NO151540B - PROCEDURE FOR THE PREPARATION OF HYDROCHLIC ACID - Google Patents
PROCEDURE FOR THE PREPARATION OF HYDROCHLIC ACID Download PDFInfo
- Publication number
- NO151540B NO151540B NO783396A NO783396A NO151540B NO 151540 B NO151540 B NO 151540B NO 783396 A NO783396 A NO 783396A NO 783396 A NO783396 A NO 783396A NO 151540 B NO151540 B NO 151540B
- Authority
- NO
- Norway
- Prior art keywords
- calcium chloride
- silicon oxide
- sio2
- cacl2
- temperature
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 239000002253 acid Substances 0.000 title description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 30
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 26
- 239000001110 calcium chloride Substances 0.000 claims description 26
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 26
- 235000011148 calcium chloride Nutrition 0.000 claims description 26
- 235000012239 silicon dioxide Nutrition 0.000 claims description 14
- 229910052681 coesite Inorganic materials 0.000 claims description 7
- 229910052906 cristobalite Inorganic materials 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 229910052682 stishovite Inorganic materials 0.000 claims description 7
- 229910052905 tridymite Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 238000010306 acid treatment Methods 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 24
- 239000002699 waste material Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 13
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 9
- 239000010453 quartz Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000002386 leaching Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- -1 fluoride ions Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical group [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/043—Alkaline-earth metal silicates, e.g. wollastonite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/24—Alkaline-earth metal silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/03—Preparation from chlorides
- C01B7/035—Preparation of hydrogen chloride from chlorides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/0481—Other specific industrial waste materials not provided for elsewhere in C04B18/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Silicon Compounds (AREA)
- Processing Of Solid Wastes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Foreliggende oppfinnelse vedrører en fremgangsmåte av den The present invention relates to a method thereof
airt som er angitt i krav l's ingress. airt which is stated in claim l's preamble.
Store mengder saltsyre anvendes i mange kjemiske prosesser og Large quantities of hydrochloric acid are used in many chemical processes and
en fremgangsmåte ved hvilken saltsyre i det vesentlige kan fremstilles fra avfallsmaterialer uten unødvenig stor energi-forbruk er således åpenbart av kommersiell interesse. a method by which hydrochloric acid can essentially be produced from waste materials without unnecessarily large energy consumption is thus obviously of commercial interest.
I mange prosesser, eksempelvis Solvay-natriumkarbonat-prosessen eller i prosesser hvori anvendes saltsyre som en av reaktantene erholdes store mengder kalsiumklorid som avfallsmateriale, hvilket representerer visse deponeringsproblemer p.g.a. dets høye oppløselighet. En fremgangsmåte som muliggjør fremstilling av saltsyre fra slikt avfall-CaC^ og som samtidig omdanner kalsiumklorid til et harmløst og i visse tilfeller også et nyttig materiale er åpenbart attraktivt. In many processes, for example the Solvay sodium carbonate process or in processes in which hydrochloric acid is used as one of the reactants, large amounts of calcium chloride are obtained as waste material, which represents certain disposal problems due to its high solubility. A method which enables the production of hydrochloric acid from such waste CaC^ and which simultaneously converts calcium chloride into a harmless and in certain cases also a useful material is obviously attractive.
Det er tidligere kjent at kalsiumklorid kan brytes ned til HC1-gass ved å oppvarme kalsiumklorid til temperaturer over 1100°C It is previously known that calcium chloride can be broken down to HC1 gas by heating calcium chloride to temperatures above 1100°C
i nærvær av vanndamp. Varmeenergien og temperaturen som er nødvendig for fremgangsmåten kan reduseres betydelig ved å ut-føre pyrolysen av CaCl^ i nærvær av silisiumoksyd. Reaksjonen mellom CaO og Si02 er eksoterm, slik at innføring av silisiumoksyd til reaksjonen fører til en reduksjon av energi-behovet. in the presence of water vapor. The heat energy and temperature required for the process can be significantly reduced by carrying out the pyrolysis of CaCl 2 in the presence of silicon oxide. The reaction between CaO and SiO2 is exothermic, so that the introduction of silicon oxide into the reaction leads to a reduction of the energy requirement.
Når denne tilsynelatende atraktive prosess ble satt i kommersiell drift ved å oppvarme en blanding av CaC^ og malt kvarts i nærvær av vann, ved høy temperatur, var resultatene meget skuff-ende sett fra et kommersielt synspunkt. Reaksjonshastigheten var alt for langsom og kvarts når denne ble båret med i avgass-strømmen var meget abrasiv overfor det anvendte apparat. Det ble følgelig antatt at denne fremgangsmåte ikke var kommersielt anvendbar for produksjon av saltsyre. When this apparently attractive process was put into commercial operation by heating a mixture of CaCl 2 and ground quartz in the presence of water, at a high temperature, the results were very disappointing from a commercial point of view. The reaction rate was far too slow and quartz, when it was carried along in the exhaust gas stream, was very abrasive to the apparatus used. It was therefore believed that this method was not commercially applicable for the production of hydrochloric acid.
I prosesser for utvinning av aluminiumoksyd fra silisiumholdige materialer ved utlutning med sterke vandige syrer, så som svovelsyre eller saltsyre, vil store andeler av de spaltede silikater omdannes til meget finfordelt og porøst amorft silisiumoksyd. Det er funnet at disse silikatavfall, In processes for extracting aluminum oxide from silicon-containing materials by leaching with strong aqueous acids, such as sulfuric acid or hydrochloric acid, large proportions of the split silicates will be converted into very finely divided and porous amorphous silicon oxide. It has been found that these silicate wastes,
som i den vanlige betydning må betegnes som inerte,- er meget mer reaktive med alkaliske materialer ved høy temperatur enn den malte kvarts anvendt ved den ovenfor beskrevne ikke lønnsomme prosess.Ytterligere er disse avfall i det vesentlige ikke-krystalinske og partiklene har en meget liten masse slik at de utøver en vesentlig mindre abrasiv effekt når de bringes med i luftstrømmen som anvendes som bærer for vanndamp i pyrolysen for kalsiumklorid. Dette silikatavfall har også en stor indre overflate (porøsitet), mens kvartskrystallene kun er aktive på deres ytre overflate. which in the usual sense must be described as inert, - are much more reactive with alkaline materials at high temperature than the ground quartz used in the unprofitable process described above. Furthermore, these wastes are essentially non-crystalline and the particles have a very small mass so that they exert a significantly less abrasive effect when they are brought into the air stream which is used as a carrier for water vapor in the pyrolysis for calcium chloride. This silicate waste also has a large internal surface (porosity), while the quartz crystals are only active on their outer surface.
Fra britisk patent nr. 734080 er det kjent å anvende en From British patent no. 734080 it is known to use a
amorf silikatrest etter utlutning av silikatholdige jernmalmer, eventuelt aluminium i malmen forblir i silisium-oksydet. Dette silisiumoksyd adskiller seg fra det som anvendes i henhold til foreliggende fremgangsmåte,som er særpreget ved det som er angitt i krav l's karakteriserende del. amorphous silicate residue after leaching of silicate-containing iron ores, any aluminum in the ore remains in the silicon oxide. This silicon oxide differs from that used according to the present method, which is characterized by what is stated in the characterizing part of claim 1.
Normalt er silikatrestene fra syreprosesser vanskelig å vaske Normally, the silicate residues from acid processes are difficult to wash
og må nøytraliseres omhyggelig for sikker deponering. Foreliggende fremgangsmåte eliminerer behovet for en fullstendig vasking og nøytralisering. Det er nå funnet at CaC^ kan pyro-lyseres i en betydelig grad, eksempelvis 90% eller mere, og vesentlig raskere og ved lavere temperatur enn når pyrolysen utføres i nærvær av malt kvarts. I henhold til foreliggende oppfinnelse vedrører fremgangsmåten fremstilling av saltsyre ved oppvarmning av kalsiumklorid med et molart overskudd av SiC>2 som har et overflateareal på minst 15 m 2/g ved en temperatur som overstiger 600°C i nærvær av vanndamp. Prosess-temperaturen overstiger fortrinnsvis ikke 1000°C da dette for-øker energibehovet og setter større krav til det anvendte utstyr. Avhengig av temperaturen, silisiumoksydets overflate- and must be carefully neutralized for safe disposal. The present method eliminates the need for complete washing and neutralization. It has now been found that CaC^ can be pyrolysed to a significant extent, for example 90% or more, and significantly faster and at a lower temperature than when the pyrolysis is carried out in the presence of ground quartz. According to the present invention, the method relates to the production of hydrochloric acid by heating calcium chloride with a molar excess of SiC>2 which has a surface area of at least 15 m 2 /g at a temperature exceeding 600°C in the presence of steam. The process temperature preferably does not exceed 1000°C as this increases the energy requirement and places greater demands on the equipment used. Depending on the temperature, the silicon oxide's surface
areal, samt overskudd av anvendt vanndamp er det vanligvis mulig å oppnå en 90% omdannelse av CaCl2 i løpet av en reak-sjonstid i området 20-100 min.i et statisk skikt og raskere i et fluidisert skikt. area, as well as excess water vapor used, it is usually possible to achieve a 90% conversion of CaCl2 during a reaction time in the range of 20-100 min. in a static layer and faster in a fluidized layer.
I en velegnet kommersiell operasjon briketteres kalsiumklorid In a suitable commercial operation, calcium chloride is briquetted
og det ovenfor omtalte aktive silikat-avfall og omsettes i en dampstrøm i en fluidisert skikt-reaktor, eller i en tunnel, i en roterende ovn eller annen ovnstype. Molforholdet CaCl2:Si02 i blandingen er vanligvis i området 0,25-0^0 og and the above-mentioned active silicate waste and is reacted in a steam stream in a fluidized bed reactor, or in a tunnel, in a rotary kiln or other type of kiln. The molar ratio CaCl2:SiO2 in the mixture is usually in the range 0.25-0^0 and
0,90 foretrekkes av varmeøkonomisk hensyn. En typisk oppholds-tid for materialet ved reaksjonstemperaturen er 3 0 min. hvor temperaturen er justert for å oppnå minst 90% og mere fore-trukket 95% omdannelse av kalsiumklorid til HC1. Alternativt kan oppholdstiden for CaCl2/aktiv SiO^-blandingen ved reak-sjonstiden være justert i forhold til en forhåndsbestemt reak-sjonstid for å oppnå en forhåndsbestemt %-vis omdannelse eller et forhåndsbestemt HC1/H20 forhold i produktgassen. 0.90 is preferred for heat economy reasons. A typical residence time for the material at the reaction temperature is 30 min. where the temperature is adjusted to achieve at least 90% and more preferably 95% conversion of calcium chloride to HC1. Alternatively, the residence time for the CaCl2/active SiO^ mixture at the reaction time can be adjusted in relation to a predetermined reaction time to achieve a predetermined % conversion or a predetermined HC1/H20 ratio in the product gas.
Det er funnet at produktet av omsettningen mellom CaCl2 og SiC>2 er a-CaSiO^ som erholdes i en meget porøs form, og som er nyttig som termisk isolasjon ved temperaturer opptil dets smelte-punkt (ca. 1500°C). Dets anvendbarhet for disse og andre for-mål er avhengig av mengden av fri Si02 som er tilstede og som på sin side er avhengig av det molare overskudd av Si02 anvendt ved foreliggende fremgangsmåte. It has been found that the product of the reaction between CaCl2 and SiC>2 is a-CaSiO^ which is obtained in a very porous form, and which is useful as thermal insulation at temperatures up to its melting point (about 1500°C). Its applicability for these and other purposes is dependent on the amount of free SiO 2 present which in turn is dependent on the molar excess of SiO 2 used in the present process.
Ved en serie forsøk ble de følgende resultater erholdt når CaCl2/aktivt Si02~avfall i brikettert form ble oppvarmet i en glødestavovn i en atmosfære mettet med vanndamp: Avfall A er et aktivt silikatavfall erholdt ved utlutning av anortositt med saltsyre med nærvær av kalsium- og fluoridioner, slik som beskrevet i norsk patentsøknad nr. 78.3397. In a series of experiments, the following results were obtained when CaCl2/active SiO2 waste in briquetted form was heated in a glow rod furnace in an atmosphere saturated with steam: Waste A is an active silicate waste obtained by leaching anorthosite with hydrochloric acid in the presence of calcium and fluoride ions, as described in Norwegian patent application no. 78.3397.
Avfall B er et aktivt silikatavfall erholdt fra utlutning av kaolin med svovelsyre for å ekstrahere aluminiumoksyd fra dette. Waste B is an active silicate waste obtained from leaching kaolin with sulfuric acid to extract aluminum oxide from it.
I motsetning til nesten fullstendig omdannelse av CaCl2 til saltsyre under de betingelser som er vist ovenfor ble det funnet at når en blanding av NaCl og avfall A i et molforhold på 0,25 ble oppvarmet i 6 min. ved en temperatur i området 900-1100°C i nærvær av en strøm av fuktig luft var omdannelsen av NaCl kun 22-32%. In contrast to the almost complete conversion of CaCl2 to hydrochloric acid under the conditions shown above, it was found that when a mixture of NaCl and waste A in a molar ratio of 0.25 was heated for 6 min. at a temperature in the range 900-1100°C in the presence of a stream of moist air, the conversion of NaCl was only 22-32%.
Fremgangsmåten i henhold til oppfinnelsen tilveiebringer en billig og egnet måte for fremstilling av saltsyre og for deponering av kalsiumkloridavfall. Den er spesielt velegnet som en måte å regenerere saltsyre ved fremgangsmåten som er beskrevet i norsk patentsøknad nr. 78.3397 i henhold til hvilken kalsiumklorid og aktivt silikatavfall erholdes som følge av utlutning av et silisiumholdig mineral med saltsyre. The method according to the invention provides a cheap and suitable way for the production of hydrochloric acid and for the disposal of calcium chloride waste. It is particularly suitable as a way to regenerate hydrochloric acid by the method described in Norwegian patent application no. 78.3397 according to which calcium chloride and active silicate waste are obtained as a result of leaching a silicon-containing mineral with hydrochloric acid.
I en annen serie forsøk ble silikatholdige residuer, erho]dt ved syrebehandling av anortositt, slik som beskrevet i norsk søknad nr. 78.3 397, oppvarmet i nærvær av vanndamp sammen med urent CaCl2, erholdt ved oppvarming til tørrhet av en del av den brukte behandlingsvæske (etter presipitering av AlCl^)• Den urene CaCl2 inneholdt ca. 10% MgCl2, 8% FeCl3 og 1% TiCl3-Omdannelseseffektiviteten ble sammenlignet med resultatene erholdt ved oppvarmning av finmalt kvarts (-200 mesh) med CaCl2. Resultatene av disse forsøk er angitt i tabell 2 fra hvilken det kan sees at omdannelseseffektiviteten erholdt ved omsetning av kvarts med CaCl2 kan oppnås ved den samme behand-lingstid ved omsetning av anortositt-restene med uten CaCl2 ved en temperatur som er ca. 100% lavere. In another series of experiments, silicate-containing residues, obtained by acid treatment of anorthosite, as described in Norwegian application no. 78.3 397, were heated in the presence of water vapor together with impure CaCl2, obtained by heating to dryness a part of the used treatment liquid (after precipitation of AlCl^)• The impure CaCl2 contained approx. 10% MgCl2, 8% FeCl3 and 1% TiCl3- The conversion efficiency was compared to the results obtained by heating finely ground quartz (-200 mesh) with CaCl2. The results of these tests are given in table 2 from which it can be seen that the conversion efficiency obtained by reacting quartz with CaCl2 can be achieved at the same treatment time by reacting the anorthosite residues with or without CaCl2 at a temperature which is approx. 100% lower.
Som følge av de kjente fordeler ved fluidiserte skikt ble den driftstype forsøkt i laboratoriet. Et vertikalt rør med en diameter på 3,2 cm ble oppvarmet eksternt til 6 00-1000°C. Skiktet var fylt med 50g kalsiumklorid/silisiumoksydresidu-briketter med en størrelse på 25 x 65 mesh, silisiumoksyd-residuet hadde et overflateareal større enn 15 m 2/g. Fluidis-erings-gassen bestod av nitrogen inneholdende 0,6-3,6 vekt-% vann og strømningshastigheten var 2 5 l/min. As a result of the known advantages of fluidized beds, the operating type was tried in the laboratory. A vertical tube with a diameter of 3.2 cm was heated externally to 600-1000°C. The layer was filled with 50g of calcium chloride/silicon oxide residue briquettes with a size of 25 x 65 mesh, the silicon oxide residue having a surface area greater than 15 m 2 /g. The fluidizing gas consisted of nitrogen containing 0.6-3.6% by weight of water and the flow rate was 25 l/min.
Den funnede likevekts-konstant stemte rimelig overens med Kp beregnet fra termodynamiske data. Ved 800°C var reaksjonen fullstendig i løpet av mindre enn 30 min.. De beregnede term-iske behov, utgående fra faste våte materialer er beregnet til 550-750 x 10 cal/tonn tørr kalsiumklorid, hvilket er ganske for-delaktig. The equilibrium constant found was in reasonable agreement with Kp calculated from thermodynamic data. At 800°C, the reaction was complete in less than 30 min. The calculated thermal requirements, based on solid wet materials, are calculated at 550-750 x 10 cal/tonne dry calcium chloride, which is quite advantageous.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB4191577 | 1977-10-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
NO783396L NO783396L (en) | 1979-04-10 |
NO151540B true NO151540B (en) | 1985-01-14 |
NO151540C NO151540C (en) | 1985-05-02 |
Family
ID=10421951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO783396A NO151540C (en) | 1977-10-07 | 1978-10-06 | PROCEDURE FOR THE PREPARATION OF HYDROCHLIC ACID |
Country Status (5)
Country | Link |
---|---|
CA (1) | CA1112425A (en) |
DE (1) | DE2842635C3 (en) |
FR (1) | FR2405216A1 (en) |
NO (1) | NO151540C (en) |
SE (1) | SE427550B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3890406B2 (en) | 2002-08-23 | 2007-03-07 | 国立大学法人静岡大学 | Method for recovering chlorine gas from calcium chloride |
-
1978
- 1978-09-29 DE DE2842635A patent/DE2842635C3/en not_active Expired
- 1978-10-06 FR FR7828615A patent/FR2405216A1/en active Granted
- 1978-10-06 NO NO783396A patent/NO151540C/en unknown
- 1978-10-06 CA CA312,849A patent/CA1112425A/en not_active Expired
- 1978-10-09 SE SE7810526A patent/SE427550B/en unknown
Also Published As
Publication number | Publication date |
---|---|
NO151540C (en) | 1985-05-02 |
SE7810526L (en) | 1979-04-08 |
DE2842635A1 (en) | 1979-04-12 |
NO783396L (en) | 1979-04-10 |
FR2405216A1 (en) | 1979-05-04 |
DE2842635B2 (en) | 1980-05-14 |
CA1112425A (en) | 1981-11-17 |
DE2842635C3 (en) | 1981-02-05 |
SE427550B (en) | 1983-04-18 |
FR2405216B1 (en) | 1984-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100197778B1 (en) | Method of preparing sodium silicate | |
Davies et al. | Boric acid production by the calcination and leaching of powdered colemanite | |
KR910007803A (en) | Method of preparing sodium silicate | |
Okutani | Utilization of silica in rice hulls as raw materials for silicon semiconductors | |
US3238018A (en) | Making articles of aluminum nitride | |
NO151540B (en) | PROCEDURE FOR THE PREPARATION OF HYDROCHLIC ACID | |
US4277449A (en) | Dry reaction process of asbestos tailings and ammonium sulfate | |
US2726142A (en) | Production of hydrogen chloride from chlorides | |
US3674431A (en) | Generation of silicon tetrafluoride | |
US2773736A (en) | Treatment of phosphate rock to recover phosphorus, fluorine, calcium, and uranium | |
US1911004A (en) | Manufacture of silicon-diamminotetrafluoride | |
Can et al. | Microwave assisted calcination of colemanite powders | |
NO126986B (en) | ||
JP2019108251A (en) | Manufacturing method for cement raw material | |
US6036733A (en) | Process for the preparation of crystalline sodium silicates | |
US4085198A (en) | Hydrochlorination of spray dried magnesium chloride | |
CA1082880A (en) | Process for the manufacture of aluminium chloride | |
Khalighi et al. | The evaporation of potassium from phlogopite | |
SU141861A1 (en) | The method of obtaining granulated magnesium oxide and hydrogen chloride | |
SU1708902A1 (en) | Roasting apparatus for processing mercury containing materials | |
CN113461014A (en) | Double-temperature-zone gas-solid synthesis process of silicon disulfide | |
US1422848A (en) | Extraction of potassium compounds | |
NO130890B (en) | ||
US1435593A (en) | Producing potassium compounds | |
EP0502329B1 (en) | Method for preparation of sodium silicates. |