[go: up one dir, main page]

NO146340B - LOAD PROTECTION DEVICE IN MULTI-PHASE ELECTRICAL INSTALLATIONS - Google Patents

LOAD PROTECTION DEVICE IN MULTI-PHASE ELECTRICAL INSTALLATIONS Download PDF

Info

Publication number
NO146340B
NO146340B NO764236A NO764236A NO146340B NO 146340 B NO146340 B NO 146340B NO 764236 A NO764236 A NO 764236A NO 764236 A NO764236 A NO 764236A NO 146340 B NO146340 B NO 146340B
Authority
NO
Norway
Prior art keywords
phase
voltage
current
whose
direct voltage
Prior art date
Application number
NO764236A
Other languages
Norwegian (no)
Other versions
NO764236L (en
NO146340C (en
Inventor
Joseph Albert Leclercq
Original Assignee
Masser Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE163132A external-priority patent/BE837096A/en
Priority claimed from BE169527A external-priority patent/BE844847R/en
Application filed by Masser Sa filed Critical Masser Sa
Publication of NO764236L publication Critical patent/NO764236L/no
Publication of NO146340B publication Critical patent/NO146340B/en
Publication of NO146340C publication Critical patent/NO146340C/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1913Control of temperature characterised by the use of electric means using an analogue comparing device delivering a series of pulses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/12Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Resistance Heating (AREA)
  • Central Heating Systems (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

Oppfinnelsen angår en anordning for belastningsbeskyttelse i elektriske installasjoner med flere faser, når en fasestrøm overskrider en forhåndsbestemt verdi, hvor strøm-styrken i hver fase måles og ved likeretning og fotokopling omdannes til en til den målte vekselstrøm i hver fase svarende lav likespenning som i en tilhørende komparator sammenlignes med en referansespenning som representerer den maksimalt tillatte strøm i fasen, og hvor.utgangsspenningen fra komparatoren via en spenningsdeler for hver fase gir en styrespenning når likespenningen som representerer fasestrømmen overskrider referansespenningen. The invention relates to a device for load protection in electrical installations with several phases, when a phase current exceeds a predetermined value, where the current strength in each phase is measured and, by rectification and photo-switching, is converted into a to the measured alternating current in each phase corresponding to low direct voltage as in a the associated comparator is compared with a reference voltage that represents the maximum permitted current in the phase, and where the output voltage from the comparator via a voltage divider for each phase gives a control voltage when the direct voltage representing the phase current exceeds the reference voltage.

Oppfinnelsen er særlig egnet for elektrisk oppvarming av boliger. The invention is particularly suitable for electric heating of homes.

Ved kjente anlegg for elektrisk oppvarming anvendes regulatorer som regulerer innkoplingstiden og som omfatter en målebro hvis ene gren inneholder en temperaturavhengig motstand og som er manuelt innstillbar til ønsket temperatur. Hvis temperaturen i det rom som skal oppvarmes faller under den ønskede temperatur koples oppvarmingen inn inntil den ønskede temperatur er gjenopprettet. In known installations for electric heating, regulators are used which regulate the switch-on time and which comprise a measuring bridge whose one branch contains a temperature-dependent resistance and which can be manually adjusted to the desired temperature. If the temperature in the room to be heated falls below the desired temperature, the heating is switched on until the desired temperature is restored.

En slik termostat anordnes i hvert rom som skal oppvarmes i boligen som også- har andre elektriske forbrukere, f.eks. belysning, kokeapparater, varmtvannsberedere og lignende, og belastningen i de enkelte faser kan bli ujevn og kan føre til overbelastning av disse, at sikringer brenner av, eller til kostbart overforbruk. Such a thermostat is arranged in each room to be heated in the home which also has other electrical consumers, e.g. lighting, cooking appliances, water heaters and the like, and the load in the individual phases can become uneven and can lead to overloading of these, fuses blowing, or to costly overconsumption.

Hensikten med oppfinnelsen er derfor å tilveie-bringe en anordning av den innledningsvis nevnte art, hvor reguleringen ikke bare er avhengig av termostatene, men også The purpose of the invention is therefore to provide a device of the type mentioned at the outset, where the regulation is not only dependent on the thermostats, but also

av strømmen i de enkelte faser, slik at det kan oppnås en viss prioritering av forbrukerne. of the current in the individual phases, so that a certain prioritization of the consumers can be achieved.

Dette oppnås ifølge oppfinnelsen ved at det for hver fase er anordnet en fotokopier hvis fotodiode påtrykkes den tilhørende styrespenning og hvis fototransistor er parallellkoplet med en gren i en målebro hvis motstående gren inneholder en temperaturavhengig motstand og hvis målediagonal ved overbelastning i vedkommende fase avgir et signal som i en tilordnet reguleringsmodul bevirker minskning av strømmen According to the invention, this is achieved by arranging for each phase a photocopier whose photodiode is applied to the corresponding control voltage and whose phototransistor is connected in parallel with a branch in a measuring bridge whose opposite branch contains a temperature-dependent resistance and whose measuring diagonal in case of overload in the relevant phase emits a signal which in an assigned control module causes a reduction in the current

i denne fase. in this phase.

Fortrinnsvis omfatter reguleringsmodulen en operasjonsforsterker som pulsstyrer en triac. Preferably, the regulation module comprises an operational amplifier which pulses a triac.

Med fordel kan frembringelsen av den lave likespenning som svarer til vekselstrømmen i hver fase skje ved hjelp av en toppdetektor, hvilken likespenning tilføres en tilhørende fotokopier som overfører signalet som representerer strømmen i hver fase og samtidig isolerer disse fra reguleringsmodulen for hver fase. Advantageously, the generation of the low direct voltage corresponding to the alternating current in each phase can be done by means of a peak detector, which direct voltage is supplied to an associated photocopier which transmits the signal representing the current in each phase and at the same time isolates these from the regulation module for each phase.

Oppfinnelsen skal nedenfor forklares nærmere under henvisning til tegningene. Figur 1 viser et koplingsskjema for en anordning ifølge oppfinnelsen for tre faser. Figur 2 viser et koplingsskjema for et elektrisk anlegg for en bolig utstyrt med anordninger ifølge oppfinnelsen . Figur 3 viser et koplingsskjema for en reguleringsmodul for én fase. The invention will be explained in more detail below with reference to the drawings. Figure 1 shows a connection diagram for a device according to the invention for three phases. Figure 2 shows a connection diagram for an electrical system for a home equipped with devices according to the invention. Figure 3 shows a connection diagram for a regulation module for one phase.

Den aktuelle bolig omfatter f.eks. ni rom som skal oppvarmes med elektriske apparater H1 til H9 (fig. 2), som alle mates av vekselsterkstrøm som opptrer mellom null-punktet Mp.og en av trefase-grenene A, således tilføres apparatene H1, H4, H7 strøm fra fase R, apparatene H2, H5, The housing in question includes e.g. nine rooms to be heated with electrical devices H1 to H9 (fig. 2), all of which are fed by alternating current that occurs between the zero point Mp. and one of the three-phase branches A, thus the devices H1, H4, H7 are supplied with power from phase R , the devices H2, H5,

H8 strøm fra fase S og apparatene H3, H6, H9 fra fase T. H8 power from phase S and devices H3, H6, H9 from phase T.

Igangsetting og stans av hvert apparat skjer ved hjelp av en triac TR1 til TR9 innbefattet i en reguleringsmodul M1 til M9 som samvirker med en tilhørende termostat SA1 til SA9 i form av en målebro som vist i detalj på fig. 3, og en nullgjennomgangsdetektor DZR, DZS, DZT for strømmen i hver fase. Each device is started and stopped by means of a triac TR1 to TR9 included in a regulation module M1 to M9 which cooperates with an associated thermostat SA1 to SA9 in the form of a measuring bridge as shown in detail in fig. 3, and a zero crossing detector DZR, DZS, DZT for the current in each phase.

De nevnte moduler og belastningsbeskyttelser They mentioned modules and load protections

(fig. 1, 2 og 3) mates med likestrøm (fig. 2) fra en av fasene, f.eks. R. (fig. 1, 2 and 3) are fed with direct current (fig. 2) from one of the phases, e.g. R.

Det elektriske anlegg kan omfatte en anordning B (fig. 1) til eventuell forgrening av en energimåler bare for oppvarmingen. The electrical installation may include a device B (fig. 1) for possible branching of an energy meter just for the heating.

Fra hver fase R, S, T er det avgrening ED til elektriske apparater i huset og til strømmålerorganer med From each phase R, S, T there is a branch ED to electrical appliances in the house and to current meter devices with

klemmer SR1-SR2, SS1-SS2, ST1 - ST2. terminals SR1-SR2, SS1-SS2, ST1 - ST2.

Som fig. 1 viser er spenningene på disse klemmer vekselspenninger som er proporsjonale med fasestrømmen, og som tilføres resp. tre toppspenning-forsterkere AR, AS, AT As fig. 1 shows, the voltages on these terminals are alternating voltages which are proportional to the phase current, and which are supplied resp. three peak voltage amplifiers AR, AS, AT

som likeretter vekselspenningen til likespenning som er proporsjonal med vekselspenningen, og som tilføres fotodioden i en fotokopier PCR, PCS til PCT, som bevirker strømoverføring samtidig som den sikrer den nødvendige galvaniske isolasjon mellom det elektriske sterkstrømnett og svakstrømdelen ifølge oppfinnelsen. which rectifies the alternating voltage to direct voltage which is proportional to the alternating voltage, and which is supplied to the photodiode in a photocopier PCR, PCS to PCT, which causes current transfer while ensuring the necessary galvanic isolation between the high-current electrical network and the low-current part according to the invention.

Likespenningene som opptrer på fotokoplernes transistorer er proporsjonale med fotodiodens lysstyrke og følgelig med spenningen på klemmene SR, SS, ST, med andre ord proporsjonal med fasestrømmene. The direct voltages that appear on the transistors of the photocouplers are proportional to the brightness of the photodiode and consequently to the voltage on the terminals SR, SS, ST, in other words proportional to the phase currents.

De tre likespenninger blir hver tilført en diode D1, D2, D3. Man antar nå at den spenning som tilføres dioden D3 er den høyeste av de tre. Av denne grunn blir diodene Dl og D2 ikke ledende. Over utgangene fra de tre dioder vil derfor bare spenningen fra dioden D3, dvs. likespenningen VT, som er proporsjonal med strømmen i den mest belastede fase. The three DC voltages are each supplied to a diode D1, D2, D3. It is now assumed that the voltage supplied to diode D3 is the highest of the three. For this reason, the diodes D1 and D2 do not become conductive. Above the outputs from the three diodes will therefore only be the voltage from diode D3, i.e. the direct voltage VT, which is proportional to the current in the most loaded phase.

Denne spenning blir tilført en av de to innganger This voltage is applied to one of the two inputs

i komparatoren CT. En referanse-likespenning UT tilføres den andre inngangen i komparator CT fra en spenningsdeler RDT, som i serie har en motstand RCT og en diode DAT, hvis anode er forbundet med gods. Koplingspunktet FT mellom RCT og DAT er avgreningspunktet til de enkelte reguleringsmoduler M. in the comparator CT. A reference DC voltage UT is supplied to the second input of the comparator CT from a voltage divider RDT, which has in series a resistor RCT and a diode DAT, the anode of which is connected to load. The connection point FT between RCT and DAT is the branching point for the individual control modules M.

Nevnte referansespenning UT tas ut fra glide-kontakten på potensiometeret RDT som er forbundet med klemmene for likestrømkilden DC. Denne referansespenning UT som kan' reguleres ved potensiometeret RDT velges slik at den representerer den maksimalt tillatelige strøm i fasen. Said reference voltage UT is taken from the slide contact on the potentiometer RDT which is connected to the terminals for the direct current source DC. This reference voltage UT, which can be regulated by the potentiometer RDT, is chosen so that it represents the maximum permissible current in the phase.

Komparatoren CT virker på den måten at utgangsspenningen er negativ sålenge referansespenningen UT er større enn spenningen VT, som man kan betegne som inngangsspenningen på komparatoren. Under disse forhold er spenningen på avgreningsledningen LT til reguleringsmodulene lik godspoten-sialet på grunn av dioden DAT og denne spenning har derfor ingen innvirkning på modulene som bare tar i betraktning The comparator CT works in such a way that the output voltage is negative as long as the reference voltage UT is greater than the voltage VT, which can be described as the input voltage of the comparator. Under these conditions, the voltage on the branch line LT to the regulation modules is equal to the load potential due to the diode DAT and this voltage therefore has no effect on the modules which only take into account

signaler fra termostatene. signals from the thermostats.

Hvis derimot inngangsspenningen VT på komparatoren blir større enn referansespenningen UT, hvilket angir at strømmen i den mest belastede fase overstiger strømmen som representerer den maksimalt tillatelige eller bestilte effekt, blir utgangsspenningen fra komparatoren positiv og en positiv spenning WT opptrer på avgreningsledningen til reguleringsmodulen M. If, on the other hand, the input voltage VT on the comparator becomes greater than the reference voltage UT, indicating that the current in the most loaded phase exceeds the current representing the maximum permissible or ordered power, the output voltage from the comparator becomes positive and a positive voltage WT appears on the branch line of the regulation module M.

F.eks. fører lederen LR spenningen WR som tilføres inngangene 19 i modulene M1, M4 og M7 (fig. 2) og analogt for lederne LS og LT nemlig M2, M5 og M8, resp. M3, M6 og M9. E.g. the conductor LR carries the voltage WR which is supplied to the inputs 19 in the modules M1, M4 and M7 (fig. 2) and analogously for the conductors LS and LT namely M2, M5 and M8, resp. M3, M6 and M9.

Ved hver modul vil denne korreksjonsspenning, dvs. styrespenning, forskyve arbeidspunktet i modulen i den retning som betegner en oppvarmingsperiode i samsvar med fasestrømmen. At each module, this correction voltage, i.e. control voltage, will shift the operating point in the module in the direction that denotes a heating period in accordance with the phase current.

Dette skjer på følgende måte: This happens in the following way:

Reguleringsmodulen (fig. 2, 3.) omfatter en Wheatstonebro 11, 12,13,14 som leverer en feilspenning E, til en nullgjennomgangsdetektor DZ som tjener til å markere med presisjon null-gjennomgangsøyeblikkene for nettvekselstrømmen, hvilke null-gjennomganger tjener som grunnlag for dannelse av trigger-impulser G til en triac TR som skal beskrives nærmere nedenfor og en driftsforsterker AO som spiller rollen som regulerings-organ i modulen, styrt av feilspenningen E. Modulutgangen er koplet til en portkrets ET, hvis andre inngang mottar nullgjennomgangspulser fra nulldetektoren DZ. Disse pulser har dobbelt så høy frekvens som nettfrekvensen. Reguleringsmodulen inneholder en triac, som nevnt, som sperrer eller slipper igjennom oppvarmingsstrømmen. Sperre- og passerings-periodene for oppvarmingsstrømmen bestemmer den elektriske energi som forbrukes av varmeanlegget og styres altså av utgangen fra kretsen ET som under passeringsperioden avgir pulser til portkretsen for triacen som er ledende i dette øyeblikk, og utgangen fra kretsen ET er null under sperre-perioden, slik at triacen er blokkert. The regulation module (fig. 2, 3.) comprises a Wheatstone bridge 11, 12, 13, 14 which supplies an error voltage E, to a zero-crossing detector DZ which serves to mark with precision the zero-crossing moments of the mains alternating current, which zero-crossings serve as the basis for generation of trigger pulses G to a triac TR to be described in more detail below and an operational amplifier AO which plays the role of regulator in the module, controlled by the error voltage E. The module output is connected to a gate circuit ET, the second input of which receives zero crossing pulses from the zero detector DZ . These pulses have a frequency twice as high as the mains frequency. The regulation module contains a triac, as mentioned, which blocks or lets the heating current through. The blocking and passing periods for the heating current determine the electrical energy consumed by the heating system and are therefore controlled by the output of the circuit ET which during the passing period emits pulses to the gate circuit for the triac which is conducting at this moment, and the output of the circuit ET is zero during blocking period, so that the triac is blocked.

I henhold til kjent teknikk er feilspenningen E, som danner utgangssignalet fra Wheatstone-broen bare påvirket av sammenligningen mellom nominell temperatur og øyeblikks- According to the prior art, the error voltage E, which forms the output signal from the Wheatstone bridge, is only affected by the comparison between nominal temperature and instantaneous

temperaturen i det aktuelle rom. the temperature in the relevant room.

For å oppnå dette omfatter målebroen fire grener To achieve this, the measuring bridge comprises four branches

som mellom diagonalpunktene 11,12 påtrykkes en konstant likespenning Ucc med pluss til punktet 11 og minus til punktet 12. Grenen mellom punktene 12 og 13 inneholder en variabel motstand P2 som tjener til å bestemme den ønskede oppvarmings-temperatur og i serie med denne en motstand CTN med negativ temperaturkoéffisient, hvis motstandsverdi er avhengig av temperaturen i det rom som skal oppvarmes, og denne enhet er på fig. 2 betegnet SA1 til SA9. Grenen mellom punktene 11 that between the diagonal points 11,12 a constant direct voltage Ucc is applied with plus to point 11 and minus to point 12. The branch between points 12 and 13 contains a variable resistance P2 which serves to determine the desired heating temperature and in series with this a resistance CTN with negative temperature coefficient, whose resistance value depends on the temperature in the room to be heated, and this unit is in fig. 2 designated SA1 to SA9. The branch between points 11

og 13 inneholder en variabel kalibreringsmotstand P1, mens grenene mellom punktene 11 og 14 og 12 og 14 henholdsvis inneholder faste motstander RI og R2. and 13 contain a variable calibration resistor P1, while the branches between points 11 and 14 and 12 and 14 respectively contain fixed resistors RI and R2.

Feilspenningen E opptrer mellom punktene 13 og 14 The error voltage E occurs between points 13 and 14

og denne spenning er null når broen er i balanse. and this voltage is zero when the bridge is in balance.

Når romtemperaturen synker øker motstandsverdien When the room temperature drops, the resistance value increases

av CTN og det oppstår ubalanse og spenningen E opptrer slik at reguleringsmodulen M reagerer og kopler inn oppvarming inntil romtemperaturen igjen har nådd den ønskede verdi og broen er i balanse og oppvarmingen koples ut. of CTN and an imbalance occurs and the voltage E occurs so that the control module M reacts and switches the heating on until the room temperature has again reached the desired value and the bridge is in balance and the heating is switched off.

Parallelt med motstanden R1 er koplet en fototransistor PT i en fotokopier 16 (fig. 3) hvis fotodiode PD styres via ledere 19 og 20 med styrespenningen W (WR,WS,WT) In parallel with the resistor R1, a phototransistor PT is connected in a photocopier 16 (fig. 3) whose photodiode PD is controlled via conductors 19 and 20 with the control voltage W (WR,WS,WT)

fra lederen L (LR,LS,LT) (fig. 1). from the conductor L (LR,LS,LT) (fig. 1).

Når hovedstrømmen ikke overstiger tillatelig' maksimum vil terskelspenningen som er representert med W mangler, er W = 0. Under disse betingelser vil fototransistoren PT ikke være påvirket av PD, motstanden PT er uendelig og transistorens hjelpestrøm er lik null. Hvis størrelsen på motstanden R1 er den samme som motstanden R2, vil spenningen i punktet 14 utgjøre halvparten av likespenningen Ucc, dvs. When the main current does not exceed the allowable' maximum, the threshold voltage represented by W is missing, W = 0. Under these conditions, the phototransistor PT will not be affected by PD, the resistance PT is infinite and the transistor's auxiliary current is equal to zero. If the size of the resistor R1 is the same as the resistor R2, the voltage at point 14 will be half of the direct voltage Ucc, i.e.

den positive informasjonsspenning UIH+ for målebroen, hvor symbolet UIN betegner en informasjonsspenning. the positive information voltage UIH+ for the measuring bridge, where the symbol UIN denotes an information voltage.

Den regulerbare motstand- P2 i den andre brogren reguleres med fordel slik at spenningen i punktet 13 er det samme som i punktet 14 når broen er i likevekt, den regulerbare motstand P2 tjener til å fastsette den nominelle temperatur for rommet som skal oppvarmes. Spenningen i punktet 13 er den negative informasjonsspenning UIN_ fra målebroen og man angir med symbolet E broens feilspenning som er spenningsfor-skjellen mellom punktene 13 og 14, dvs. UT„ - UT„ = E, idet The adjustable resistance P2 in the other bridge branch is advantageously adjusted so that the voltage at point 13 is the same as at point 14 when the bridge is in equilibrium, the adjustable resistance P2 serves to determine the nominal temperature for the room to be heated. The voltage at point 13 is the negative information voltage UIN_ from the measuring bridge and the symbol E indicates the bridge's error voltage, which is the voltage difference between points 13 and 14, i.e. UT„ - UT„ = E, as

IN+ IN- IN+ IN-

E = 0 når broen er i balanse. Feilspenningen fra broen er positiv eller negativ alt etter om romtemperaturen i det aktuelle rommet er høyere eller lavere enn nominell temperatur. E = 0 when the bridge is in balance. The error voltage from the bridge is positive or negative depending on whether the room temperature in the room in question is higher or lower than the nominal temperature.

For utkopling av oppvarmingen ved likevektstilling må broen bringes ut av balanse (E<o), dvs. at termostaten må forskyves slik at den nominelle temperatur er høyere enn romtemperaturen, hvilket består i å øke motstanden P2. Mens romtemperaturen øker vil motstanden i NTC-elementet etterhvert synke til det øyeblikk hvor den reduserte NTC kompenserer nøyaktig økningen av P2 og broen pånytt er balansert. To switch off the heating in the equilibrium position, the bridge must be brought out of balance (E<o), i.e. the thermostat must be moved so that the nominal temperature is higher than the room temperature, which consists in increasing the resistance P2. While the room temperature increases, the resistance in the NTC element will gradually decrease until the moment where the reduced NTC exactly compensates the increase of P2 and the bridge is balanced again.

Hvis man derimot vil redusere oppvarmingen, innstilles termostaten på en lavere temperatur enn værelses-temperaturen, hvilket reduserer motstanden P2. Feilspenningen holder seg positiv eller lik null (E>o) dvs. at det ikke foregår noen oppvarming før den økede motstand av NTC-elementet som funksjon av den reduserte romoppvarming, er større enn motstandsreduksjonen for motstanden P2. If, on the other hand, you want to reduce the heating, the thermostat is set to a lower temperature than the room temperature, which reduces the resistance P2. The error voltage remains positive or equal to zero (E>o), i.e. no heating takes place until the increased resistance of the NTC element as a function of the reduced room heating is greater than the resistance reduction for the resistor P2.

Stans i oppvarmingen bestemmes naturligvis av polariteten for spenningsfeilen E i målebroen, ved forsterkeren A.O. Som skjematisk vist på fig. 3 kan forsterkeren som er koplet til ledningen 17 og forsynt med motstander R3, R4, R5 og kondensator CD, koples elektrisk til gods ME, som er nødvendig for at den skal avgi impulser fra utgangen 18 som kan forandre ledningsvarigheten for nevnte triac og derved oppvarmingstilstanden. Pause in the heating is naturally determined by the polarity of the voltage error E in the measuring bridge, at the amplifier A.O. As schematically shown in fig. 3, the amplifier which is connected to the line 17 and equipped with resistors R3, R4, R5 and capacitor CD, can be electrically connected to load ME, which is necessary for it to emit impulses from the output 18 which can change the conduction duration of said triac and thereby the heating state .

Disse bemerkninger gjelder for faseavlastnings-systemet når terskelspenningen som opptrer som følge av over-belastede faser virker på modulene som om motstanden P2 er minsket. These remarks apply to the phase relief system when the threshold voltage that occurs as a result of overloaded phases acts on the modules as if the resistance P2 is reduced.

En terskelspenning W (fig. 8) vil opptre når fase-strømmen overstiger en tillatelig grense, og gi en terskelstrøm gjennom fotodioden PD fra 19 til 20. Fotodioden avgir lysenergi til fototransistoren PT og gjør denne ledende og en strøm 1^, som er proporsjonal med terskelstrømmen kan derfor gå gjennom PT fra 11 til 14. A threshold voltage W (fig. 8) will appear when the phase current exceeds an allowable limit, giving a threshold current through the photodiode PD from 19 to 20. The photodiode emits light energy to the phototransistor PT and makes it conductive and a current 1^, which is proportional with the threshold current can therefore go through PT from 11 to 14.

Man kan lett vise at når alle andre betingelser One can easily show that when all other conditions are met

er uforandret blir feilspenningen E mer positiv enn størrelsen R2 x 1^. Terskelspenningen har således en lignende virkning som P2 og virker i retning av reduksjon av reguleringsmodulens virkning, idet alt forløper som når nominelltemperaturen som er innstilt på termostaten er redusert og følgelig blir varigheten av triacens ledende tilstand i forhold til ikke-ledende tilstand redusert. Hensikten med denne kopling er at modulene kan atskilles totalt fordi de er galvanisk isolert fra terskelspenningen og i målebroene kan innføres en felles terskelspenning for all apparatur med forskjellig fasespenning, reguleringsmodulene vil ikke ha noe felles koplingspunkt. is unchanged, the error voltage E becomes more positive than the magnitude R2 x 1^. The threshold voltage thus has a similar effect to P2 and acts in the direction of reducing the regulation module's effect, since everything proceeds as when the nominal temperature set on the thermostat is reduced and consequently the duration of the triac's conducting state in relation to the non-conducting state is reduced. The purpose of this connection is that the modules can be completely separated because they are galvanically isolated from the threshold voltage and a common threshold voltage can be introduced in the measuring bridges for all equipment with different phase voltages, the control modules will not have a common connection point.

Disse prinsipper har vært anvendt med stor suksess, ved installasjon i boliger med integrert oppvarming. Foto-koplerne muliggjør bruk av reguleringsmoduler som er helt identiske, hvilket letter ikke bare koplingen, men også seriefabrikasjonen. These principles have been used with great success when installing in homes with integrated heating. The photo-couplers enable the use of control modules that are completely identical, which facilitates not only the connection, but also serial manufacturing.

Ved anvendelse av oppfinnelsen er det mulig automatisk til enhver tid å begrense forbruket til det nominelle, hvilket betyr at abonnert kraft kan utnyttes fullt ut og til det minst mulige samtidig som ønsket oppvarming kan oppnås på beste måte. Dette gjelder både for flerfasetil-knytning og enfasetilknytning, og reguleringsmodulen kan være av vilkårlig art, f.eks. for regulering av tilført spenning til apparatene. When using the invention, it is possible to automatically limit the consumption to the nominal at all times, which means that subscribed power can be fully utilized and to the minimum possible while the desired heating can be achieved in the best way. This applies to both multi-phase connection and single-phase connection, and the regulation module can be of any kind, e.g. for regulating the voltage supplied to the devices.

Claims (3)

1. Anordning for belastningsbeskyttelse i elektriske installasjoner med flere faser, når en fasestrøm overskrider en forhåndsbestemt verdi, hvor strømstyrken i hver fase (R,S, T) måles og ved likeretning og fotokopling omdannes til en til den målte vekselstrøm i hver fase svarende lav likespenning (VR,VS,VT) som i en tilhørende komparator (CR,CS,CT) sammenlignes med en referansespenning (UR,US,UT) som representerer den maksimalt tillatte strøm i fasen, og hvor utgangsspenningen fra komparatoren via en spenningsdeler for hver fase gir en styrespenning (WR,WS,WT) når likespenningen som representerer fasestrømmen overskrider referansespenningen, karakterisert ved at det for hver fase er anordnet en fotokopier (16 på fig. 3), hvis fotodiode (PD) påtrykkes den til-hørende styrespenning og hvis fototransistor (PT) er parallellkoplet med en gren (R1) i en målebro hvis motstående gren inneholder en temperaturavhengig motstand (CTN) og hvis målediagonal (13,14) ved overbelastning i vedkommende fase avgir et signal som i en tilordnet reguleringsmodul bevirker minskning av strømmen i denne fase.1. Device for load protection in electrical installations with several phases, when a phase current exceeds a predetermined value, where the current strength in each phase (R, S, T) is measured and by rectification and photo-switching is converted into an alternating current in each phase corresponding to the measured low direct voltage (VR,VS,VT) which in an associated comparator (CR,CS,CT) is compared with a reference voltage (UR,US,UT) which represents the maximum permitted current in the phase, and where the output voltage from the comparator via a voltage divider for each phase gives a control voltage (WR,WS,WT) when the direct voltage representing the phase current exceeds the reference voltage, characterized by the fact that for each phase a photocopier (16 in Fig. 3) is arranged, whose photodiode (PD) is impressed with the associated control voltage and whose phototransistor (PT) is connected in parallel with a branch (R1) in a measuring bridge whose opposite branch contains a temperature-dependent resistance (CTN) and whose measuring diagonal (13,14) in the event of overload in that phase emits a signal which, in an assigned control module, causes a reduction in the current in this phase. 2. Anordning ifølge krav 1, karakterisert ved at'reguleringsmodulen omfatter en operasjonsforsterker (AO) som pulsstyrer en triac (TR).2. Device according to claim 1, characterized in that the regulation module comprises an operational amplifier (AO) which pulses a triac (TR). 3. Anordning ifølge krav 1, karakterisert ved at frembringelsen av den lave likespenning som svarer til vekselstrømmen i hver fase skjer ved hjelp av en toppdetektor (AR,AS,AT), hvilken likespenning tilføres en tilhørende fotokopier (PCR,PCS,PCT) som overfører signaler som representerer strømmen i hver fase og samtidig isolerer disse fra reguleringsmodulen (M) for hver fase.3. Device according to claim 1, characterized in that the generation of the low direct voltage corresponding to the alternating current in each phase takes place by means of a peak detector (AR, AS, AT), which direct voltage is supplied to an associated photocopier (PCR, PCS, PCT) which transmits signals representing the current in each phase and at the same time isolates these from the regulation module (M) for each phase.
NO764236A 1975-12-24 1976-12-14 LOAD PROTECTION DEVICE IN MULTI-PHASE ELECTRICAL INSTALLATIONS. NO146340C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE163132A BE837096A (en) 1975-12-24 1975-12-24 PHASE SHIELDING DEVICES FOR ALL ELECTRIC RESIDENCES
BE169527A BE844847R (en) 1976-08-03 1976-08-03 PHASE WEIGHTING DEVICE FOR ALL-ELECTRIC RESIDENCE

Publications (3)

Publication Number Publication Date
NO764236L NO764236L (en) 1977-06-27
NO146340B true NO146340B (en) 1982-06-01
NO146340C NO146340C (en) 1982-09-08

Family

ID=25649029

Family Applications (1)

Application Number Title Priority Date Filing Date
NO764236A NO146340C (en) 1975-12-24 1976-12-14 LOAD PROTECTION DEVICE IN MULTI-PHASE ELECTRICAL INSTALLATIONS.

Country Status (5)

Country Link
CH (1) CH623687A5 (en)
DE (1) DE2657784C2 (en)
FR (1) FR2336818A1 (en)
GB (1) GB1566756A (en)
NO (1) NO146340C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132355A (en) * 1977-05-18 1979-01-02 Energy Master, Inc. Electronic temperature control system
FR2466717A1 (en) * 1979-10-03 1981-04-10 Radiotechnique Compelec Central programme controller for electric heating system - includes comparator for overload prevention dropping thermostat temp. for each heater
FR2498836A1 (en) * 1981-01-23 1982-07-30 Urbelec Load shedding circuit for polyphase electrical installation - includes OR=gates and AND=gates to monitor individual phase currents and total power consumption with monitoring provided by indicator lamps
FR2561462B1 (en) * 1984-03-13 1988-04-01 Hebert Jean Paul RANGES OF AUTOMATIC ELECTRICITY DISTRIBUTORS BETWEEN TWO USES, WITH A VIEW TO MAXIMIZING CONTINUOUSLY THE POWER TRANSITING THROUGH THEIR COMMON SOURCE
DE3528540A1 (en) * 1985-08-08 1987-02-19 Siemens Ag Device for monitoring the rotor current of a slipring-rotor motor of a converter cascade
CH672959A5 (en) * 1987-07-09 1990-01-15 Sprecher & Schuh Ag
CH674773A5 (en) * 1987-10-12 1990-07-13 Sprecher & Schuh Ag
CN201811997U (en) 2007-11-13 2011-04-27 艾默生环境优化技术有限公司 Three-phase detection equipment
TR200810051A1 (en) * 2008-12-30 2010-07-21 Vestel Beyaz Eşya Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇@ Thermostat for white goods.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470356A (en) * 1966-07-18 1969-09-30 Globe Union Inc Multiple temperature controller
FR2034247A1 (en) * 1969-03-03 1970-12-11 Schlumberger Inst System
SE7112846L (en) * 1970-10-14 1972-04-17 Stroemberg Oy Ab
DE2150948B2 (en) * 1971-10-13 1975-04-03 Josef Dumser Schaltanlagenbau, 6745 Offenbach Temp.-independent current limiter for three-phase supplies - compares phase-line signal evaluators output with remotely-set reference
FR2270746A1 (en) * 1974-05-06 1975-12-05 Morel Jean Electronic programmer for electrical heater - has control triacs with thermostats and time switch relays

Also Published As

Publication number Publication date
NO764236L (en) 1977-06-27
NO146340C (en) 1982-09-08
FR2336818B1 (en) 1978-06-30
GB1566756A (en) 1980-05-08
CH623687A5 (en) 1981-06-15
DE2657784C2 (en) 1984-04-05
DE2657784A1 (en) 1977-07-14
FR2336818A1 (en) 1977-07-22

Similar Documents

Publication Publication Date Title
AU711943B2 (en) Apparatus for and method of evenly distributing an electrical load across a three-phase power distribution network
KR100335026B1 (en) Apparatus for and method of evenly distributing an electrical load across an n-phase power distribution network
GB2189060A (en) Phase controlled regulator
US3961236A (en) Constant power regulator for xerographic fusing system
EP0418253A4 (en) Regulating a.c. power controller and method
NO146340B (en) LOAD PROTECTION DEVICE IN MULTI-PHASE ELECTRICAL INSTALLATIONS
CA2179356C (en) Power supply for in-line power controllers and two-terminal electronic thermostat employing same
US5212360A (en) Line voltage sensing for microwave ovens
US4723068A (en) Electric power control device in an automatic temperature adjusting apparatus
US5360962A (en) Heating appliance with transformerless power supply using low-loss passive divider to reduce AC line voltages
US4323838A (en) RMS Controlled load tap changing transformer
US2944137A (en) Self stabilizing automatic temperature control
RU2298217C1 (en) Phased power controller
WO1998028834A1 (en) Improvement in energy savings apparatus
US3614392A (en) Regulator for a heater element
EP2549679B1 (en) Device for extracting a supply signal from a bus signal, and bus apparatus
US3133202A (en) Peak load stabilizer or controller
US20250070676A1 (en) Circuit system and method for operating a circuit system
US3684947A (en) Circuit for determining and controlling the current supplied to an adjustable resistance load
US2033016A (en) Circuit for photoelectric controllers
KR920004328Y1 (en) 110 / 220V supply voltage automatic switching circuit
CN112748279B (en) Zero-crossing detection device and method and single live wire switch
SU941966A1 (en) Dc voltage stabilizer
RU55163U1 (en) PHASE POWER REGULATOR
US3130319A (en) Electronic system including a plurality of selectively-operable condition-responsive controls