NO142581B - APPLICATION OF A MAGNESIUM ALLOY TO COMPONENTS WHICH HAVE GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES - Google Patents
APPLICATION OF A MAGNESIUM ALLOY TO COMPONENTS WHICH HAVE GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES Download PDFInfo
- Publication number
- NO142581B NO142581B NO754345A NO754345A NO142581B NO 142581 B NO142581 B NO 142581B NO 754345 A NO754345 A NO 754345A NO 754345 A NO754345 A NO 754345A NO 142581 B NO142581 B NO 142581B
- Authority
- NO
- Norway
- Prior art keywords
- weight
- thorium
- alloys
- mechanical properties
- alloy
- Prior art date
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 39
- 239000000956 alloy Substances 0.000 claims description 39
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims description 20
- 229910052776 Thorium Inorganic materials 0.000 claims description 20
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 14
- 150000002910 rare earth metals Chemical class 0.000 claims description 14
- 229910052726 zirconium Inorganic materials 0.000 claims description 12
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 239000004332 silver Substances 0.000 claims description 9
- 229910052779 Neodymium Inorganic materials 0.000 claims description 7
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- CTNKBLMNHFSRFU-UHFFFAOYSA-N [Th].[Mg] Chemical class [Th].[Mg] CTNKBLMNHFSRFU-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/06—Alloys based on magnesium with a rare earth metal as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Powder Metallurgy (AREA)
- Dental Preparations (AREA)
- Conductive Materials (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Adornments (AREA)
- Materials For Medical Uses (AREA)
Description
Nærværende oppfinnelse vedrører anvendelse av en magnesiumleger- The present invention relates to the use of a magnesium
ing som skal ha gode mekaniske egenskaper ved høyere tempera- ing which must have good mechanical properties at higher tempera-
turer. trips.
Magnesiumlegeringér har en meget lav vekt sammenlignet med Magnesium alloys have a very low weight compared to
legeringer; av andre-metaller, og følgelig har magnesiumlegerin- alloys; of other metals, and consequently magnesium alloys have
gér funnet anvendelse spesielt i luftfartsindustrien, hvor leger- has found application especially in the aviation industry, where doctors
inger med ;lav vekt er meget viktig. Eksisterende magnesiumleger- ings with ;low weight is very important. Existing magnesium doctors-
ingér som har fordelaktige mekaniske egenskaper, spesielt en høy flytegrense, er beskrevet i britisk patent nr. 8 75.9 29. ingér which has advantageous mechanical properties, especially a high yield strength, is described in British patent no. 8 75.9 29.
Legeringer i henhold til det ovenfor nevnte patent har blitt an- Alloys according to the above-mentioned patent have been an-
vendt i flyindustri-komponenter, som er gjenstand for relativ høy påkjenning, såsom flykompressor-hus, helikopter-hoveddrev- turned in aircraft industry components, which are subject to relatively high stress, such as aircraft compressor housing, helicopter main drive
kasser og underste11-komponenter. For å erholde adekvate mekan- cases and underste11 components. In order to obtain adequate mechanical
iske egenskaper er det nødvendig å gjøre disse legeringer til gjenstand for en to-trinns varmebehandling, som medfører oppløs-nings-behandling ved en høy temperatur etterfulgt av ical properties, it is necessary to make these alloys subject to a two-stage heat treatment, which entails solution treatment at a high temperature followed by
bråkjøling samt utherding ved en lav temperatur for å forbedre de mekaniske egenskapene ved utskillings-herding. quenching as well as quenching at a low temperature to improve the mechanical properties during precipitation hardening.
På denne måte erholdte mekaniske egenskaper holder seg godt for eksponering ved høyere temperaturer opptil 200°C. Ved eksponer- Mechanical properties obtained in this way hold up well for exposure at higher temperatures up to 200°C. When exposed
ing for temperaturer over 200°C blir imidlertid de mekaniske egenskapene markant dårligere, og dette faktum begrenser anvend- for temperatures above 200°C, however, the mechanical properties become markedly worse, and this fact limits the use
elsen av slike legeringer i fly og andre maskiner, og da spesielt motorer og drevkasser som arbeider i dette temperaturområde. the use of such alloys in aircraft and other machines, and especially engines and gearboxes that work in this temperature range.
Man har nå kommet frem til anvendelsen av magnsiumlegeringer med tilfredsstillende egenskaper ved romtemperatur, og som beholder sine fordelaktige egenskaper, i det minste til en viss grad, One has now arrived at the use of magnesium alloys with satisfactory properties at room temperature, and which retain their beneficial properties, at least to a certain extent,
ved temperaturer i størrelsesorden 250°C. at temperatures of the order of 250°C.
Ifølge nærværende oppfinnelse anvendes en magnesiumlegering, som inneholder følgende bestanddeler med unntakelse for jern og andre forurensninger, regnet i vekt-%: According to the present invention, a magnesium alloy is used, which contains the following components with the exception of iron and other impurities, calculated in % by weight:
hvorved maksimum-mengdene av elementene zirkonium og mangan gjen-sidig begrenser hvrandre, og hvorved den totale mengden av whereby the maximum amounts of the elements zirconium and manganese mutually limit each other, and whereby the total amount of
neodym og thorium er fra 1,5 til 2,4 vekt-%, til komponenter som skal ha gode mekaniske egenskaper ved temperaturer opp til 250.°C. neodymium and thorium are from 1.5 to 2.4% by weight, for components that must have good mechanical properties at temperatures up to 250°C.
Legeringene kan fremstilles ved å anvende ren neodym som sjeldent jordmetall, men da ren neodym er meget dyr foretrekkes det å tilsette neodym i form av en sjelden jordmetall-blanding innehold-ende minst 60% neodym. Blandingen av sjeldne jordmetaller inneholder fortrinnsvis ikke mer enn 25 vekt-% lanthan og cerium tilsammen. The alloys can be produced by using pure neodymium as a rare earth metal, but as pure neodymium is very expensive, it is preferred to add neodymium in the form of a rare earth metal mixture containing at least 60% neodymium. The mixture of rare earth metals preferably contains no more than 25% by weight of lanthanum and cerium together.
I den hensikt å utvikle strekk-egenskapene til legeringene så godt som mulig, er det nødvendig å gjøre disse til gjenstand for varmebehandling, og da først ved en høy temperatur for å oppnå oppløsning av legerings-bestanddelene, og deretter ved en lav temperatur for å oppnå utherding og hvorved utskillings-herding finner sted. Oppløsnings-behandlingen bør utføres ved en temperatur fra 485°C til legeringens solidus-temperatur i en tid som er tilstrekkelig for å bevirke oppløsning, hvilken tid kan oppgå til minst 2 timer. Legeringen kan deretter bråav-kjøles til romtemperatur, hvoretter man foretar utherding ved en temperatur fra 100°C til 275°C i en tidsperiode på minst en halv time, og hvorved lengre tid kreves når det anvendes lavere temperaturer innenfor det angitte område. In order to develop the tensile properties of the alloys as well as possible, it is necessary to subject them to heat treatment, and then first at a high temperature to achieve dissolution of the alloy constituents, and then at a low temperature to achieve hardening and whereby precipitation hardening takes place. The dissolution treatment should be carried out at a temperature from 485°C to the solidus temperature of the alloy for a time sufficient to effect dissolution, which time may amount to at least 2 hours. The alloy can then be rapidly cooled to room temperature, after which hardening is carried out at a temperature from 100°C to 275°C for a period of at least half an hour, whereby a longer time is required when lower temperatures within the specified range are used.
Vanligvis er en oppløsningsbehandling ved 525°C i 8 timer tilfredsstillende. Nærvær av koppermengder på over 0,1 vekt-% påvirker imidlertid solidus-temperaturen slik at initialbehand-lingen må finne sted ved en temperatur som ikke overstiger 485°C, f.eks. 8 timer ved 465°C, før behandling ved den høyere temperaturen. Usually a solution treatment at 525°C for 8 hours is satisfactory. However, the presence of copper amounts of more than 0.1% by weight affects the solidus temperature so that the initial treatment must take place at a temperature that does not exceed 485°C, e.g. 8 hours at 465°C, before treatment at the higher temperature.
Man har funnet at legeringer, som inneholder de ovenfor nevnte mengder av sjeldne jordmetaller samt thorium, har fordelaktige egenskaper både ved romtemperatur og ved høyere temperaturer, f.eks. ved 250°C. Hvis den totale mengden av sjeldent jordmetall og thorium overstiger 2,4 vekt-% erholdes lav forlengelse ved brudd ved romtemperatur, og hvis det nevnte innhold understiger 1,5 vekt-% erholdes dårlig støpbarhet. Dårlig 0,2% flytegrense ved romtemperatur fåes ved et innhold av sjeldne jordmetaller på under 0,5 vekt-%. De mekaniske egenskapene ved høy temperatur forringes hvis thoriuminnholdet understiger 0,2 vekt-%. It has been found that alloys containing the above-mentioned amounts of rare earth metals as well as thorium have advantageous properties both at room temperature and at higher temperatures, e.g. at 250°C. If the total amount of rare earth metal and thorium exceeds 2.4% by weight, low elongation at break at room temperature is obtained, and if the said content is below 1.5% by weight, poor castability is obtained. A poor yield strength of 0.2% at room temperature is obtained with a content of rare earth metals of less than 0.5% by weight. The mechanical properties at high temperature deteriorate if the thorium content falls below 0.2% by weight.
En foretrukket legering inneholder 2-2,5 vekt-% sølv, 0,9 - 1,4 vekt-% sjeldne jordmetaller, 0,6 - 1,1 vekt-% thorium og A preferred alloy contains 2-2.5 wt% silver, 0.9-1.4 wt% rare earth metals, 0.6-1.1 wt% thorium and
minst 0,4 vekt-% zirkonium og resten magnesium. at least 0.4% by weight zirconium and the rest magnesium.
Den øsnkede mengde thorium kan' hensiktsmessig tilsettes i form av en magnesium-thorium-herdelegering. The desired amount of thorium can conveniently be added in the form of a magnesium-thorium hardening alloy.
Sølvinnholdet påvirker legeringens egenskaper. Strekkegenskapene forringes når sølvinnholdet reduseres selv om forlengelsen ved brudd øker. Legeringen bør inneholde minst 1,25 vekt-% sølv, og det foretrukkede innhold er fra 1,5 til 3,0 vekt-%. The silver content affects the properties of the alloy. The tensile properties deteriorate when the silver content is reduced, even though the elongation at break increases. The alloy should contain at least 1.25% by weight silver, and the preferred content is from 1.5 to 3.0% by weight.
Nærvær av opptil 1 vekt-% zirkonium i legeringen er vanligvis ønskelig for å oppnå tilfredsstillende korn-forfining. For å erholde tilfredsstillende støping er det ønskelig å inkorporere minst 0,4 vekt-% zirkonium. Det kan være ønskelig å tilsette mangan, men manganinnholdet er begrenset av dets gjensidige løse-lighet i zirkonium. En del av det ønskede minimum på 0,4 vekt-% zirkonium kan erstattes med mangan. The presence of up to 1% by weight of zirconium in the alloy is usually desirable to achieve satisfactory grain refinement. In order to obtain satisfactory casting, it is desirable to incorporate at least 0.4% by weight of zirconium. It may be desirable to add manganese, but the manganese content is limited by its mutual solubility in zirconium. Part of the desired minimum of 0.4% by weight of zirconium can be replaced with manganese.
Foretrukkede legeringer ved anvendelsen ifølge nærværende oppfinnelse skal beskrives i de følgende eksempler. Preferred alloys for use according to the present invention shall be described in the following examples.
EKSEMPLER EXAMPLES
Legeringer med nedenfor angitte sammensetninger ble fremstilt ved hjelp av en konvensjonell fremgangsmåte. Sølv ble tilsatt enten som rent sølv eller fra en ingot som inneholder 2,5 vekt-% Ag, 1,88 vekt-% sjeldne jordmetaller, 0,36 vekt-% Zr oa resten magnesium. Sjeldne jordmetaller ble tilsatt som en magnesium/neodym-herdelegering. Thorium ble tilsatt som en magnesium/thorium-herdelegering . Alloys with the compositions indicated below were prepared using a conventional method. Silver was added either as pure silver or from an ingot containing 2.5 wt% Ag, 1.88 wt% rare earth metals, 0.36 wt% Zr and the rest magnesium. Rare earth metals were added as a magnesium/neodymium hardening alloy. Thorium was added as a magnesium/thorium hardening alloy.
De erholdte legeringer ble gjenstand for varmebehandling, og da først ved en høy temperatur for å bevirke oppløsning, og etterfulgt av bråavkjøling samt utherding ved en lavere temperatur. Initial-oppløsnings-behandlingen ble utført enten i 8 timer ved 525°C, eller når det gjaldt legeringer, som inneholder betydelige mengder kopper, i 8 timer ved 465°C og etterfulgt av 8 timer ved 525°C. Prøvestykkene ble deretter bråavkjølt i varmt vann samt The obtained alloys were subjected to heat treatment, and then first at a high temperature to effect dissolution, and followed by rapid cooling and quenching at a lower temperature. The initial dissolution treatment was carried out either for 8 hours at 525°C, or in the case of alloys containing significant amounts of copper, for 8 hours at 465°C followed by 8 hours at 525°C. The test pieces were then quenched in hot water as well
utherdet i 16 timer ved 200°C. cured for 16 hours at 200°C.
De mekaniske egenskapene til de således erholdte prøvestykkene, d.v.s. henholdsvis 0,2% flytegrense, strekkfasthet og forlengelse ble målt ved romtemperatur ifølge British Standard 18, og ved 250°C ifølge British Standard 3688. 15 minutters gjennom-trengningstid ved 250°C ble anvendt. The mechanical properties of the test pieces thus obtained, i.e. respectively 0.2% yield strength, tensile strength and elongation were measured at room temperature according to British Standard 18, and at 250°C according to British Standard 3688. 15 minute penetration time at 250°C was used.
For å undersøke overeldings-bestandigheten til legeringene ble de samme mekaniske prøvene utført, men med gjennomtrengnings-tider varierende fra 15 til 120 minutter. To investigate the aging resistance of the alloys, the same mechanical tests were carried out, but with penetration times varying from 15 to 120 minutes.
Utmattings-bestandigheten til prøvene ble målt ved å anvende standarden ifølge Wohler med U-hakk eller uten hakk forsynte utmattings-prøver. Sige-egenskapene ble bestemt ved å avsette strekk/tid-forholdet for 0,2% sige-tøyning ved 200°C og 250°C og ved anvendelse av en metode ifølge British Standard 3600. The fatigue resistance of the samples was measured by applying the standard according to Wohler with U-notched or unnotched fatigue samples. The creep properties were determined by plotting the strain/time ratio for 0.2% creep strain at 200°C and 250°C and using a British Standard 3600 method.
Resultatene av strekk-prøvene fremgår av fig. la-lf, hvorved prøvene henfører seg til legeringer som inneholder 2,5 vekt-% The results of the tensile tests are shown in fig. la-lf, whereby the samples refer to alloys containing 2.5% by weight
sølv og 0,6 vekt-% zirkonium. Figurene la, lb og lc viser hhv. o,2% flytegrense, strekkfasthet og forlengelse for prøver som ble testet ved romtemperatur, mens figurene ld, le og lf viser tilsvarende resultater som ble erholdt ved tester utført ved 250°C. Innholdet av sjeldne jordmetaller er avsatt som ordinat og thorium-innholdet som abcisse. silver and 0.6 wt% zirconium. The figures la, lb and lc show respectively o.2% yield strength, tensile strength and elongation for samples that were tested at room temperature, while figures ld, le and lf show corresponding results obtained from tests carried out at 250°C. The content of rare earth metals is plotted as the ordinate and the thorium content as the abscissa.
Legeringene ifølge nærværende oppfinnelse ligger innenfor det trapes som begrenses av disse avsetningspunkter. Man ser av de verdiene som er angitt og som ligger innenfor det nevnte trapes at legeringene her har fordelaktige mekaniske egenskaper, og at de som ligger utenfor vanligvis er dårlige. Således har legeringer med øket totalinnhold av sjeldne jordmetaller og thorium (flate A) dårligere forlengelse ved romtemperatur (fig. lc) og de med innhold av sjeldne jordmetaller under 0,5 vekt-% har lavere flytegrense og strekkfasthet (fig. la hhv. lb; fig. ld hhv. le). Legeringer med mindre enn 0,2 vekt-% thorium viser dårligere egenskaper ved høy temperatur, og de som har et inn- The alloys according to the present invention lie within the trapezoid limited by these deposition points. It can be seen from the values indicated and which lie within the aforementioned trapezoid that the alloys here have advantageous mechanical properties, and that those outside are usually poor. Thus, alloys with an increased total content of rare earth metals and thorium (surface A) have poorer elongation at room temperature (fig. lc) and those with a content of rare earth metals below 0.5% by weight have a lower yield strength and tensile strength (fig. la and lb ; fig. ld and le respectively). Alloys with less than 0.2 wt% thorium show poorer properties at high temperature, and those with an in-
hold av sjeldne jordmetaller samt thorium på under 1,5 vekt-% keep rare earth metals and thorium below 1.5% by weight
er funnet å ha dårligere støpbarhet (mer porøsitet). is found to have poorer castability (more porosity).
Effekten av thorium-innholdet på overeldings-bestandigheten fremgår av tabell 1. Man vil se at egenskapene ved høy temperatur for en viss grad av elding er forbedret ved nærvær av thorium, og at disse egenskaper i alt vesentlig bibeholdes ved overelding. The effect of the thorium content on the overaging resistance can be seen in table 1. It will be seen that the properties at high temperature for a certain degree of aging are improved by the presence of thorium, and that these properties are essentially maintained by overaging.
Resultatene ved utmattingsforsøkene ifølge Wohler resp. med prøver som er forsynt eller ikke forsynt med hakk vises i fig. 2 og 3. De i disse figurer viste legeringer er følgende: The results of the fatigue tests according to Wohler or with samples provided or not provided with notches are shown in fig. 2 and 3. The alloys shown in these figures are the following:
Tilnærmet analyse i vekt-% Approximate analysis in % by weight
Man ser at thorium-holdige legeringer viser maksimale strekk-verdier, hvilke er like gode eller bedre enn de for legeringen som ikke inneholder thorium. Dette gjelder spesielt for prøve-stykker som ikke er forsynt med hakk. It can be seen that thorium-containing alloys show maximum tensile values, which are as good as or better than those for the alloy that does not contain thorium. This applies in particular to test pieces that are not provided with notches.
Siije-egenskapene til prøvestykkene ble målt ved 200°C og 250°C. Resultatene var følgende: The Siije properties of the test pieces were measured at 200°C and 250°C. The results were as follows:
Man ser at sige-egenskapene til den thorium-holdige legeringen ved høyere temperaturer er i alt vesentlig mer fordelaktig enn de for den kjente legering. It can be seen that the seepage properties of the thorium-containing alloy at higher temperatures are substantially more advantageous than those of the known alloy.
Tilsetning av mangan har ingen dårlig effekt på strekk- og sige-egenskapene til legeringen. The addition of manganese has no adverse effect on the tensile and creep properties of the alloy.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB5602174A GB1463608A (en) | 1974-12-30 | 1974-12-30 | Magnesium alloys |
Publications (3)
Publication Number | Publication Date |
---|---|
NO754345L NO754345L (en) | 1976-07-01 |
NO142581B true NO142581B (en) | 1980-06-02 |
NO142581C NO142581C (en) | 1980-09-10 |
Family
ID=10475539
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO754345A NO142581C (en) | 1974-12-30 | 1975-12-22 | APPLICATION OF A MAGNESIUM ALLOY TO COMPONENTS WHICH HAVE GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES |
NO754344A NO142580C (en) | 1974-12-30 | 1975-12-22 | SUSTAINABLE MAGNESIUM ALOYES AND PROCEDURES IN THE PREPARATION OF THIS. |
NO754367A NO142582C (en) | 1974-12-30 | 1975-12-23 | MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO754344A NO142580C (en) | 1974-12-30 | 1975-12-22 | SUSTAINABLE MAGNESIUM ALOYES AND PROCEDURES IN THE PREPARATION OF THIS. |
NO754367A NO142582C (en) | 1974-12-30 | 1975-12-23 | MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES |
Country Status (14)
Country | Link |
---|---|
JP (3) | JPS5856742B2 (en) |
AU (2) | AU500182B2 (en) |
BE (3) | BE837170A (en) |
CA (3) | CA1047282A (en) |
CH (3) | CH608833A5 (en) |
DE (3) | DE2558545C2 (en) |
FR (3) | FR2296697A1 (en) |
GB (1) | GB1463608A (en) |
IL (3) | IL48763A (en) |
IN (3) | IN155906B (en) |
IT (3) | IT1052037B (en) |
NL (3) | NL7515192A (en) |
NO (3) | NO142581C (en) |
SE (3) | SE448241B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240872U (en) * | 1985-08-27 | 1987-03-11 | ||
JPS63174477U (en) * | 1987-01-21 | 1988-11-11 | ||
DE10003970B4 (en) * | 2000-01-25 | 2005-09-22 | Technische Universität Clausthal | Process for producing magnesium alloys having a superplastic microstructure |
JP3592310B2 (en) | 2001-06-05 | 2004-11-24 | 住友電工スチールワイヤー株式会社 | Magnesium-based alloy wire and method of manufacturing the same |
AUPS311202A0 (en) * | 2002-06-21 | 2002-07-18 | Cast Centre Pty Ltd | Creep resistant magnesium alloy |
WO2007139438A2 (en) * | 2006-05-26 | 2007-12-06 | Obschestvo S Ogranichennoi Otvetstvennostuy 'vniibt-Burovoy Instrument' | Worm gerotor pump |
JP2011524465A (en) * | 2008-06-06 | 2011-09-01 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Absorbable magnesium alloy |
DE102010008393A1 (en) | 2010-02-10 | 2011-10-06 | Technische Universität Dresden | Substrate for soil improvement with water-retaining property, process for its preparation and its use |
GB201413327D0 (en) | 2014-07-28 | 2014-09-10 | Magnesium Elektron Ltd | Corrodible downhole article |
GB201700714D0 (en) * | 2017-01-16 | 2017-03-01 | Magnesium Elektron Ltd | Corrodible downhole article |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1243398B (en) * | 1958-05-16 | 1967-06-29 | Magnesium Elektron Ltd | Cast or wrought magnesium alloy containing rare earth metals |
-
1974
- 1974-12-30 GB GB5602174A patent/GB1463608A/en not_active Expired
-
1975
- 1975-12-20 IN IN2366/CAL/75A patent/IN155906B/en unknown
- 1975-12-20 IN IN2365/CAL/1975A patent/IN142860B/en unknown
- 1975-12-22 NO NO754345A patent/NO142581C/en unknown
- 1975-12-22 NO NO754344A patent/NO142580C/en unknown
- 1975-12-23 NO NO754367A patent/NO142582C/en unknown
- 1975-12-23 AU AU87814/75A patent/AU500182B2/en not_active Expired
- 1975-12-23 AU AU87815/75A patent/AU507250B2/en not_active Expired
- 1975-12-23 IN IN2376/CAL/1975A patent/IN143219B/en unknown
- 1975-12-24 CH CH7516776A patent/CH608833A5/en not_active IP Right Cessation
- 1975-12-24 CH CH1677575A patent/CH611650A5/en not_active IP Right Cessation
- 1975-12-24 DE DE2558545A patent/DE2558545C2/en not_active Expired
- 1975-12-24 DE DE2558519A patent/DE2558519C2/en not_active Expired
- 1975-12-24 CH CH7516774A patent/CH608832A5/en not_active IP Right Cessation
- 1975-12-29 CA CA242,644A patent/CA1047282A/en not_active Expired
- 1975-12-29 DE DE2558915A patent/DE2558915C2/en not_active Expired
- 1975-12-29 IL IL48763A patent/IL48763A/en unknown
- 1975-12-29 CA CA242,643A patent/CA1053484A/en not_active Expired
- 1975-12-29 IL IL48761A patent/IL48761A/en unknown
- 1975-12-29 JP JP50159635A patent/JPS5856742B2/en not_active Expired
- 1975-12-29 SE SE7514710A patent/SE448241B/en not_active IP Right Cessation
- 1975-12-29 JP JP50159636A patent/JPS594497B2/en not_active Expired
- 1975-12-29 JP JP50159634A patent/JPS5918457B2/en not_active Expired
- 1975-12-29 SE SE7514711A patent/SE421635B/en not_active IP Right Cessation
- 1975-12-29 CA CA242,645A patent/CA1066923A/en not_active Expired
- 1975-12-29 SE SE7514709A patent/SE421634B/en not_active IP Right Cessation
- 1975-12-29 IL IL48762A patent/IL48762A/en unknown
- 1975-12-30 FR FR7540122A patent/FR2296697A1/en active Granted
- 1975-12-30 BE BE163186A patent/BE837170A/en not_active IP Right Cessation
- 1975-12-30 IT IT30860/75A patent/IT1052037B/en active
- 1975-12-30 BE BE163185A patent/BE837169A/en not_active IP Right Cessation
- 1975-12-30 FR FR7540123A patent/FR2296698A1/en active Granted
- 1975-12-30 IT IT30859/75A patent/IT1052036B/en active
- 1975-12-30 NL NL7515192A patent/NL7515192A/en not_active Application Discontinuation
- 1975-12-30 BE BE163187A patent/BE837171A/en not_active IP Right Cessation
- 1975-12-30 NL NL7515191A patent/NL7515191A/en not_active Application Discontinuation
- 1975-12-30 FR FR7540121A patent/FR2296696A1/en active Granted
- 1975-12-30 IT IT30858/75A patent/IT1052035B/en active
- 1975-12-30 NL NL7515190A patent/NL7515190A/en not_active Application Discontinuation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4853044A (en) | Alloy suitable for making single crystal castings | |
EP0184136A2 (en) | Fatigue-resistant nickel-base superalloys | |
US3305410A (en) | Heat treatment of aluminum | |
NO142581B (en) | APPLICATION OF A MAGNESIUM ALLOY TO COMPONENTS WHICH HAVE GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES | |
US2248185A (en) | Heat treatment of aluminum base alloys | |
US4087292A (en) | Titanium base alloy | |
NO764316L (en) | ||
US3582406A (en) | Thermal treatment of aluminum-magnesium alloy for improvement of stress-corrosion properties | |
NO141171B (en) | PROCEDURE FOR HEAT TREATMENT OF PROCESSED ALUMINUM ALLOY PRODUCTS | |
US2459492A (en) | Aluminum copper alloy | |
EP1270754A1 (en) | Two-step aging treatment for Ni-Cr-Mo alloys | |
US3334998A (en) | Magnesium base alloys | |
NO852962L (en) | COPPER-NICKEL-TINN COBALT Alloy. | |
US2766156A (en) | Heat-treatment of nickel-chromiumcobalt alloys | |
JPS6057497B2 (en) | Heat resistant high strength aluminum alloy | |
US20030049155A1 (en) | Two step aging treatment for Ni-Cr-Mo alloys | |
US4149882A (en) | Magnesium alloys | |
Bergsma et al. | Effects of thermal processing and copper additions on the mechanical properties of aluminum alloy ingot AA 2618 | |
CA1228249A (en) | Titanium-base alloys | |
Fidleris | The creep strength of quenched and aged Zr-2.5 wt% Nb alloy | |
US4808248A (en) | Process for thermal aging of aluminum alloy plate | |
SE433947B (en) | PROCEDURE FOR MANUFACTURING HALF-HARD ALUMINUM PLATE | |
US4168161A (en) | Magnesium alloys | |
US3372068A (en) | Heat treatment for improving proof stress of nickel-chromium-cobalt alloys | |
Plumbridge | Further observations on tin pest formation in solder alloys |