NO146492B - HARDENABLE BINDING MATERIAL FOR USE IN THE PREPARATION OF A CASTABLE FUEL AND USING THE BINDING MATERIAL - Google Patents
HARDENABLE BINDING MATERIAL FOR USE IN THE PREPARATION OF A CASTABLE FUEL AND USING THE BINDING MATERIAL Download PDFInfo
- Publication number
- NO146492B NO146492B NO783480A NO783480A NO146492B NO 146492 B NO146492 B NO 146492B NO 783480 A NO783480 A NO 783480A NO 783480 A NO783480 A NO 783480A NO 146492 B NO146492 B NO 146492B
- Authority
- NO
- Norway
- Prior art keywords
- grains
- binding material
- metal
- gas
- active metal
- Prior art date
Links
- 239000000463 material Substances 0.000 title description 4
- 239000000446 fuel Substances 0.000 title 1
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 238000005245 sintering Methods 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims description 3
- 229910052776 Thorium Inorganic materials 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 23
- 238000010521 absorption reaction Methods 0.000 description 13
- 239000000843 powder Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- QSGNKXDSTRDWKA-UHFFFAOYSA-N zirconium dihydride Chemical compound [ZrH2] QSGNKXDSTRDWKA-UHFFFAOYSA-N 0.000 description 2
- 229910000568 zirconium hydride Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000005028 tinplate Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/14—Polyurethanes having carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/04—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
- C06B45/06—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
- C06B45/10—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/46—Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
- C08G18/4615—Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/69—Polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D161/00—Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
- C09D161/04—Condensation polymers of aldehydes or ketones with phenols only
- C09D161/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Sealing Material Composition (AREA)
Description
Getteranordning for elektronrør og andre evakuerte utladningsbeholdere. Getter device for electron tubes and other evacuated discharge containers.
Oppfinnelsen angår en getteranordning for elektronrør og andre evakuerte The invention relates to a getter device for electron tubes and other evacuees
utladningsbeholdere, inneholdende som aktivt metall zirkon, hafnium, titan, thorium discharge containers, containing as active metal zirconium, hafnium, titanium, thorium
eller en av deres legeringer. Ved getteranordning skal her forståes såvel den aktiverte del i en . evakuert vakuumbeholder, or one of their alloys. Here, getter device is to be understood as well as the activated part in a . evacuated vacuum container,
som den enda ikke aktiverte del som inneholder gassbindende metall eller et hydrid as the not yet activated part containing gas-binding metal or a hydride
av dette metall i ikke-aktiv form, idet of this metal in non-active form, ie
oksyd-sjikt er tilstede på overflaten. oxide layer is present on the surface.
Det er allerede kjent getteranordninger som består av pressede tabletter eller There are already known getter devices consisting of pressed tablets or
piller eller i beholderen innpresset pulver. pills or powder pressed into the container.
Utgangsmaterialet oppnås ved granulering The starting material is obtained by granulation
av et større presselegeme som inneholder of a larger pressing body containing
hydridet av det gassbindende metall i korn the hydride of the gas-binding metal in grains
med en diameter mindre enn 5 mikron, with a diameter of less than 5 microns,
blandet med wolfram-korn av betraktelig mixed with tungsten grains of considerable
mindre diameter for å hindre sintring. Av smaller diameter to prevent sintering. Of
det granulerte materiale presses en tem-melig grov filtrert fraksjon til gassbindere. the granulated material is pressed into a fairly coarse filtered fraction for gas binders.
Det fine pulver er i og for seg ikke egnet The fine powder in and of itself is not suitable
til direkte å forarbeides til gassbinder. to be directly processed into a gas binder.
Ved mange anvendelser er gassabsorbsjonshastigheten for de kjente pressede In many applications, the gas absorption rate of the known pressures
getteranordninger for liten selv om absorbsjonskapasiteten er stor nok. Denne om-stendighet fører til anvendelse av mange getter devices too small even if the absorption capacity is large enough. This circumstance leads to the application of many
piller eller tabletter eller store beholdere pills or tablets or large containers
med presset materiale, hvilket av forskjellige grunner er uønsket. with pressed material, which is undesirable for various reasons.
Ved en getteranordning for elektron-rør og andre evakuerte utladningsbeholdere, inneholdende som aktivt metall zirkon, hafnium, titan, thorium eller en av deres legeringer, i form av fine korn blandet med korn av et metall som hindrer sammensintring, slik som wolfram eller molybden i samme vektmengde som det aktive metall, har ifølge oppfinnelsen primærkornene, som består både av korn av aktivt metall og av korn av metall som hindrer sammensintring en overflate på 25—30 m.2/g og er sammenpresset til sekundærkorn med diameter på mellom 100 og 200 mikron og at disse sekundærkorn uten ytterligere sammenpressing er anordnet ikke innbyrdes forskyvbare i en i det minste delvis perforert beholder. In a getter device for electron tubes and other evacuated discharge containers, containing as active metal zirconium, hafnium, titanium, thorium or one of their alloys, in the form of fine grains mixed with grains of a metal that prevents sintering, such as tungsten or molybdenum in the same amount by weight as the active metal, according to the invention the primary grains, which consist both of grains of active metal and of grains of metal that prevent sintering, have a surface of 25-30 m.2/g and are compressed into secondary grains with a diameter of between 100 and 200 microns and that these secondary grains, without further compression, are arranged so that they are not mutually displaceable in an at least partially perforated container.
Ved anordningen ifølge oppfinnelsen oppnås en sammensetning hvor den store spesifikke overflate av de førstnevnte korn dannes ved korte mikroporer i de sistnevnte korn. De sistnevnte korn dannes i makro-porer mellom disse korn. Med denne sammensetning oppnås i det minste en stør-relsesorden større absorbsjonshastighet sammenlignet med de kjente anordninger hvor kornene er sammenpresset og hvor mikroporer neppe forekommer. With the device according to the invention, a composition is obtained where the large specific surface of the former grains is formed by short micropores in the latter grains. The latter grains are formed in macro-pores between these grains. With this composition, at least an order of magnitude greater absorption rate is achieved compared to the known devices where the grains are compressed and where micropores are unlikely to occur.
Ved de kjente sammenpressede anordninger er stort sett bare en volumreak-sjon virksom, hvilket stemmer overens med den hittil alminnelig herskende oppfatning av gassbinding. En slik reaksjon foregår imidlertid meget langsomt. Ved anordningen ifølge oppfinnelsen kan hele overflaten nåes av de gasser som skal absorberes og bindes i en overflatereaksjon. Denne overflatereaksjon oppnåes ved anordningen ifølge oppfinnelsen med stor hastighet på grunn av porediffusjon som bestemmes av kombinasjonen av mikroporer og makro-porer. De eksperimentelt bestemte diffu-sjonshastigheter er i god overensstemmelse med teorien og de derav følgende bereg-ninger. Ved de kjente anordninger gir eventuelt for hånden værende mikroporer ingen mulighet for en tilstrekkelig diffu-sjon. In the case of the known compressed devices, mostly only a volume reaction is effective, which is consistent with the hitherto generally prevailing perception of gas binding. However, such a reaction takes place very slowly. With the device according to the invention, the entire surface can be reached by the gases to be absorbed and bound in a surface reaction. This surface reaction is achieved by the device according to the invention at high speed due to pore diffusion which is determined by the combination of micropores and macropores. The experimentally determined diffusion rates are in good agreement with the theory and the resulting calculations. In the case of the known devices, any micropores that may be at hand provide no opportunity for sufficient diffusion.
Ved anordningen ifølge oppfinnelsen er det for oppnåelse av størst mulig gassabsorbsjonshastighet nødvendig at de sistnevnte korn ikke sammenpresses, men det er tillatt å gi disse korn en liten forspen-ning i beholderen for å sikre en avrivfast lagring av kornene. In the device according to the invention, in order to achieve the greatest possible gas absorption rate, it is necessary that the latter grains are not compressed, but it is permissible to give these grains a small pre-tension in the container to ensure tear-proof storage of the grains.
Dataene for de spesifike overflater an-gis her for enda ikke aktivert materiale. Ved aktiveringen finner det sted en reduk-sjon på ca. 30. Metallkornene som for-hindrer sammensintring har fortrinnsvis samme spesifike overflate og er til stede i tilnærmet samme vektsmengde. The data for the specific surfaces are given here for not yet activated material. Upon activation, a reduction of approx. 30. The metal grains which prevent sintering preferably have the same specific surface area and are present in approximately the same amount by weight.
Hvis ved anordningen ifølge oppfinnelsen de sistnevnte korn har betraktelig større diameter så blir riktignok makroporene også større, men mikroporene gjennom hvilke en større del av den aktive overflate av de førstnevnte korn nåes, blir lenger slik at gassabsorbsjonshastigheten minskes. Diameteren for de sistnevnte korn skal derfor ligge mellom noen titalls mikron og noen tiendedels mm, og forholdet mellom de største og minste diametre skal fortrinnsvis være mindre enn 2. De gunstigste dimensjoner ligger mellom 100 og 200 mikron. De sistnevnte korn kan oppnåes ved granulering av et større presselegeme som er fremstilt med presstrykk på mindre enn 5 tonn/cm2, fortrinnsvis 1 tonn/cm2. If, in the device according to the invention, the latter grains have a considerably larger diameter, then the macropores also become larger, but the micropores through which a larger part of the active surface of the former grains is reached, become longer so that the gas absorption rate is reduced. The diameter of the latter grains should therefore lie between a few tens of microns and a few tenths of a mm, and the ratio between the largest and smallest diameters should preferably be less than 2. The most favorable dimensions lie between 100 and 200 microns. The latter grains can be obtained by granulating a larger pressing body which is produced with a pressing pressure of less than 5 tons/cm 2 , preferably 1 ton/cm 2 .
Anordningen ifølge oppfinnelsen gir ikke bare stor gassabsorsjonshastighet, men avgassingen og særlig unnvikningen av vannstoff ved aktivering når et hydrid spaltes, blir meget lettere, slik at også ved høyere driftstemperaturer behøver man i motsetning til ved de kjente anordninger ikke frykte noe merkbart vannstofftrykk. The device according to the invention not only provides a high gas absorption rate, but the degassing and especially the avoidance of hydrogen upon activation when a hydride is split, becomes much easier, so that even at higher operating temperatures, unlike with the known devices, one need not fear any noticeable hydrogen pressure.
Oppfinnelsen skal forklares nærmere under henvisning til tegningen. Fig. 1, 2 og 3 viser getteranordninger ifølge oppfinnelsen. Fig. 4 viser sammenlagringen av kornene. Fig. 5 viser et diagram med forskjellige gassabsorbsjonskurver. The invention shall be explained in more detail with reference to the drawing. Fig. 1, 2 and 3 show getter devices according to the invention. Fig. 4 shows the joint storage of the grains. Fig. 5 shows a diagram with different gas absorption curves.
På fig. 1 er vist et aksialt snitt gjennom en nikkelsylinder 1 med en diameter på 4 mm og en lengde på 4 mm og som i begge ender er lukket med gas 2 resp. 3 av krum nikkelstål. Gasen består av hver- In fig. 1 shows an axial section through a nickel cylinder 1 with a diameter of 4 mm and a length of 4 mm and which is closed at both ends with gas 2 or 3 of curved nickel steel. The gas consists of each
andre kryssende tråder med en diameter på 30 mikron og et mellomrom mellom trådene other crossing threads with a diameter of 30 microns and a space between the threads
på 30 mikron. Inne i sylinderen 1 befinner det seg korn 4 av et metall som hindrer sammensintring med en diameter på 100 til 200 mikron og som er fremstilt på føl-gende måte. Zirkon-hydridpulver med en spesifik overflate på 25—30 m2/g blandes of 30 microns. Inside the cylinder 1 there are grains 4 of a metal which prevents sintering with a diameter of 100 to 200 microns and which are produced in the following manner. Zirconium hydride powder with a specific surface area of 25-30 m2/g is mixed
med wolfram-pulver med tilnærmet samme spesifike overflate i et vektforhold 60:40. with tungsten powder with approximately the same specific surface in a weight ratio of 60:40.
Massen sammenpresses under trykk på 1 tonn/cm2 og granuleres deretter. Av denne granulering tas ut en filtreringsfraksjon. The mass is compressed under a pressure of 1 ton/cm2 and then granulated. A filtration fraction is taken from this granulation.
På fig. 2 er vist de samme korn 4 opptatt mellom to trådnett 5 og 6 som er forbundet med hverandre langs kantene 7, og derved oppnåes en bedre tilgjengelighet til kornene. For ved aktiveringen å ha en lett opphetningsmulighet er der inne i beholderen anordnet en nikkelring 8 som opp-hetes ved hjelp av hvirvelstrømmer. Også innlegning av en blikkplate er mulig. In fig. 2, the same grains 4 are shown caught between two wire nets 5 and 6 which are connected to each other along the edges 7, and thereby a better accessibility to the grains is achieved. In order to have an easy heating option during activation, a nickel ring 8 is arranged inside the container which is heated by means of eddy currents. Insertion of a tin plate is also possible.
På fig. 3 er vist et tverrsnitt av en annen anordning ifølge oppfinnelsen, be-stående av to gasringer 9 og 10 med en diameter på tilnærmet 22 mm og en høyde på 12 mm og som oventil og nedentil og på In fig. 3 shows a cross-section of another device according to the invention, consisting of two gas rings 9 and 10 with a diameter of approximately 22 mm and a height of 12 mm and as above and below and on
åtte steder akseparallelt er sveiset sammen, slik at det dannes åtte lommer som er fylt med korn 4. eight places parallel to the axis are welded together, so that eight pockets are formed which are filled with grain 4.
På fig. 4 er kornene 4 vist i større målestokk enn på fig. 1. Kornene av aktivt metall i form av zirkonhydrid er angitt med 12 og korn av wolfram med 13. Selv om tegningen ikke viser de reile forhold, kan man lett innse at mikroporene 14 er betraktelig mindre enn makroporene 15. In fig. 4, the grains 4 are shown on a larger scale than in fig. 1. The grains of active metal in the form of zirconium hydride are indicated by 12 and grains of tungsten by 13. Although the drawing does not show the correct proportions, it is easy to see that the micropores 14 are considerably smaller than the macropores 15.
Diagrammet på fig. 5 har en horisontal akse som angir den opptatte gassmengde i Torr. liter, mens den vertikale akse angir gassabsorbsjonshastigheten i liter pr. sek. Alle målinger ble utført med kullmono-oksyd som prøvegass fordi denne gass dan-ner størstedelen av restgassen i elektronrør og dessuten er meget skadelig. Kurven I gjelder for en anordning ifølge fig. 1 inneholdende 50 mg korn. Kurven II gjelder for en anordning ifølge fig. 2 hvor gas-pakken hadde en diameter på 14 mm. Av de kurver ser man lett at ved samme mengde opptatt gass er ved kurven II ab-sorbsjonshastigheten tilnærmet en stør-relsesorden større over et større område av kapasitetsutnyttelsen, hvilket betyr en bedre tilgjengelighet til kornene. Kurven II gjelder for samme pulver vekt som kurven I. Kurven III gjelder for to poser ifølge fig. 2 som hver er fylt med 50 mg pulver. Kurven IV gjelder for anordningen ifølge fig. 3 fylt med 500 mg pulver. Av de fire kurver kan man se at de mer eller mindre nærmer seg den ideelle firkantkurve, dvs. en ideell getteranordning forholder seg slik at gassabsorbsjonshastigheten S for-blir tilnærmet konstant til fullstendig ut-nyttelse av absorbsjonskapasiteten Q. Alle kurvene gjelder for utgangspulver med en spesifik overflate på 25 m2/g. The diagram in fig. 5 has a horizontal axis indicating the amount of gas occupied in Torr. litres, while the vertical axis indicates the gas absorption rate in liters per Sec. All measurements were carried out with carbon monoxide as the test gas because this gas forms the majority of the residual gas in electron tubes and is also very harmful. Curve I applies to a device according to fig. 1 containing 50 mg of grain. Curve II applies to a device according to fig. 2 where the gas package had a diameter of 14 mm. From those curves it is easy to see that with the same amount of absorbed gas, the absorption rate in curve II is approximately an order of magnitude greater over a larger area of capacity utilization, which means a better availability to the grains. Curve II applies to the same powder weight as curve I. Curve III applies to two bags according to fig. 2 each of which is filled with 50 mg of powder. Curve IV applies to the device according to fig. 3 filled with 500 mg of powder. Of the four curves, it can be seen that they more or less approach the ideal square curve, i.e. an ideal getter device behaves so that the gas absorption rate S remains approximately constant until full utilization of the absorption capacity Q. All the curves apply to starting powder with a specific surface of 25 m2/g.
Til sammenligning er inntegnet kurven V som gjelder en kjent anordning hvor det anvendes 26 mg av det samme pulver som det pulver som ble anvendt for bestem-melse av de ovenfor angitte kurver, men i form av en tablett med 3,5 mm og ca. 1 mm tykkelse presses inn i en metallstrimmel. Diagrammet på fig. 5 viser tydelig at forskjellen i gassabsorbsjonshastigheten mellom kurvene I og V er mere enn en størrel-sesorden større enn det man kunne vente av forskjellen mellom pulvermengdene. Den største gassabsorbsjonshastighet som kan oppnåes med anordningen ifølge kurven V er 3,10-2 liter pr. sekund ved en opptatt mengde på 5,10—s Torr.liter. For comparison, the curve V relating to a known device is drawn, where 26 mg of the same powder is used as the powder that was used to determine the above-mentioned curves, but in the form of a tablet with 3.5 mm and approx. 1 mm thickness is pressed into a metal strip. The diagram in fig. 5 clearly shows that the difference in the gas absorption rate between curves I and V is more than an order of magnitude greater than one would expect from the difference between the powder amounts. The greatest gas absorption rate that can be achieved with the device according to curve V is 3.10-2 liters per second at an occupied amount of 5.10—s Torr.liter.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA292,954A CA1086955A (en) | 1977-01-04 | 1977-12-13 | Polyester bonding agents for htpb propellants |
Publications (3)
Publication Number | Publication Date |
---|---|
NO783480L NO783480L (en) | 1979-06-14 |
NO146492B true NO146492B (en) | 1982-07-05 |
NO146492C NO146492C (en) | 1982-10-13 |
Family
ID=4110270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO783480A NO146492C (en) | 1977-12-13 | 1978-10-13 | HARDENABLE BINDING MATERIAL FOR USE IN THE PREPARATION OF A CASTABLE FUEL AND USING THE BINDING MATERIAL |
Country Status (10)
Country | Link |
---|---|
JP (1) | JPS5484016A (en) |
BE (1) | BE869617A (en) |
DE (1) | DE2830495A1 (en) |
DK (1) | DK539078A (en) |
FR (1) | FR2411872A1 (en) |
GB (1) | GB1604197A (en) |
IT (1) | IT1106293B (en) |
NL (1) | NL7812148A (en) |
NO (1) | NO146492C (en) |
SE (2) | SE444808B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4352397A (en) * | 1980-10-03 | 1982-10-05 | Jet Research Center, Inc. | Methods, apparatus and pyrotechnic compositions for severing conduits |
NO831850L (en) * | 1982-05-28 | 1997-02-26 | Royal Ordnance Plc | Process for producing a shaped rubbery propellant charge for rockets and the like |
JPS5973489A (en) * | 1982-10-20 | 1984-04-25 | 日本油脂株式会社 | Caking agent for solid propellant |
JPS5973488A (en) * | 1982-10-20 | 1984-04-25 | 日本油脂株式会社 | Caking agent for solid propellant |
EP0266973A3 (en) * | 1986-11-06 | 1990-01-10 | Thiokol Corporation | Pcp/htpb block copolymer and propellant binder prepared therefrom |
FR3051188B1 (en) * | 2016-05-12 | 2022-04-22 | Herakles | COMPOSITE EXPLOSIVE WITH SLOW DETONATION RATE AND PLANE OR LINEAR WAVE GENERATOR CONTAINING THEM |
CN114591363B (en) * | 2022-02-28 | 2024-01-23 | 武汉理工大学 | Multifunctional branched phosphoric acid amide bonding agent, preparation method thereof and composite solid propellant |
CN115746766A (en) * | 2022-11-25 | 2023-03-07 | 天元航材(营口)科技股份有限公司 | Epoxy rubber adhesive and preparation method and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA243659A (en) * | 1924-10-14 | Frans Wilhelmi Dirk | Rubber sole | |
CA1056984A (en) * | 1976-01-16 | 1979-06-19 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Curable binding systems |
-
1978
- 1978-05-16 GB GB19718/78A patent/GB1604197A/en not_active Expired
- 1978-07-11 DE DE19782830495 patent/DE2830495A1/en not_active Withdrawn
- 1978-07-31 FR FR7822599A patent/FR2411872A1/en active Granted
- 1978-08-08 BE BE189782A patent/BE869617A/en not_active IP Right Cessation
- 1978-08-31 IT IT50927/78A patent/IT1106293B/en active
- 1978-10-04 JP JP12249878A patent/JPS5484016A/en active Pending
- 1978-10-13 NO NO783480A patent/NO146492C/en unknown
- 1978-11-30 DK DK539078A patent/DK539078A/en not_active Application Discontinuation
- 1978-12-08 SE SE7812668A patent/SE444808B/en unknown
- 1978-12-13 NL NL7812148A patent/NL7812148A/en not_active Application Discontinuation
-
1983
- 1983-09-08 SE SE8304823A patent/SE451068B/en unknown
Also Published As
Publication number | Publication date |
---|---|
SE7812668L (en) | 1979-06-14 |
JPS5484016A (en) | 1979-07-04 |
DE2830495A1 (en) | 1979-06-21 |
SE8304823D0 (en) | 1983-09-08 |
NO146492C (en) | 1982-10-13 |
SE8304823L (en) | 1983-09-08 |
DK539078A (en) | 1979-07-06 |
FR2411872A1 (en) | 1979-07-13 |
IT7850927A0 (en) | 1978-08-31 |
SE451068B (en) | 1987-08-31 |
NO783480L (en) | 1979-06-14 |
SE444808B (en) | 1986-05-12 |
BE869617A (en) | 1978-12-01 |
NL7812148A (en) | 1979-06-15 |
GB1604197A (en) | 1981-12-02 |
FR2411872B1 (en) | 1983-10-07 |
IT1106293B (en) | 1985-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3620645A (en) | Getter device | |
CA1225340A (en) | Pressure-tight vessel for the storage of hydrogen in a metal matrix body | |
TW482824B (en) | A method for producing a nonevaporable getter and a getter produced by said method | |
NO146492B (en) | HARDENABLE BINDING MATERIAL FOR USE IN THE PREPARATION OF A CASTABLE FUEL AND USING THE BINDING MATERIAL | |
US3926832A (en) | Gettering structure | |
US4134491A (en) | Hydride storage containment | |
US3652317A (en) | Method of producing substrate having a particulate metallic coating | |
US4349051A (en) | Thermal insulation of vessels and method of fabrication | |
JPH0561518B2 (en) | ||
US4135621A (en) | Hydrogen storage module | |
US4396114A (en) | Flexible means for storing and recovering hydrogen | |
GB1581639A (en) | Storage of gas | |
US4133426A (en) | Hydride container | |
NL8302781A (en) | METHOD AND APPARATUS FOR PREPARING IMPROVED POROUS COMPACT METAL HYDRIDE PARTICLES | |
EP0069555B1 (en) | Hydridable pellets | |
JPH04227046A (en) | Reactor with lower and/or upper wall including heat-resistant flexible material layer and its using method | |
US4146497A (en) | Supported getter | |
ITMI20131921A1 (en) | NON EVAPORABLE GETTER ALLOYS PARTICULARLY SUITABLE FOR THE ABSORPTION OF HYDROGEN AND CARBON MONOXIDE | |
US4687650A (en) | Methods of extracting hydrogen from a gas | |
US3050207A (en) | Container for liquefied gas | |
US8746359B2 (en) | Explosion suppressor | |
Lee et al. | Hole-mediated hydrogen spillover mechanism in metal-organic frameworks | |
US3187885A (en) | Getter | |
US20210003257A1 (en) | Hydrogen Storage Device and a Method for Producing a Hydrogen Storage Device | |
RU2738278C2 (en) | Non-evaporable getter alloys particularly suitable for hydrogen and carbon monoxide sorption |