
Betong ble fremstilt som angitt i eksempel 2, men med til-setning av 120 ml av et kalsiumlignosulfonert basert vann-nedsettende middel ga de følgende parametere: Concrete was prepared as indicated in Example 2, but with the addition of 120 ml of a calcium lignosulphonated based water-reducing agent gave the following parameters:
En måneds prøvetid tilsvarer ca. 1 år av Kansas vinter. A trial period of one month corresponds to approx. 1 year of Kansas winter.
Av disse prøver kan det ses at selv om blindprøven og den kalsiumnitritt inneholdende prøve utviste høy kompresjonsstyrke, så var det kun den sistnevnte som utviste i det vesentlige ingen korrosjon over et lengre tidsrom. Of these samples, it can be seen that although the blank sample and the sample containing calcium nitrite showed high compressive strength, only the latter showed essentially no corrosion over a longer period of time.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1808579A | 1979-03-06 | 1979-03-06 |
Publications (3)
Publication Number | Publication Date |
---|---|
NO800637L NO800637L (en) | 1980-09-08 |
NO151544B true NO151544B (en) | 1985-01-14 |
NO151544C NO151544C (en) | 1985-05-02 |
Family
ID=21786154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO800637A NO151544C (en) | 1979-03-06 | 1980-03-05 | PROCEDURE FOR AA PREVENT Corrosion of the reinforcement in concrete |
Country Status (22)
Country | Link |
---|---|
JP (1) | JPS55154368A (en) |
AR (1) | AR227388A1 (en) |
AT (1) | AT379364B (en) |
AU (1) | AU528193B2 (en) |
BE (1) | BE882110A (en) |
BR (1) | BR8001250A (en) |
CH (1) | CH645872A5 (en) |
DE (1) | DE3005896A1 (en) |
DK (1) | DK157918C (en) |
FI (1) | FI800677A (en) |
FR (1) | FR2460901B1 (en) |
GB (1) | GB2044241A (en) |
HK (1) | HK67483A (en) |
IT (1) | IT1193258B (en) |
MX (1) | MX154260A (en) |
MY (1) | MY8400341A (en) |
NL (1) | NL8001206A (en) |
NO (1) | NO151544C (en) |
NZ (1) | NZ192963A (en) |
SE (1) | SE452454B (en) |
SG (1) | SG48783G (en) |
ZA (1) | ZA801164B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4398959A (en) * | 1981-04-15 | 1983-08-16 | W. R. Grace & Co. | Mortar topping with calcium nitrite |
US4466834A (en) * | 1983-01-03 | 1984-08-21 | W. R. Grace & Co. | Corrosion inhibiting additive for cement compositions |
JPS60204683A (en) * | 1984-03-29 | 1985-10-16 | 株式会社小野田 | Rust prevention of steel material in inorganic material |
US4829107A (en) * | 1988-02-24 | 1989-05-09 | W. R. Grace & Co.-Conn. | Rice hull ash concrete admixture |
JP4916648B2 (en) * | 2004-07-02 | 2012-04-18 | 電気化学工業株式会社 | Rust prevention treatment method |
DK2371781T3 (en) | 2008-11-28 | 2014-01-06 | Herrera Arturo Solis | Cement blend with significantly improved physicochemical and bacteriological properties and containing dopamelanine as an additive |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3427175A (en) * | 1965-06-14 | 1969-02-11 | Grace W R & Co | Accelerator for portland cement |
IT1076068B (en) * | 1976-06-28 | 1985-04-22 | Grace W R & Co | COMPOSITION TO PROTECT METAL CORROSION IN CONCRETE-BASED STRUCTURES, AND METHOD OF ITS USE |
-
1980
- 1980-02-16 DE DE19803005896 patent/DE3005896A1/en active Granted
- 1980-02-18 IT IT19984/80A patent/IT1193258B/en active
- 1980-02-25 NZ NZ192963A patent/NZ192963A/en unknown
- 1980-02-28 NL NL8001206A patent/NL8001206A/en active Search and Examination
- 1980-02-29 ZA ZA00801164A patent/ZA801164B/en unknown
- 1980-03-03 BR BR8001250A patent/BR8001250A/en unknown
- 1980-03-04 AU AU56119/80A patent/AU528193B2/en not_active Expired
- 1980-03-05 GB GB8007542A patent/GB2044241A/en not_active Expired - Lifetime
- 1980-03-05 DK DK094780A patent/DK157918C/en not_active IP Right Cessation
- 1980-03-05 FI FI800677A patent/FI800677A/en not_active Application Discontinuation
- 1980-03-05 JP JP2677480A patent/JPS55154368A/en active Granted
- 1980-03-05 SE SE8001745A patent/SE452454B/en not_active IP Right Cessation
- 1980-03-05 FR FR8004963A patent/FR2460901B1/en not_active Expired
- 1980-03-05 CH CH174780A patent/CH645872A5/en not_active IP Right Cessation
- 1980-03-05 NO NO800637A patent/NO151544C/en unknown
- 1980-03-06 AT AT0124180A patent/AT379364B/en not_active IP Right Cessation
- 1980-03-06 MX MX181450A patent/MX154260A/en unknown
- 1980-03-06 BE BE0/199696A patent/BE882110A/en not_active IP Right Cessation
- 1980-03-06 AR AR280209A patent/AR227388A1/en active
-
1983
- 1983-08-10 SG SG48783A patent/SG48783G/en unknown
- 1983-12-15 HK HK674/83A patent/HK67483A/en not_active IP Right Cessation
-
1984
- 1984-12-30 MY MY341/84A patent/MY8400341A/en unknown
Also Published As
Publication number | Publication date |
---|---|
DK157918B (en) | 1990-03-05 |
AU5611980A (en) | 1980-09-11 |
HK67483A (en) | 1983-12-23 |
BE882110A (en) | 1980-07-01 |
IT8019984A0 (en) | 1980-02-18 |
AT379364B (en) | 1985-12-27 |
GB2044241B (en) | |
BR8001250A (en) | 1980-12-23 |
JPH0228532B2 (en) | 1990-06-25 |
MY8400341A (en) | 1984-12-31 |
AR227388A1 (en) | 1982-10-29 |
ZA801164B (en) | 1981-03-25 |
DK157918C (en) | 1990-08-13 |
IT1193258B (en) | 1988-06-15 |
AU528193B2 (en) | 1983-04-21 |
FR2460901B1 (en) | 1985-12-27 |
GB2044241A (en) | 1980-10-15 |
NO151544C (en) | 1985-05-02 |
DK94780A (en) | 1980-09-07 |
FI800677A (en) | 1980-09-07 |
SE8001745L (en) | |
JPS55154368A (en) | 1980-12-01 |
ATA124180A (en) | 1985-05-15 |
SG48783G (en) | 1984-07-27 |
DE3005896C2 (en) | 1990-08-23 |
MX154260A (en) | 1987-06-29 |
NO800637L (en) | 1980-09-08 |
CH645872A5 (en) | 1984-10-31 |
NZ192963A (en) | 1982-05-25 |
FR2460901A1 (en) | 1981-01-30 |
DE3005896A1 (en) | 1980-09-18 |
NL8001206A (en) | 1980-09-09 |
SE452454B (en) | 1987-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4285733A (en) | Corrosion inhibiting concrete composition | |
Song et al. | Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—An overview | |
CN106082724B (en) | A kind of high morning is strong, high resistance to corrosion portland cement and preparation method thereof | |
CA2597569C (en) | Hydraulic binder | |
USRE31682E (en) | Process for manufacturing concrete of high corrosion resistance | |
US10494302B1 (en) | Heavyweight concrete containing steel slag | |
US10882791B2 (en) | High performance concretes and methods of making thereof | |
AU690430B2 (en) | Corrosion inhibiting formulations with calcium nitrite | |
CN102515646A (en) | Antifreeze anticorrosion durable concrete and preparation method thereof | |
JPS581068B2 (en) | concrete mixture or mortar mixture | |
GB2305429A (en) | Cement admixture | |
NO151544B (en) | PROCEDURE FOR AA PREVENT Corrosion of the reinforcement in concrete | |
DE3115979A1 (en) | SELF-LEVELING MORTAR BLEND | |
US4705569A (en) | Hydraulic material composition | |
CA1143756A (en) | Corrosion inhibiting concrete composition | |
WO2021006759A1 (en) | Pourable and self-compacting concrete mixes for making concrete | |
CA1279332C (en) | Volume-stable hardened hyraulic cement | |
Al-Anbori et al. | Some mechanical properties of concrete by using manufactured blended cement with grinded local rocks | |
JP7391728B2 (en) | Cement compositions and concrete compositions | |
JP2003146725A (en) | Water-hardenable composition | |
Fekry et al. | Effect of superplasticizer on the properties of sulfate resistance concrete | |
JP2004331458A (en) | Sulfuric acid resistant cement composition and sulfuric acid resistant concrete | |
BOLAJI | EFFECT OF SALT WATER ON CONCRETE USING BIDA NATURAL STONES AS COARSE AGGREGATE | |
Kaverin et al. | Modified high strength lightweight-aggregate concrete based on expanded clay: composition, structure, properties | |
JPH0649604B2 (en) | Hydraulic material composition |