[go: up one dir, main page]

NO142262B - PROCEDURE FOR THE PREPARATION OF WATER-SWELLABLE COATING OR FIBER FROM A SOLUTION OF A CARBOXYLIC POLYMER - Google Patents

PROCEDURE FOR THE PREPARATION OF WATER-SWELLABLE COATING OR FIBER FROM A SOLUTION OF A CARBOXYLIC POLYMER Download PDF

Info

Publication number
NO142262B
NO142262B NO742243A NO742243A NO142262B NO 142262 B NO142262 B NO 142262B NO 742243 A NO742243 A NO 742243A NO 742243 A NO742243 A NO 742243A NO 142262 B NO142262 B NO 142262B
Authority
NO
Norway
Prior art keywords
solution
polymer
water
weight
acid
Prior art date
Application number
NO742243A
Other languages
Norwegian (no)
Other versions
NO142262C (en
NO742243L (en
Inventor
James Richard Gross
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of NO742243L publication Critical patent/NO742243L/no
Publication of NO142262B publication Critical patent/NO142262B/en
Publication of NO142262C publication Critical patent/NO142262C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Artificial Filaments (AREA)
  • Sealing Material Composition (AREA)

Description

Det er fra US-patenter 3 669 103 og 3 670 731 kjent at tverrbundne polymere sorbenter kan innføres mellom bøyelige bærere for fremstilling av éngangs-bleier eller forbindinger. It is known from US patents 3,669,103 and 3,670,731 that cross-linked polymeric sorbents can be introduced between flexible carriers for the production of disposable diapers or dressings.

Det er videre kjent fra US-patenter 2 988 539, 3 393 168, It is further known from US patents 2,988,539, 3,393,168,

3 514 419 og 3 557 067 at man kan fremstille vannsvellbare, tverrbundne karboksyl-kopolymerer. Disse kjente kopolymerer blir imidlertid alle tverrbundet under eller etter kopolymerisasjonen, med etterfølgende nøytralisering av karboksylsyregrupper, til vannsvellbare polyelektrolytter, og derfor kan disse polyelektrolytter ikke tverrbindes in situ som belegg på et underlag eller som en bøyelig hinne på underlaget. 3,514,419 and 3,557,067 that water-swellable, cross-linked carboxyl copolymers can be produced. However, these known copolymers are all cross-linked during or after the copolymerization, with subsequent neutralization of carboxylic acid groups, into water-swellable polyelectrolytes, and therefore these polyelectrolytes cannot be cross-linked in situ as a coating on a substrate or as a flexible membrane on the substrate.

Gjenstanden for den foreliggende oppfinnelse er således The object of the present invention is thus

en fremgangsmåte til fremstilling av vannsvellbare beleggfilmer eller fibre, hvorved det fremstilles en vandig, flytende blanding av a method for producing water-swellable coating films or fibers, whereby an aqueous, liquid mixture of

A) 5-60 vekt%, basert på oppløsningsmidlet, av en karboksylhol- A) 5-60% by weight, based on the solvent, of a carboxyl

dig polymer som er valgt blant homopolymerer av akrylsyre og metakrylsyre og kopolymerer som inneholder akrylsyre, metakrylsyre, itakonsyre, maleinsyreanhydrid, maleinsyre, fumarsyre, halvestere og halvamider av maleinsyre og fumarsyre, eller blandinger derav, og idet polymeren foreligger i blandingen som oppløst salt. B) 0,1-45 vekt%, basert på polymeren, av et tverrbindingsmiddel som vil reagere med polymerens kårboksylgrupper ved henstand eller oppvarmning, og C) et oppløsningsmiddel som består av vann, eventuelt tilsatt ett eller flere, flyktige, vannblandbare organiske oppløsnings-midler polymer selected from homopolymers of acrylic acid and methacrylic acid and copolymers containing acrylic acid, methacrylic acid, itaconic acid, maleic anhydride, maleic acid, fumaric acid, half-esters and half-amides of maleic acid and fumaric acid, or mixtures thereof, and the polymer being present in the mixture as a dissolved salt. B) 0.1-45% by weight, based on the polymer, of a cross-linking agent that will react with the core carboxyl groups of the polymer upon standing or heating, and C) a solvent consisting of water, possibly with one or more volatile, water-miscible organic solvents added funds

og at det av denne blanding tildannes belegg eller fibre som ved and that this mixture forms coatings or fibers such as wood

henstand og/eller oppvarmning tverrbindes, idet oppløsningsmidlet i alt vesentlig fordamper, og fremgangsmåten er karakterisert ved at det som tverrbindingsmiddel B) anvendes en polyhalogenalkanol, standing and/or heating is cross-linked, as the solvent essentially evaporates, and the method is characterized by the fact that a polyhaloalkanol is used as cross-linking agent B),

et sulfonium-zwitterion eller en alifatisk polyglycidyleter. Fortrinnsvis inneholder blandingen også inntil 50 vekt%, basert på polymeren, av et mykningsmiddel for polymeren. a sulfonium zwitterion or an aliphatic polyglycidyl ether. Preferably, the mixture also contains up to 50% by weight, based on the polymer, of a plasticizer for the polymer.

Det som her er angitt i patentkravets ingress, som til-hørende teknikkens stand, er kjent fra britisk patent nr. 1 060 785. Tverrbindingsmidlet er imidlertid her et isonitril. What is stated here in the preamble of the patent claim, as belonging to the state of the art, is known from British patent no. 1 060 785. However, the cross-linking agent here is an isonitrile.

De ved fremgangsmåten i henhold til oppfinnelsen dannede belegg eller fibre oppvarmes fortrinnsvis til mellom 90 og 150°C. Anvendelsen av disse høye temperaturer er fordelaktig for å akselerere tverrbindingen og tørkingen, men om ønsket kan altså anvendelsen av varme sløyfes. The coatings or fibers formed by the method according to the invention are preferably heated to between 90 and 150°C. The use of these high temperatures is advantageous for accelerating the cross-linking and drying, but if desired, the use of heat can therefore be omitted.

For å oppnå høye produksjonshastigheter kan man med fordel erstatte en del av vannet i polyelektrolytt-oppløsningen med en lavere alkohol, f.eks. metanol eller etanol. Denne erstatning resul-terer i lavere oppløsningsviskositeter ved et bestemt prosentinnhold av faste stoffer, og i hurtigere tørking. To achieve high production rates, one can advantageously replace part of the water in the polyelectrolyte solution with a lower alcohol, e.g. methanol or ethanol. This replacement results in lower solution viscosities at a certain percentage of solids, and in faster drying.

De vannsvellbare produkter som oppnås ved fremgangsmåten The water-swellable products obtained by the method

i henhold til foreliggende oppfinnelse, kan brukes i alle de tilfeller hvor vandige oppløsninger skal absorberes. Eksempler på anven-delsesområder er kirurgi-svamper, månedsbind, bleier, kjøttbrett, papirhåndklær, engangs-dørmatter, engangs-badematter og engangs-avfallsmatter for kjæledyr. according to the present invention, can be used in all cases where aqueous solutions are to be absorbed. Examples of areas of use are surgical sponges, sanitary napkins, nappies, meat trays, paper towels, disposable door mats, disposable bath mats and disposable waste mats for pets.

Eksempler på karboksylholdige polyelektrolytter som kan brukes i forbindelse med oppfinnelsen, er ammonium- eller alkali-salter av homopolymerer av akryl- eller metakrylsyre, og kopolymerer av disse syrer med en eller flere, etylenisk umettede komonomerer. Den eneste begrensning er at kopolymeren, for å kunne anvendes ved fremgangsmåten ifølge oppfinnelsen, må være i alt vesentlig vannoppløselig i sin salttilstand. Kopolymerer av maleinsyreanhydrid og malein- og fumarsyrer og deres sure estere kan brukes når de er gjort vannoppløselige ved hjelp av en passende base. Fag-folk på området kan lett fremstille et hvilket som helst antall av egnede kopolymerer med tilstrekkelig karboksylat-funksjonalitet og derved anvendbare for oppfinnelsen. Examples of carboxyl-containing polyelectrolytes that can be used in connection with the invention are ammonium or alkali salts of homopolymers of acrylic or methacrylic acid, and copolymers of these acids with one or more ethylenically unsaturated comonomers. The only limitation is that the copolymer, in order to be used in the method according to the invention, must be substantially water-soluble in its salt state. Copolymers of maleic anhydride and maleic and fumaric acids and their acid esters can be used when rendered water soluble by means of a suitable base. Those skilled in the art can easily prepare any number of suitable copolymers with sufficient carboxylate functionality and thereby usable for the invention.

En liste over egnede karboksylholdige polymerer som kan fremstilles fra lett tilgjengelige monomerer og omdannes til sin salt- A list of suitable carboxyl-containing polymers that can be prepared from readily available monomers and converted to their salt-

tilstand, er følgende: condition, is the following:

akrylsyre/akrylat-kopolymerer acrylic acid/acrylate copolymers

akrylsyre/akrylamid-kopolymerer acrylic acid/acrylamide copolymers

akrylsyre/olefin-kopolymerer acrylic acid/olefin copolymers

polyakrylsyre polyacrylic acid

akrylsyre/aromatisk vinyl-kopolymerer acrylic acid/aromatic vinyl copolymers

akrylsyre/styrensulfonsyre-kopolymerer acrylic acid/styrene sulfonic acid copolymers

akrylsyre/vinyleter-kopolymerer acrylic acid/vinyl ether copolymers

akrylsyre/vinylacetat-kopolymerer acrylic acid/vinyl acetate copolymers

akrylsyre/vinylalkohol-kopolymerer acrylic acid/vinyl alcohol copolymers

kopolymerer av metakrylsyre med alle ovennevnte copolymers of methacrylic acid with all of the above

komonomerer comonomers

kopolymerer av maleinsyre, fumarsyre og.deres sure copolymers of maleic acid, fumaric acid and their acids

estere med alle ovennevnte komonomerer, esters with all of the above comonomers,

kopolymerer av maleinsyreanhydrid med alle ovennevnte copolymers of maleic anhydride with all of the above

komonomerer. comonomers.

Som nevnt kan det i mange tilfeller være fordelaktig å tilsette et mykningsmiddel til polyelektrolytt-oppløsningen før man fremstiller en hinne eller støper. En ulempe ved bruken av mykningsmidler er at de fleste, mest effektive sådanne også er fukte-midler og gjør produktet meget følsomt for fuktighet. As mentioned, in many cases it can be advantageous to add a plasticizer to the polyelectrolyte solution before producing a film or casting. A disadvantage of using softeners is that most, most effective ones are also wetting agents and make the product very sensitive to moisture.

Når f.eks. polyakrylater omdannes ved alkalisk esterhydrolyse (forsåpning) til den tilsvarende kopolymer av akrylat og ak-rylsyresaltet, må omtrent 80 % eller mer av akrylat-monomerene omdannes før polymeren blir vannoppløselig. Dette skyldes alkalisk angrep av polymerpartikkelen utenfra, hvorved polymermolekyler på utsiden blir meget mer forandret ved esterhydrolyse enn molekyler inne i partikkelen. Ved de høye hydrolysegrader som da er nødven-dige for å gjøre hele polymeren oppløselig, ligner den resulterende polymer mer et salt av en polyakrylsyre enn et polyakrylat. Mykheten av det opprinnelige polyakrylat er blitt erstattet med den glassaktige sprøhet av et salt. Denne sprøhet ér meget uønsket i vannsvellbare (absorberende) produkter. When e.g. polyacrylates are converted by alkaline ester hydrolysis (saponification) into the corresponding copolymer of acrylate and the acrylic acid salt, approximately 80% or more of the acrylate monomers must be converted before the polymer becomes water-soluble. This is due to alkaline attack of the polymer particle from the outside, whereby polymer molecules on the outside are much more changed by ester hydrolysis than molecules inside the particle. At the high degrees of hydrolysis which are then necessary to render the entire polymer soluble, the resulting polymer resembles more a salt of a polyacrylic acid than a polyacrylate. The softness of the original polyacrylate has been replaced with the glassy brittleness of a salt. This brittleness is very undesirable in water-swellable (absorbent) products.

Det er imidlertid nå funnet at hvis man forbehandler However, it has now been found that if one pre-treats

en gruppe av de ovenfor nevnte polyelektrolytter, nemlig polyt-akrylater, på den i det følgende angitte måte, kan man oppnå produkter som er myke og derfor ikke krever mykningsmiddel. a group of the above-mentioned polyelectrolytes, namely polyt-acrylates, in the manner indicated below, it is possible to obtain products which are soft and therefore do not require a plasticiser.

Den foretrukne gruppe av polyelektrolytter er således polyakrylater som er forbehandlet ved delvis forsåpning. Når 30-70 vekt% av alkylakrylat-merere forblir uforandret i polymeren, blir det tverrbundne produkt som dannes fra en oppløsning av dette delvis forsåpede polyakrylat, mykt og bøyelig uten mykningsmiddel. The preferred group of polyelectrolytes are thus polyacrylates which have been pre-treated by partial saponification. When 30-70% by weight of alkyl acrylate monomers remain unchanged in the polymer, the cross-linked product formed from a solution of this partially saponified polyacrylate is soft and pliable without a plasticizer.

Før sluttproduktene blir fremstilt, fremstilles altså Before the final products are manufactured, they are manufactured

et polyakrylat (alkylakrylat, eller en blanding derav med et alkylmetakrylat) som er delvis forsåpet med alkali. Generelt er fremgangsmåten for fremstilling av dette polyakrylat karakterisert ved trinnene: fremstilling av en polyakrylat-oppløsning som inneholder 30-70 vekt% alkalimetallkarboksylater, ved i en vandig alkali-hydroksyd-oppløsning å oppløse et polyakrylat inneholdende: a polyacrylate (alkyl acrylate, or a mixture thereof with an alkyl methacrylate) which is partially saponified with alkali. In general, the method for producing this polyacrylate is characterized by the steps: production of a polyacrylate solution containing 30-70% by weight of alkali metal carboxylates, by dissolving in an aqueous alkali hydroxide solution a polyacrylate containing:

1) 30-92 vekt% av et alkylakrylat i hvilket alkylgruppen har 1-10 karbonatomer, et alkylmetakrylat i hvilket alkylgruppen har 4-10 karbonatomer, eller blandinger derav, 2) 8-70 vekt% av en olefinisk umettet karboksylsyre, og 3) 0-15 vekt% av et cu-hydroksyalkylakrylat med 1-4 karbonatomer i hydroksyalkylgruppen, og 1) 30-92% by weight of an alkyl acrylate in which the alkyl group has 1-10 carbon atoms, an alkyl methacrylate in which the alkyl group has 4-10 carbon atoms, or mixtures thereof, 2) 8-70% by weight of an olefinically unsaturated carboxylic acid, and 3) 0-15% by weight of a Cu-hydroxyalkyl acrylate with 1- 4 carbon atoms in the hydroxyalkyl group, and

oppvarmning av oppløsningen inntil forsåpningen er fullført. Deretter tilsettes tverrbindingsmidlet. heating the solution until saponification is complete. The cross-linking agent is then added.

De alkalioppløselige polyakrylater kan fremstilles ved hjelp av kjente metoder, f.eks. emulsjons-, suspensjons-, masse- eller oppløsningspolymerisasjonsmetoden. The alkali-soluble polyacrylates can be produced using known methods, e.g. the emulsion, suspension, mass or solution polymerization method.

Det foretrekkes å bruke alkalioppløselige latekser som har It is preferred to use alkali soluble latexes which have

15-60 vekt% av polymere, faste stoffer. 15-60% by weight of polymeric solids.

Eksempler på egnede alkylakrylater er metylakrylat, etylakrylat, propylakrylat, heksylakrylat og lignende. Eksempler- på egnede alkylmetakrylater er butylmetakrylat, heksylmetakrylat, ok-tylmetakrylat, decylmetakrylat og lignende. Examples of suitable alkyl acrylates are methyl acrylate, ethyl acrylate, propyl acrylate, hexyl acrylate and the like. Examples of suitable alkyl methacrylates are butyl methacrylate, hexyl methacrylate, octyl methacrylate, decyl methacrylate and the like.

Eksempler på egnede i-O-hydroksyalkylakrylater er 2-hydroksy-etylakrylat, hydroksymetylakrylat, 3-hydroksypropylakrylat og 4-hydroksybutylakrylat. Examples of suitable i-O-hydroxyalkyl acrylates are 2-hydroxyethyl acrylate, hydroxymethyl acrylate, 3-hydroxypropyl acrylate and 4-hydroxybutyl acrylate.

De ovenfor nevnte polyakrylater blir som sagt oppløst i en vandig alkalihydroksydoppløsning. Generelt er ekvivalentene av den anvendte hydroksydoppløsning fra 30 til 70 %, basert på den mo-lare konsentrasjon av polymerisert monomer, og den foretrukne mengde er fra 40 til ca. 55 %. I hvert tilfelle er mengden av den tilsatte hydroksydoppløsning tilstrekkelig til å forsåpe en del av akrylatesterne til alkalikarboksylater, og å nøytralisere karbok-sylgruppene, slik at det omdannede polyakrylat har 30-70 vekt% The above-mentioned polyacrylates are, as said, dissolved in an aqueous alkali hydroxide solution. In general, the equivalents of the hydroxide solution used are from 30 to 70%, based on the molar concentration of polymerized monomer, and the preferred amount is from 40 to about 55%. In each case, the amount of the added hydroxide solution is sufficient to saponify part of the acrylate esters into alkali carboxylates, and to neutralize the carboxyl groups, so that the converted polyacrylate has 30-70% by weight

alkalikarboksylater. alkali carboxylates.

De olefinisk umettede karboksylsyrer som brukes ved oppfinnelsen, kan være mono- eller polykarboksylsyrer. The olefinically unsaturated carboxylic acids used in the invention can be mono- or polycarboxylic acids.

Eksempler på monokarboksylsyrer er akrylsyre, metakrylsyre, krotonsyre, isokrotonsyre, angelinsyre, tiglinsyre, senecion-syre eller blandinger derav. Examples of monocarboxylic acids are acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, angelic acid, tiglic acid, senecionic acid or mixtures thereof.

Eksempler på polykarboksylsyrer er maleinsyre, fumarsyre, itakonsyre, akonittsyre, terakonsyre, citrakonsyre, mesakonsyre og glutakonsyre. Examples of polycarboxylic acids are maleic acid, fumaric acid, itaconic acid, aconitic acid, teraconic acid, citraconic acid, mesaconic acid and glutaconic acid.

De tverrbindingsmidler som kan brukes ved oppfinnelsen, The cross-linking agents that can be used in the invention,

er som sagt polyhalogenalkanoler, f.eks. 1,3-diklorisopropanol, 1,3-dibromisopropanol, sulfonium-dobbeltioner (som beskrevet i US-patent 3 660 431), f.eks. tetrahydrotiofen-adduktet av novolak-harpikser, alifatiske polyglycidyletere, f.eks. 1,4-butandiol-diglycidyleter, glycerol-1,3-diglycidyleter, etylenglykol-diglycidyleter, propylenglykol-diglycidyleter, dietylenglykol-diglycidyleter, neopentylglykol-diglycidyleter, polypropylenglykol-diglycidyletere med et epoksy-ekvivalentvektområde fra ca. 175 til ca. 380, og blandinger av dem. are, as said, polyhaloalkanols, e.g. 1,3-dichloroisopropanol, 1,3-dibromoisopropanol, sulfonium double ions (as described in US Patent 3,660,431), e.g. the tetrahydrothiophene adduct of novolak resins, aliphatic polyglycidyl ethers, e.g. 1,4-butanediol diglycidyl ether, glycerol 1,3-diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, polypropylene glycol diglycidyl ether with an epoxy equivalent weight range from approx. 175 to approx. 380, and mixtures thereof.

Tabell I angir tre typiske forbindelser som er brukt som tverrbindingsmidler ved oppfinnelsen, og de andeler som er nødvendi-ge for å oppnå uoppløselige, men svellbare polyelektrolytter. Når man engang har oppnådd uoppløselighet, gir høyere mengder av tverrbindingsmiddel en polymer som danner fastere og mindre glatte geler, men med mindre absorpsjonsevne. Table I indicates three typical compounds which are used as cross-linking agents in the invention, and the proportions which are necessary to obtain insoluble but swellable polyelectrolytes. Once insolubility is achieved, higher amounts of cross-linking agent give a polymer that forms firmer and less slippery gels, but with less absorbency.

Når konsentrasjonen av tverrbindingsmidlet i en blanding er meget lav, er reaksjonshastigheten temmelig lav (oppholdstid 10-4 8 timer før gelering). Når så blandingen påføres på overflaten av et substrat og fordampningen av oppløsningsmidlet begynner, øker tverr-bindingshastigheten. Tilførsel av varme på dette trinn øker hastig-heten enda mer. When the concentration of the cross-linking agent in a mixture is very low, the reaction rate is rather low (residence time 10-4 8 hours before gelation). Then when the mixture is applied to the surface of a substrate and the evaporation of the solvent begins, the cross-linking rate increases. Supply of heat at this stage increases the speed even more.

Dersom man lar reaksjonen foregå i den opprinnelige blanding, f.eks. ved oppvarmning, aldring eller bruk av overdrevne mengder av tverrbindingsmiddel, kan man ikke fremstille de ønskede produkter. Blandingen blir progressivt mer viskøs og seig, inntil den danner en sammenhengende gel som ikke kan opparbeides. If the reaction is allowed to take place in the original mixture, e.g. by heating, aging or using excessive amounts of cross-linking agent, the desired products cannot be produced. The mixture becomes progressively more viscous and tough, until it forms a cohesive gel that cannot be worked up.

Eksempler på mykningsmidler egnet for oppfinnelsen er cel-luloseetere, f.eks. metylcellulose og etylcellulose, celluloseestere, f.eks. celluloseacetat og cellulosebutyrat, alkylenglykoler, f.eks. etylenglykol, dietylenglykol, propylenglykol, og glyceroler, f.eks. glycerol, diglycerol (2,3-dihydroksypropyleter), triglycerol og tet-raglycerol, og polyetylenglykoler med en gjennomsnittlig molekylvekt fra ca. 200 til ca. 400. Examples of plasticizers suitable for the invention are cellulose ethers, e.g. methyl cellulose and ethyl cellulose, cellulose esters, e.g. cellulose acetate and cellulose butyrate, alkylene glycols, e.g. ethylene glycol, diethylene glycol, propylene glycol, and glycerols, e.g. glycerol, diglycerol (2,3-dihydroxypropyl ether), triglycerol and tetraglycerol, and polyethylene glycols with an average molecular weight from approx. 200 to approx. 400.

Ved den foretrukne fremgangsmåte for fremstilling av vannsvellbare hinner ved hjelp av oppfinnelsen blir ovennevnte blanding av polyelektrolytter spredt på en plate eller rulle av metall, plast eller annet ugjennomtrengelig underlag og oppvarmet til en temperatur høyere enn 30°C. Hinnen blir så løsnet ved hjelp av en skraper for fremtidig bruk eller lagring. In the preferred method for producing water-swellable membranes by means of the invention, the above-mentioned mixture of polyelectrolytes is spread on a plate or roll of metal, plastic or other impermeable substrate and heated to a temperature higher than 30°C. The membrane is then loosened using a scraper for future use or storage.

Det er av og til fordelaktig å tilsette en liten mengde It is sometimes beneficial to add a small amount

av overflateaktivt middel til polyelektrolyttblandingen for å øke dens strømningsevne og fjerne den kontinuerlige hinne fra det vann-ugjennomtrengelige underlag. En annen fordel ved bruk av et overflateaktivt middel er økningen av fukteevnen av den endelige, tørre absorberende hinne. Man kan bruke enten anioniske eller ikke-ionis-ke overflateaktive midler. Eksempler på egnede midler er natrium-alkylsulfonater og etylenoksyd-derivater av alkylerte fenoler. of surfactant to the polyelectrolyte mixture to increase its flowability and remove the continuous film from the water impermeable substrate. Another advantage of using a surfactant is the increase in wettability of the final dry absorbent film. Either anionic or non-ionic surfactants can be used. Examples of suitable agents are sodium alkyl sulphonates and ethylene oxide derivatives of alkylated phenols.

På lignende måte, når man fremstiller et absorberende produkt, blir produktet som skal danne underlaget belagt med blandingen av polyelektrolytten, og deretter tverrbindes belegget. Det vil forstås at ved foreliggende oppfinnelse vil uttrykket "belegg" bety en fullstendig eller en diskontinuerlig belegning. Når man således bruker et fiberaktig underlag, såsom cellulosevatt, papir, vevet eller ikke-vevet tekstil, kan blandingen påføres på diskontinuerlig måte, f.eks. i et mønster av store punkter, kvadrater eller gitter-linjer, slik at man bibeholder den iboende fleksibilitet av underlaget og samtidig forbedrer dets vann-absorpsjonsevne betydelig. I dette tilfelle trenges det ikke mykningsmidler. Tremasse kan be-legges ved oppslemmingen i polyelektrolyttblandingen, etterfulgt av en fnokkingsprosess. Similarly, when making an absorbent product, the product to form the substrate is coated with the polyelectrolyte mixture, and then the coating is cross-linked. It will be understood that in the present invention the term "coating" will mean a complete or a discontinuous coating. Thus, when using a fibrous substrate, such as cellulose wadding, paper, woven or non-woven textile, the mixture can be applied discontinuously, e.g. in a pattern of large dots, squares or grid lines, thus maintaining the inherent flexibility of the substrate and at the same time significantly improving its water absorption capacity. In this case, softeners are not needed. Wood pulp can be coated by the slurry in the polyelectrolyte mixture, followed by a flake process.

Den vannsvellbare hinne som er fremstilt på den ovenfor The water-swellable membrane shown on the above

nevnte måte, kan brukes for seg selv som innvendig absorberings- mentioned way, can be used by itself as internal absorbent

lag i bleier. Det er av og til fordelaktig at hinnen oppdeles til fnokker, strimler eller pulvere. Dette kan oppnås ved knusing eller maling i en hammermølle, blandere eller lignende. Hvis man ønsker å oppnå lange, flate striper, kan filmen kuttes i lengderetning med passende kniver. layers in diapers. It is sometimes advantageous for the skin to be divided into flakes, strips or powders. This can be achieved by crushing or grinding in a hammer mill, mixers or the like. If you want to achieve long, flat strips, the film can be cut lengthwise with suitable knives.

I visse tilfeller ønsker man vannsvellbare fibre. Disse kan fremstilles ved å ekstrudere polyelektrolyttblandingen i et bad inneholdende lavere ketoner, f.eks. aceton, metyletylketon eller di-etylketon. Alkoholiske blandinger kan ekstruderes i et ikke-vandig koaguleringsmiddel, såsom klorerte hydrokarboner, f.eks. metylen-klorid eller perkloretylen. De myke, ekstruderte fibre blir deretter løftet opp fra badet ved hjelp av hvilket som helst passende middel, f.eks. som en bunt, og ført gjennom et oppvarmet kammer, fortrinnsvis ved 70-150°C for tørking og tverrbinding. In certain cases, water-swellable fibers are desired. These can be prepared by extruding the polyelectrolyte mixture in a bath containing lower ketones, e.g. acetone, methyl ethyl ketone or di-ethyl ketone. Alcoholic mixtures can be extruded in a non-aqueous coagulant such as chlorinated hydrocarbons, e.g. methylene chloride or perchlorethylene. The soft extruded fibers are then lifted from the bath by any suitable means, e.g. as a bundle, and passed through a heated chamber, preferably at 70-150°C for drying and cross-linking.

Absorpsjonsevnen av de tverrbundne polyelektrolytter (gram gelert oppløsning pr. gram polyelektrolytt) blir bestemt på følgen-de måte ved å bruke syntetisk urin (0,27 N natriumklorid-oppløsning). The absorptive capacity of the cross-linked polyelectrolytes (grams of gelled solution per gram of polyelectrolyte) is determined in the following manner using synthetic urine (0.27 N sodium chloride solution).

En 0,5 g prøve av tverrbundet polyelektrolytt blir inn-ført i et 250 ml begerglass, en 0,27 N natriumklorid-oppløsning (150 ml) blir hellet over, og man lar den stå i 2 timer med leilighets-vis omrøring. Den svellede polyelektrolytt blir deretter oppsamlet ved filtrering, og gelkapasiteten angitt som gram gelert oppløsning pr. gram polymersalt. A 0.5 g sample of crosslinked polyelectrolyte is introduced into a 250 ml beaker, a 0.27 N sodium chloride solution (150 ml) is poured over, and it is allowed to stand for 2 hours with occasional stirring. The swollen polyelectrolyte is then collected by filtration, and the gel capacity is indicated as grams of gelled solution per grams of polymer salt.

De følgende eksempler illustrerer oppfinnelsen. The following examples illustrate the invention.

Eksempel 1 Example 1

En oppløsning (22 % faste stoffer) av dinatriumsaltet av poly(isobutylen-ko-maleinsyreanhydrid) ble fremstilt i avionisert vann. Til 14,7 g av denne oppløsning ble tilsatt 0,28 g (8,7 vekt% av faste stoffer) av 1,3-diklorisopropanol. 10 dråper av en 2%-opp-løsning av natriumlaurylsulfonat ble også tilblandet. Man lot opp-løsningen stå i 40 minutter for å gjøre den boblefri, og deretter ble oppløsningen spredd på en ren polyetylenduk med en 0,65 mm trekkstang. Hinnen separerer seg fra polyetylenet ved tørking. Etter tørking natten over er hinnen ennå vannoppløselig. Etter 30 minutter ved 60°C absorberer hinnen 64 ganger sin vekt av 0,27 N NaCl uten oppløsning. Etter 1 time ved 100°C er absorpsjonsevnen (gelkapasiteten) 25 g av 0,27 N NaCl pr. gram av hinnen, hvilket viser at tverrbindingsreaksjonen er i det vesentlige fullstendig. A solution (22% solids) of the disodium salt of poly(isobutylene-co-maleic anhydride) was prepared in deionized water. To 14.7 g of this solution was added 0.28 g (8.7% by weight of solids) of 1,3-dichloroisopropanol. 10 drops of a 2% solution of sodium lauryl sulfonate were also added. The solution was allowed to stand for 40 minutes to make it bubble-free, and then the solution was spread on a clean polyethylene cloth with a 0.65 mm draw bar. The membrane separates from the polyethylene during drying. After drying overnight, the membrane is still water-soluble. After 30 minutes at 60°C, the membrane absorbs 64 times its weight of 0.27 N NaCl without dissolution. After 1 hour at 100°C, the absorption capacity (gel capacity) is 25 g of 0.27 N NaCl per grams of the membrane, showing that the cross-linking reaction is essentially complete.

Eksempel 2 Example 2

"Acrysol A-5" (polyakrylsyre, 25 % faste stoffer "Acrysol A-5" (polyacrylic acid, 25% solids

i vann) ble nøytralisert med en støkiometrisk mengde av NaOH og behandlet med 1,0 vekt% glycerol-diglycidyleter og 20 vekt% "Methocel MC 25" (en metylcellulose med en viskositet av 25 cP for en 2 %ig vandig oppløsning) som mykningsmiddel, og en hinne ble trukket på PETP. Etter tørking natten over ved romtemperatur var hinnen kornet, men bøyelig. Etter herding i 2 timer ved 70°C absorberte hinnen 33,6 g/g av 0,27 N NaCl og 226 g/g av avionisert vann. in water) was neutralized with a stoichiometric amount of NaOH and treated with 1.0 wt% glycerol diglycidyl ether and 20 wt% "Methocel MC 25" (a methylcellulose with a viscosity of 25 cP for a 2% aqueous solution) as a plasticizer , and a membrane was pulled on PETP. After drying overnight at room temperature, the film was grainy but pliable. After curing for 2 hours at 70°C, the film absorbed 33.6 g/g of 0.27 N NaCl and 226 g/g of deionized water.

Eksempel 3 Example 3

En 25% oppløsning i vann av poly(isobutylen-ko-ammonium-halvamid-maleat) ble behandlet med glycerol-diglycidyleter (10 vekt% basert på polymeren), glycerol (30 vekt% av polymeren) og 10 dråper av 2% natriumlaurylsulfonat. En hinne ble trukket på et PETP-ark, og man lot den stå natten over ved romtemperatur. Absorpsjonsevnen i 0,27 N NaCl av denne hinne var 10,2 g oppløsning pr. gram polymer. A 25% solution in water of poly(isobutylene-co-ammonium-halamide-maleate) was treated with glycerol diglycidyl ether (10% by weight based on the polymer), glycerol (30% by weight of the polymer) and 10 drops of 2% sodium lauryl sulfonate. A film was drawn onto a PETP sheet and left overnight at room temperature. The absorption capacity in 0.27 N NaCl of this membrane was 10.2 g of solution per grams of polymer.

Eksempler 4- 10 Examples 4-10

En 25% vandig oppløsning av poly(isobutylen-ko-dinatrium-maleat) ble fremstilt, og 10 g av denne oppløsning blandet med forskjellige mengder av glycerol-diglycidyleter som tverrbindingsmiddel, 4 dråper av 2% natriumlaurylsulfonat, og 30 vekt%, basert på polymeren, av glycerol som mykningsmiddel. Hinner ble trukket på et PETP-ark, og man lot dem herdne natten over ved romtemperatur. Resultatene er angitt i tabell II. A 25% aqueous solution of poly(isobutylene-co-disodium maleate) was prepared, and 10 g of this solution mixed with various amounts of glycerol diglycidyl ether as a cross-linking agent, 4 drops of 2% sodium lauryl sulfonate, and 30% by weight, based on the polymer, of glycerol as plasticizer. Films were drawn onto a PETP sheet and allowed to cure overnight at room temperature. The results are shown in Table II.

Tabell II illustrerer den større reaktivitet (tverr-, bindingsevne) av glycerol-diglycidyleteren, sammenlignet med halogenalkanoler. Ikke bare trenges det mye mindre for å herde polyelektrolytten, men herdningen finner sted ved romtemperatur. Table II illustrates the greater reactivity (crosslinking ability) of the glycerol diglycidyl ether, compared to haloalkanols. Not only does it take much less to cure the polyelectrolyte, but curing takes place at room temperature.

Eksempel 11 Example 11

En 8% vandig oppløsning av "Purifloc N-17" (akrylamid/ natriumakrylat-kopolymer) ble behandlet med 10 vekt% (basert på polymeren) av glycerol-diglycidyleter, 25 vekt% glycerol, 15 dråper av 2 % natriumlaurylsulfonat og formet til en hinne. Etter tørking natten over ved romtemperatur og herdning i 30 minutter i en 80°C-ovn hadde hinnen en gelkapasitet i 0,27 N NaCl på 15 g/g. An 8% aqueous solution of "Purifloc N-17" (acrylamide/sodium acrylate copolymer) was treated with 10% by weight (based on the polymer) of glycerol diglycidyl ether, 25% by weight glycerol, 15 drops of 2% sodium lauryl sulfonate and formed into a here. After drying overnight at room temperature and curing for 30 minutes in an 80°C oven, the membrane had a gel capacity in 0.27 N NaCl of 15 g/g.

Eksempel 12 Example 12

Et kjøttbrett av skummet polystyren ble belagt med en vandig oppløsning bestående av 20 g av poly(isobutylen-dinatrium-maleat) med 22% faste stoffer og 0,17 g (4 %) diklorisopropanol. Etter tørking natten over var vekten av belegget 0,7 g. Det belagte A foamed polystyrene meat tray was coated with an aqueous solution consisting of 20 g of poly(isobutylene disodium maleate) with 22% solids and 0.17 g (4%) of dichloroisopropanol. After drying overnight, the weight of the coating was 0.7 g. The coated

brett absorberte 13,5 g av 0,27 N NaCl-oppløsning og hadde altså board absorbed 13.5 g of 0.27 N NaCl solution and thus had

en kapasitet av 19 g oppløsning pr. gram belegg. a capacity of 19 g of solution per grams of coating.

Eksempel 13 Example 13

Ammonium-halvamidsaltet av en etylen/maleinsyreanhydrid-kopolymer (82 cP viskositet av en 5% oppløsning i vann) ble fremstilt som en 25% oppløsning i vann. 8,0 g av denne oppløsning ble blandet med 0,7 g glycerol, 0,05 g (2,5 vekt% basert på oppløst faststoff) glyceroldiglycidyleter og 10 dråper av 2% natriumlaurylsulfonat. Oppløsningen ble trukket på et PETP-ark ved hjelp av en 0,4 mm stang og ble herdet ved romtemperatur i 2 dager. Denne hinne hadde en ab-sorps jonsevne på 16 g av 0,27 N NaCl pr. gram hinne. The ammonium hemiamide salt of an ethylene/maleic anhydride copolymer (82 cP viscosity of a 5% solution in water) was prepared as a 25% solution in water. 8.0 g of this solution was mixed with 0.7 g of glycerol, 0.05 g (2.5% by weight based on dissolved solids) glycerol diglycidyl ether and 10 drops of 2% sodium lauryl sulfonate. The solution was drawn onto a PETP sheet using a 0.4 mm rod and was cured at room temperature for 2 days. This membrane had an absorption capacity of 16 g of 0.27 N NaCl per grams of membrane.

Eksempel 14 Example 14

Ammonium-halvamidsaltet av en styren/maleinanhydrid-kopolymer (173 cP av en 5% oppløsning i vann) ble behandlet som i eksempel 13. Denne hinne hadde en absorpsjonsevne på 5,4 g/g hinne i 0,27 N NaCl. The ammonium hemiamide salt of a styrene/maleic anhydride copolymer (173 cP of a 5% solution in water) was treated as in Example 13. This membrane had an absorbency of 5.4 g/g membrane in 0.27 N NaCl.

Eksempel 15 Example 15

Eksempel 14 ble gjentatt ved å bruke bare 1 vekt%, basert på oppløst faststoff, av glycerol-diglycidyleter. Denne hinne absorberte 13,2 g pr. gram av 0,27 N NaCl etter herdning natten over ved romtemperatur. Example 14 was repeated using only 1% by weight, based on dissolved solids, of glycerol diglycidyl ether. This membrane absorbed 13.2 g per grams of 0.27 N NaCl after curing overnight at room temperature.

Eksempel 16 Example 16

Dinatriumsaltet av en metylvinyleter/maleinsyreanhydrid-kopolymer ble fremstilt i vann med 15% faste stoffer, og en hinne ble dannet som i eksempel 13 ved å bruke 3,3 % glycerol-diglycidyleter som tverrbindingsmiddel. Etter herdning natten over ved romtemperatur absorberte hinnen 15,4 ganger sin vekt av 0,27 N NaCl. The disodium salt of a methyl vinyl ether/maleic anhydride copolymer was prepared in water with 15% solids, and a film was formed as in Example 13 using 3.3% glycerol diglycidyl ether as a cross-linking agent. After curing overnight at room temperature, the membrane absorbed 15.4 times its weight of 0.27 N NaCl.

Eksempel 17 Example 17

Isobutylen/maleinsyreanhydrid-kopolymer (15,4 g, 0,1 mol) ble oppslemmet i 200 ml metylalkohol, og det ble tilsatt 1 ml pyri-din. Blandingen ble omrørt ved 50°C i 24 timer og gav en klar opp-løsning. Polymeren ble utfelt i vann, tørket i vakuumovn og oppløst i fortynnet, vandig alkali til en 25 % oppløsning av natriumsaltet av metylhalvesteren av kopolymeren. Isobutylene/maleic anhydride copolymer (15.4 g, 0.1 mol) was slurried in 200 ml of methyl alcohol, and 1 ml of pyridine was added. The mixture was stirred at 50°C for 24 hours and gave a clear solution. The polymer was precipitated in water, dried in a vacuum oven and dissolved in dilute aqueous alkali to a 25% solution of the sodium salt of the methyl half ester of the copolymer.

En hinne ble dannet ved å behandle 10 g av denne oppløs-ning med 29 mg (1,16 vekt%) av glycerol-diglycidyleter og 10 dråper av 2% natriumlaurylsulfonat og å spre oppløsningen på et PETP-ark med en 0,6 mm trekkstang. Etter herdning natten over ved romtemperatur var polymeren uoppløselig og absorberte 352 g/g av avionisert vann og 39 g/g av 0,27 N NaCl. A film was formed by treating 10 g of this solution with 29 mg (1.16 wt%) of glycerol diglycidyl ether and 10 drops of 2% sodium lauryl sulfonate and spreading the solution onto a PETP sheet with a 0.6 mm drawbar. After curing overnight at room temperature, the polymer was insoluble and absorbed 352 g/g of deionized water and 39 g/g of 0.27 N NaCl.

Når tverrbindingsmidlet ble redusert til 17 mg (0,68 vekt%), absorberte den resulterende hinne 55,6 g/g fortynnet saltoppløsning og 720 g/g avionisert vann. Tverrbindingsreaksjonen var imidlertid ikke fullført, da den samme hinne absorberte 27 g/g saltoppløsning etter å ha vært anbragt i en 90°C-ovn i 30 minutter. When the cross-linking agent was reduced to 17 mg (0.68 wt%), the resulting film absorbed 55.6 g/g of dilute saline and 720 g/g of deionized water. However, the cross-linking reaction was not complete, as the same film absorbed 27 g/g of salt solution after being placed in a 90°C oven for 30 minutes.

Eksempel 18 Example 18

En vandig oppløsning av poly(isobutylen-ko-dinatriummaleat) med 40% faste stoffer ble fremstilt ved å oppløse anhydridformen av kopolymeren i den beregnede mengde av natriumhydroksyd og vann. 20 g av denne oppløsning ble blandet med 0,4 g (5 vekt% av polymeren) glycerol-diglycidyleter. Et ekstruderingskammer (rørledning med dimensjonene 1,8 x 5 cm med en kuleventil ved bunnen og et 1,5 mm rørutløp som ekstruderspiss) ble fylt, og massen ekstrudert ver-tikalt i et koaguleringsbad av aceton med en dybde på 30 cm. Man lot et enkelt filament stable seg opp på bunnen av badet og trakk det ut ved slutten av forsøket. Det ble brukt nitrogen under et trykk på 1,75 kg/cm 2 for å sette den spunne masse under trykk gjennom ekstruderspissen. An aqueous solution of poly(isobutylene-co-disodium maleate) with 40% solids was prepared by dissolving the anhydride form of the copolymer in the calculated amount of sodium hydroxide and water. 20 g of this solution was mixed with 0.4 g (5% by weight of the polymer) of glycerol diglycidyl ether. An extrusion chamber (pipe with dimensions 1.8 x 5 cm with a ball valve at the bottom and a 1.5 mm pipe outlet as an extruder tip) was filled, and the mass extruded vertically into a coagulation bath of acetone with a depth of 30 cm. A single filament was allowed to pile up at the bottom of the bath and pulled out at the end of the experiment. Nitrogen under a pressure of 1.75 kg/cm 2 was used to pressurize the spun pulp through the extruder tip.

Etter tørking i 2 timer ved 100°C kontrollerte man absorpsjonsevnen av fibrene. De absorberte 28 g/g av syntetisk urin (0,27 N NaCl) og 138 g/g avionisert vann. After drying for 2 hours at 100°C, the absorbency of the fibers was checked. They absorbed 28 g/g of synthetic urine (0.27 N NaCl) and 138 g/g of deionized water.

Eksempel 19 Example 19

En hinne ble støpt på et PETP-ark fra en 25% vandig opp-løsning av poly(isobutylen-ko-dinatriummaleat) blandet med 25% glycerol pr. vektenhet av polymeren og 2,5% glycerol-diglycidyleter. Hinnen ble herdet ved 80°C i 1 time, og man lot den deretter komme 1 likevekt med 50%ig relativ fuktighet i rommet. Den ble så kuttet til 1,8 cm strimler som derpå ble hakket til en flat stabel med ca. 2 mm bredde. Stabelen absorberte hurtig 14 ganger sin vekt av syntetisk urin og 55 ganger sin vekt av avionisert vann. A film was cast on a PETP sheet from a 25% aqueous solution of poly(isobutylene-co-disodium maleate) mixed with 25% glycerol per unit weight of the polymer and 2.5% glycerol diglycidyl ether. The membrane was cured at 80°C for 1 hour, and it was then allowed to equilibrate with 50% relative humidity in the room. It was then cut into 1.8 cm strips which were then chopped into a flat stack of approx. 2 mm width. The stack rapidly absorbed 14 times its weight of synthetic urine and 55 times its weight of deionized water.

Eksempel 20 Example 20

En vandig oppløsning av dinatriumsaltet av isobutylen/ maleinanhydrid-kopolymer med 25 % faste stoffer ble blandet med noen få dråper av 2% natriumlaurylsulfonat og 5 vekt% basert på kopolymeren av arylsulfonium-dobbeltion som angitt i eksempel 3B i US-patent 3 660 431. An aqueous solution of the disodium salt of isobutylene/maleic anhydride copolymer at 25% solids was mixed with a few drops of 2% sodium lauryl sulfonate and 5% by weight based on the arylsulfonium double ion copolymer as set forth in Example 3B of US Patent 3,660,431.

En hinne ble dannet og tørket ved 100°C i. 13 timer. Den uklare hinne absorberte 58 ganger sin vekt av syntetisk urin og 300 ganger sin vekt av avionisert vann. A film was formed and dried at 100°C for 13 hours. The cloudy membrane absorbed 58 times its weight of synthetic urine and 300 times its weight of deionized water.

Eksempel 21 Example 21

En hinne ble dannet fra en 25% vandig oppløsning av di-natriumisobutylen/maleinsyreanhydrid-kopolymer med 0,75 vekt% av glycerol-diglycidyleter. Etter herdning ved 100°C i 3 timer absorberte hinnen 72 g/g syntetisk urin. Den tørre hinne ble knust til små fnokker som oppviste den samme absorpsjonsevne, og ble malt i en morter til fint pulver som hurtig absorberte syntetisk urin i en mengde av 74 g pr. gram pulver. A film was formed from a 25% aqueous solution of disodium isobutylene/maleic anhydride copolymer with 0.75% by weight of glycerol diglycidyl ether. After curing at 100°C for 3 hours, the membrane absorbed 72 g/g of synthetic urine. The dry membrane was crushed into small flakes which showed the same absorption capacity, and was ground in a mortar to a fine powder which rapidly absorbed synthetic urine in an amount of 74 g per grams of powder.

Eksempler 22- 27 Examples 22-27

En 7,5% vandig oppløsning av poly(natriumakrylat-ko-metylakrylat), 80% natriumakrylat ble dannet fra en lateks av poly-metylakrylat ved å tilsette natriumhydroksyd og fortynne med vann. Man brukte forskjellige mengder av glycerol-diglycidyleter, trakk hinner på glassplater og herdet i en ovn ved 125°C i 1 time. Resultatene er angitt i tabell III. A 7.5% aqueous solution of poly(sodium acrylate-co-methylacrylate), 80% sodium acrylate was formed from a latex of polymethylacrylate by adding sodium hydroxide and diluting with water. Different amounts of glycerol diglycidyl ether were used, films were drawn onto glass plates and cured in an oven at 125°C for 1 hour. The results are shown in Table III.

Tabell III viser at skjønt det trenges meget lite herd-ningsmiddel, er polyelektrolytten ikke brukbar uten herdningsmid-del. For gode og faste, vandige geler trenges det minst 0,1 vekt%, idet den nøyaktige mengde er avhengig av polymeren, herdningen og sluttanvendeIsen. Table III shows that although very little hardening agent is needed, the polyelectrolyte is not usable without hardening agent. For good and solid, aqueous gels, at least 0.1% by weight is needed, the exact amount depending on the polymer, the curing and the end use.

Eksempel 28 Example 28

En 25% vandig oppløsning av en 90/10 kopolymer av natrium-styrensulfonat og natriumakrylat ble fremstilt ved å oppvarme mono-meroppløsningen natten over ved 50°C i nærvær av 0,04 vekt% av K2S2^8 ('caliumPersulfat) • 8 g av denne oppløsning ble blandet med 75 mg (3%) av glycerol-diglycidyleter, og en hinne ble støpt på PETP. Etter lufttørking i 2 timer ble hinnen løftet og anbragt i en 90°C-ovn i 1 time. Gel-kapasiteten var 45 g/g av 0,27 N NaCl. A 25% aqueous solution of a 90/10 copolymer of sodium styrene sulfonate and sodium acrylate was prepared by heating the monomer solution overnight at 50°C in the presence of 0.04% by weight of K2S2^8 (calcium persulfate) • 8 g of this solution was mixed with 75 mg (3%) of glycerol diglycidyl ether, and a film was cast on PETP. After air drying for 2 hours, the film was lifted and placed in a 90°C oven for 1 hour. The gel capacity was 45 g/g of 0.27 N NaCl.

Eksempel 29 Example 29

En 25% oppløsning av polyakrylsyre ("Acrysol A-5") ble behandlet med 1 ekvivalent av natriumhydroksyd og fortynnet til 20% faste stoffer. 10 g av denne oppløsning ble derpå blandet med 800 mg av en 5% oppløsning av >?D.E.R. 736" i n-butanol. Man anvendte altså 2 vektdeler av dette middel pr. 100 vektdeler oppløst polymer. ("D.E.R. 736" er diglycidyleteren av polypropylenglykol med molekylvekt 250 og med en E.E.N. på 175-205). En hinne ble støpt på en kromplate, lufttørket i 3 dager og derpå herdet i en ovn ved 150°C i 2 timer. A 25% solution of polyacrylic acid ("Acrysol A-5") was treated with 1 equivalent of sodium hydroxide and diluted to 20% solids. 10 g of this solution was then mixed with 800 mg of a 5% solution of >?D.E.R. 736" in n-butanol. Thus, 2 parts by weight of this agent were used per 100 parts by weight of dissolved polymer. ("D.E.R. 736" is the diglycidyl ether of polypropylene glycol with a molecular weight of 250 and an E.E.N. of 175-205). A membrane was cast on a chrome plate, air dried for 3 days and then hardened in an oven at 150°C for 2 hours.

Den tørkede og herdede hinne (0,5 g) ble dispergert i The dried and hardened membrane (0.5 g) was dispersed in

150 ml av en 0,27 N NaCl-oppløsning, og man lot den stå i oppløsnin-gen i 1 time, hvoretter den svellede polymer ble oppsamlet på en 150 mesh-sikt og veid. Gelen veide 41 gram ved en absorpsjonsevne på 82 g pr. gram av polymeren. 150 ml of a 0.27 N NaCl solution and allowed to stand in the solution for 1 hour, after which the swollen polymer was collected on a 150 mesh sieve and weighed. The gel weighed 41 grams with an absorption capacity of 82 g per grams of the polymer.

Eksempel 30 Example 30

En 50% vandig oppløsning av poly(etylen-ko-monobutyl-maleat) ble behandlet med 1 ekvivalent av natriumhydroksyd og fortynnet til 25 % faste stoffer. A 50% aqueous solution of poly(ethylene-co-monobutyl maleate) was treated with 1 equivalent of sodium hydroxide and diluted to 25% solids.

Denne oppløsning ble blandet med 1,5% "D.E.R. 736" som i eksempel 29, og hinnen ble dannet og undersøkt. Absorpsjonsevnen var 39 gram pr. gram av polymeren. This solution was mixed with 1.5% "D.E.R. 736" as in Example 29 and the film was formed and examined. The absorption capacity was 39 grams per grams of the polymer.

Eksempler 31- 39 Examples 31-39

Det ble fremstilt tre blandinger med følgende sammen-setning : Three mixtures with the following composition were produced:

Del A ble innført i en 2 liters reaktor og brakt til 40°C mens den ble spylt kraftig med nitrogen. 18 ml av del B ble tilsatt til reaktoren etterfulgt av hele del C. Resten av del B ble tilsatt i løpet av de nærmeste 2,5 timer, mens temperaturen ble holdt ved 39-41°C. Lateksen ble deretter oppsluttet ved 60°C i 1,5 timer, kjølt til 30°C og anbrakt i flasker. Lateksen inneholdt 40,6 vekt% av ikke-flyktige stoffer. Part A was introduced into a 2 liter reactor and brought to 40°C while being vigorously flushed with nitrogen. 18 mL of Part B was added to the reactor followed by all of Part C. The remainder of Part B was added over the next 2.5 hours while maintaining the temperature at 39-41°C. The latex was then digested at 60°C for 1.5 hours, cooled to 30°C and bottled. The latex contained 40.6% by weight of non-volatile substances.

1125 g av denne lateks ble tilsatt i en svak strøm i løpet av 25 minutter til en langsomt omrørt oppløsning av 187,16 g 50% NaOH i 547,9 g avionisert vann. Etter at hele polymeren var opp-løst, ble den viskøse oppløsning oppvarmet til 50°C i 22 timer for å gjøre forsåpningen fullstendig. Den resulterende oppløsning (25,4% faste stoffer) hadde en Brookfield-viskositet på 16 200 cP ved 25°C (spindel nr. 5, 10 omdr. pr. min.). 50 mol% av polymeren er etylakrylat, mens resten er natriumakrylat og -metakrylat. 1125 g of this latex was added in a gentle stream over 25 minutes to a slowly stirred solution of 187.16 g of 50% NaOH in 547.9 g of deionized water. After all the polymer was dissolved, the viscous solution was heated to 50°C for 22 hours to complete the saponification. The resulting solution (25.4% solids) had a Brookfield viscosity of 16,200 cP at 25°C (spindle #5, 10 rpm). 50 mol% of the polymer is ethyl acrylate, while the rest is sodium acrylate and -methacrylate.

Prøver av denne oppløsning ble blandet med "D.E.R. 736"-epoksyharpiks og støpt på en polert kromplate med en 0,6 mm trekkstang. Etter lufttørking ble hinnen løftet fra platen og anbrakt i en 15 0°C-ovn i 2 timer. Absorpsjonsevnen (gel-kapasiteten) av de forskjellige hinner i 0,27 N NaCl er angitt i tabell IV. Samples of this solution were mixed with "D.E.R. 736" epoxy resin and cast on a polished chrome plate with a 0.6 mm draw bar. After air drying, the film was lifted from the plate and placed in a 150°C oven for 2 hours. The absorptive capacity (gel capacity) of the different membranes in 0.27 N NaCl is given in Table IV.

Tabell IV viser at det med praktisk talt vannuoppløselige epoksyharpikser trenges et ko-oppløsningsmiddel, f.eks. aceton, for å oppnå en effektiv tverrbinding ved høyere andeler av herdemiddel. Ved meget lave andeler er imidlertid epoksyharpiksen selv tilstrekkelig dispergert til å reagere effektivt. Table IV shows that with practically water-insoluble epoxy resins a co-solvent is needed, e.g. acetone, to achieve an effective cross-linking at higher proportions of hardener. At very low proportions, however, the epoxy resin itself is sufficiently dispersed to react effectively.

Eksempler 40- 48 Examples 40-48

Metoden fra eksempel 31-39 ble gjentatt under bruk av diglycidyleteren av neopentylglykol (kalt DGENG) som herdemiddel. Resultatene er angitt i tabell V. The method from examples 31-39 was repeated using the diglycidyl ether of neopentyl glycol (called DGENG) as curing agent. The results are shown in Table V.

Eksempler 49- 55 Examples 49-55

Metoden fra eksempler 31-39 ble gjentatt ved å bruke diglycidyleteren av 1,4-butandiol (DGEBD) som herdemiddel. Resultatene er angitt i tabell VI. The method from Examples 31-39 was repeated using the diglycidyl ether of 1,4-butanediol (DGEBD) as curing agent. The results are shown in Table VI.

Eksempel 56 Example 56

Tre blandinger ble fremstilt med følgende'sammensetninger: Three mixtures were prepared with the following compositions:

2,1 g natriumpersulfat 28 g metakrylsyre 2.1 g sodium persulfate 28 g methacrylic acid

8,4 g akrylsyre 8.4 g of acrylic acid

3,1 g t-dodecyl- 3.1 g of t-dodecyl-

merkaptan mercaptan

x dioktylnatrium-sulfosuksinat ("Triton GR-5") x dioctyl sodium sulfosuccinate ("Triton GR-5")

Del A ble innført i en 2 liters-reaktor og brakt til 40°C, mens den ble spylt kraftig med nitrogen. 18 ml av del B ble tilsatt til reaktoren etterfulgt av hele del C. Resten av del B ble tilsatt i løpet av de nærmeste 2,5 timer, mens temperaturen ble holdt ved Part A was introduced into a 2 liter reactor and brought to 40°C while being vigorously flushed with nitrogen. 18 mL of Part B was added to the reactor followed by all of Part C. The remainder of Part B was added over the next 2.5 hours while maintaining the temperature at

39-41°C. Lateksen ble deretter dispergert ved 40°C i 1,5 timer, kjølt til 30°C og anbrakt i flasker. Lateksen inneholdt 39,5 % 39-41°C. The latex was then dispersed at 40°C for 1.5 hours, cooled to 30°C and bottled. The latex contained 39.5%

av ikke-flyktige stoffer. of non-volatile substances.

400 g av denne lateks ble blandet med 20 g natriumhydroksyd, oppløst i 120 g avionisert vann, ved 75°C, og man fikk en 30% oppløsning av polymeren, som inneholdt 31,4 vekt% av natriumakrylat og -metakrylat. 10 gram av denne oppløsning ble blandet med 30 mg av glycerol-diglycidyleter (1,0 g herdemiddel pr. 100 g 400 g of this latex was mixed with 20 g of sodium hydroxide, dissolved in 120 g of deionized water, at 75°C, and a 30% solution of the polymer was obtained, which contained 31.4% by weight of sodium acrylate and -methacrylate. 10 grams of this solution were mixed with 30 mg of glycerol diglycidyl ether (1.0 g of curing agent per 100 g

av polymeren). Et ark ble støpt på en polert kromplate under bruk av en 0,6 mm trekkstang, lufttørket og ovnsherdet i 15,5 timer ved 70°C og 0,5 time ved 90°C. Dette polymerark suget opp 23 ganger sin vekt av syntetisk urin (0,27 N NaCl-oppløsning) ved ovennevnte absorpsjonsforsøk. of the polymer). A sheet was cast on a polished chrome plate using a 0.6 mm draw bar, air dried and oven cured for 15.5 hours at 70°C and 0.5 hour at 90°C. This polymer sheet absorbed 23 times its weight of synthetic urine (0.27 N NaCl solution) in the above absorption test.

Eksempler 57- 62 Examples 57-62

Metoden fra eksempel 2 9 ble gjentatt med varierende mengder av natriumhydroksyd og herdemiddel. Resultatene er vist i tabell VII. The method from example 2 9 was repeated with varying amounts of sodium hydroxide and curing agent. The results are shown in Table VII.

Det beste produkt ifølge disse eksempler er et som inneholder omtrent 50 mol% av resterende akrylestere, og som er tverrbundet med ca. 0,15 vekt% av glycerol-diglycidyleter. The best product according to these examples is one which contains approximately 50 mol% of residual acrylic esters, and which is cross-linked with approx. 0.15% by weight of glycerol diglycidyl ether.

Eksempel 63 Example 63

Eksempel 56 ble gjentatt ved å bruke følgende monomerblan-ding, mindre initieringsmiddel og ingen merkaptan-kjedestopper (for å øke molekylvekten). Example 56 was repeated using the following monomer mixture, less initiator and no mercaptan chain stopper (to increase molecular weight).

Polymerisasjonen ble utført ved 60°C og gav en lateks The polymerization was carried out at 60°C and gave a latex

med 40,6 % ikke-flyktige stoffer. with 40.6% non-volatile substances.

1125 g av denne lateks ble tilsatt i en svak strøm i 1125 g of this latex was added in a gentle stream i

løpet av 25 minutter til en langsomt omrørt oppløsning av 187,16 g 50% NaOH i 547,9 g avionisert vann. Etter at hele polymeren var oppløst, ble den viskøse oppløsning oppvarmet til 50°C i 22 timer for å gjøre forsåpningen fullstendig. Den resulterende oppløsning (25,4 % faste stoffer) hadde en Brookfield-viskositet på 16 200 cP over 25 minutes to a slowly stirred solution of 187.16 g of 50% NaOH in 547.9 g of deionized water. After all the polymer was dissolved, the viscous solution was heated to 50°C for 22 hours to complete the saponification. The resulting solution (25.4% solids) had a Brookfield viscosity of 16,200 cP

ved 25°C (spindel nr. 5, 10 omdr. pr. min.). Polymeren er et 50 mol%ig etylakrylat, idet resten er natriumakrylat og -metakrylat. at 25°C (spindle no. 5, 10 rpm). The polymer is a 50 mol% ethyl acrylate, the remainder being sodium acrylate and -methacrylate.

32 g av denne oppløsning ble blandet med 16 mg (0,2 vekt%) 32 g of this solution was mixed with 16 mg (0.2% by weight)

av glycerol-diglycidyleter og støpt på en polert kromplate med en 0,6 mm trekkstang. Etter lufttørking ble hinnen løftet fra platen og anbrakt i en 150°-ovn. Absorpsjonsevnen (gel-kapasiteten) av hin- of glycerol diglycidyl ether and cast on a polished chrome plate with a 0.6 mm pull rod. After air drying, the film was lifted from the plate and placed in a 150° oven. The absorption capacity (gel capacity) of hin-

nen i 0,27 N NaCl utgjorde 64 g oppløsning pr. gram polymer etter 20 minutters herdning. Hinnen var kraftig og bøyelig med en gang den kom ut av ovnen, og den måtte brettes for å bli revet i stykker. nen in 0.27 N NaCl amounted to 64 g of solution per grams of polymer after 20 minutes of curing. The skin was strong and pliable right out of the oven, and it had to be folded to be torn.

Eksempler 6 4- 67 Examples 6 4- 67

8 gram av den forsåpede oppløsning fremstilt i eksempel 8 grams of the saponified solution prepared in example

63 ble blandet med forskjellige mengder av 1,3-diklorisopropanol, 63 was mixed with different amounts of 1,3-dichloroisopropanol,

og hinner ble støpt og herdet fra disse blandinger på den i eksem- and membranes were cast and hardened from these mixtures on it in exem-

pel 63 beskrevne måte. Gel-kapasiteter av hinnene er angitt i tabell VIII. pel 63 described way. Gel capacities of the membranes are given in Table VIII.

Disse eksempler viser at den optimale mengde av tverrbindingsmiddel (D.C.I.P.) er omtrent 0,5 % av vekten av polymeren som skal herdes. These examples show that the optimum amount of cross-linking agent (D.C.I.P.) is about 0.5% of the weight of the polymer to be cured.

Eksempler 68- 75 Examples 68-75

Lateks fra eksempel 63 ble fremstilt og forsåpet med forskjellige mengder av natriumhydroksyd på den i eksempel 63 angitte måte for å variere natriumakrylat-innholdet. 8 gram av hver oppløs-ning ble blandet med forskjellige mengder av glycerol-diglycidyleter. Hinner ble deretter støpt på en polert kromplate, lufttørket i 14 timer og herdet i 2 timer ved 150°C i en ovn. Absorpsjonsevnen ble målt som nevnt ovenfor, og man noterte mykheten ved 45 % relativ fuktighet. Resultatene er vist i tabell IX. Latex from Example 63 was prepared and saponified with different amounts of sodium hydroxide in the manner indicated in Example 63 to vary the sodium acrylate content. 8 grams of each solution was mixed with different amounts of glycerol diglycidyl ether. Hinner was then cast on a polished chrome plate, air dried for 14 hours and cured for 2 hours at 150°C in an oven. The absorbency was measured as mentioned above, and the softness was noted at 45% relative humidity. The results are shown in Table IX.

Disse eksempler viser at den uomdannede del av etylakryla-tet i kopolymeren kan økes til 52 mol% uten noen større reduksjon av absorpsjonsevnen, og at man da oppnår et produkt med Ønsket mykhet. These examples show that the unconverted part of the ethyl acrylate in the copolymer can be increased to 52 mol% without any major reduction of the absorption capacity, and that a product with the desired softness is then obtained.

Eksempel 76 Example 76

Tre blandinger ble fremstilt med følgende sammensetninger: Three mixtures were prepared with the following compositions:

Del A Part A

230 g avionisert vann 230 g of deionized water

0,3 g "Triton GR-5" 0.3 g "Triton GR-5"

1,0 g Na2S20g (natriumpersulfat) 1.0 g Na2S20g (sodium persulfate)

10,0 g itakonsyre 10.0 g of itaconic acid

Del B Part B

20 g metakrylsyre 20 g of methacrylic acid

170 g etylakrylat 170 g ethyl acrylate

Del C Part C

70 g avionisert vann 70 g of deionized water

1,25 g NaHS031.25 g of NaHSO 3

Del A ble innført i en 2 liters reaktor og brakt til 60°C under kraftig nitrogenspyling. Deretter ble tilsatt 20 ml av del B, etterfulgt av hele del C. Resten av del B ble tilsatt kon-tinuerlig i løpet av 1 time ved 60°C. Lateksen ble oppsluttet i 1 time ved denne temperatur og man fikk en slutt-lateks med 40,6 % ikke-flyktige stoffer. Part A was introduced into a 2 liter reactor and brought to 60°C under a vigorous nitrogen purge. Then 20 ml of part B was added, followed by all of part C. The rest of part B was added continuously during 1 hour at 60°C. The latex was soaked for 1 hour at this temperature and a final latex with 40.6% non-volatile substances was obtained.

Deretter ble 100 g av denne lateks blandet med 16,9 g av en 50% vandig natriumhydroksyd-oppløsning og 49,1 gram avionisert vann og oppvarmet til 55°C i ca. 10 timer. Man fikk en 25 % opp-løsning av polyelektrolytten, inneholdende 52 mol% etylakrylat. Denne polyelektrolytt hadde et beregnet innhold av: Then 100 g of this latex was mixed with 16.9 g of a 50% aqueous sodium hydroxide solution and 49.1 grams of deionized water and heated to 55°C for approx. 10 hours. A 25% solution of the polyelectrolyte was obtained, containing 52 mol% ethyl acrylate. This polyelectrolyte had a calculated content of:

51 vekt% etylakrylat 51% by weight ethyl acrylate

30 vekt% natriumakrylat 30% by weight sodium acrylate

12,3 vekt% natriummetakrylat 12.3% by weight sodium methacrylate

6,5 vekt% dinatriumitakonat. 6.5% by weight disodium itaconate.

20 g av denne polyelektrolytt ble blandet med 45 g vann og 7,5 mg (0,15 %) glycerol-diglycidyleter. En hinne ble støpt på 20 g of this polyelectrolyte was mixed with 45 g of water and 7.5 mg (0.15%) of glycerol diglycidyl ether. A membrane was cast on

en polert kromplate under bruk av en 0,6 mm trekkstang, og hinnen ble lufttørket i 6,5 timer- ved romtemperatur og deretter ovnsherdet ved 150°C i 16,5 timer. Absorpsjonsevnen av den herdede hinne var 41 g/g polymer ved det ovenfor beskrevne absorpsjonsforsøk med syntetisk urin. a polished chrome plate using a 0.6 mm draw bar, and the film was air-dried for 6.5 hours at room temperature and then oven-hardened at 150°C for 16.5 hours. The absorption capacity of the hardened membrane was 41 g/g polymer in the above-described absorption test with synthetic urine.

Eksempel 76 viser at man kan forandre polymerisasjonspro-duktene og metodene betydelig, men allikevel få en godt absorberende polymer. Example 76 shows that it is possible to change the polymerization products and methods significantly, but still obtain a well-absorbing polymer.

Claims (2)

Fremgangsmåte til fremstilling av vannsvellbare beleggfilmer eller fibre, hvor man fremstiller en vandig, flytende blanding av A) 5-60 vekt%, basert på oppløsningsmidlet, av en karboksylholdig polymer som er valgt blant homopolymerer av akrylsyre og metakrylsyre og kopolymerer som inneholder akrylsyre, metakrylsyre, itakonsyre, maleinsyreanhydrid, maleinsyre, fumarsyre, halvestere og halvamider av maleinsyre og fumarsyre, eller blandinger derav, og idet polymeren foreligger i blandingen som oppløst salt, B) 0,1-4 5 vekt%, basert på polymeren, av et tverrbindingsmiddel som vil reagere med <p>olymerens karboksylgrupper ved henstand eller oppvarmhing, og C) et oppløsningsmiddel som består av vann, eventuelt tilsatt ett eller flere, flyktige, vannblandbare organiske opp-løsningsmidler og av denne blanding tildanngr belegg eller fibre som ved henstand eller oppvarmning tverrbindes, idet oppløsningsmidlet i alt vesentlig fordamper,karakterisert ved at man som tverrbindingsmidlet B) anvender en polyhalogenalkanol, et sulfonium-zwitterion eller en alifatisk polyglycidyleter, idet blandingen fortrinnsvis også inneholder inntil 50 vekt%, basert på polymeren, av et mykningsmiddel for polymeren. Process for the production of water-swellable coating films or fibers, in which an aqueous, liquid mixture of A) 5-60% by weight, based on the solvent, of a carboxyl-containing polymer selected from homopolymers of acrylic acid and methacrylic acid and copolymers containing acrylic acid, methacrylic acid is prepared . will react with the <p>polymer's carboxyl groups upon standing or heating suspension, and C) a solvent consisting of water, optionally with one or more volatile, water-miscible organic solvents added and from this mixture forming coatings or fibers which are cross-linked upon standing or heating , as the solvent essentially evaporates, characterized by the fact that B) is used as the cross-linking agent a polyhaloalkanol, a sulfonium zwitterion or an aliphatic polyglycidyl ether, the mixture preferably also containing up to 50% by weight, based on the polymer, of a plasticizer for the polymer. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at fibrene fremstilles i trinn B) ved å ekstrudere oppløsningen i et bad som inneholder lavalkyl-ketoner eller klorerte hydrokarboner.2. Method as stated in claim 1, characterized in that the fibers are produced in step B) by extruding the solution in a bath containing lower alkyl ketones or chlorinated hydrocarbons.
NO742243A 1973-06-20 1974-06-19 PROCEDURE FOR THE PREPARATION OF WATER-SWELLABLE COATING OR FIBER FROM A SOLUTION OF A CARBOXYLIC POLYMER NO142262C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37190973A 1973-06-20 1973-06-20

Publications (3)

Publication Number Publication Date
NO742243L NO742243L (en) 1975-01-13
NO142262B true NO142262B (en) 1980-04-14
NO142262C NO142262C (en) 1980-07-23

Family

ID=23465912

Family Applications (1)

Application Number Title Priority Date Filing Date
NO742243A NO142262C (en) 1973-06-20 1974-06-19 PROCEDURE FOR THE PREPARATION OF WATER-SWELLABLE COATING OR FIBER FROM A SOLUTION OF A CARBOXYLIC POLYMER

Country Status (10)

Country Link
JP (2) JPS5945695B2 (en)
BE (1) BE816643A (en)
CA (1) CA1030686A (en)
DE (1) DE2429236C2 (en)
FR (1) FR2234345B1 (en)
GB (1) GB1476958A (en)
IT (1) IT1016093B (en)
NL (1) NL7408197A (en)
NO (1) NO142262C (en)
SE (1) SE399715B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2614662A1 (en) * 1975-04-07 1977-01-27 Dow Chemical Co COMPOSITION FOR THE PRODUCTION OF ARTICLES SWELLABLE IN WATER
DE2721147A1 (en) * 1976-05-14 1977-11-24 Goodrich Co B F FLEXIBLE POLYACID MIXTURES AND PROCESS FOR THEIR PRODUCTION
CA1104782A (en) * 1976-06-07 1981-07-14 Robert E. Erickson Absorbent films and laminates
JPS6041092B2 (en) * 1978-06-21 1985-09-13 シ−アイ化成株式会社 Water-swellable composition for water-stopping materials
JPS5615728A (en) * 1979-07-18 1981-02-16 Adobansu Erekutoroodo Kk Self adhesion type medical electrode
JPS56154421A (en) * 1980-05-01 1981-11-30 Nitto Electric Ind Co Ltd Crosslinkable aqueous gel used in medical treatment
JPS57108143A (en) * 1980-12-24 1982-07-06 Kuraray Co Ltd Water-absorbing rubber composition
JPS57142912A (en) * 1981-02-27 1982-09-03 Nitto Electric Ind Co Ltd Poultice
DE3239476C2 (en) * 1981-10-26 1984-06-20 Arakawa Kagaku Kogyo K.K., Osaka Process for producing a solid, dry and water-absorbent resin
NO152012C (en) * 1983-04-06 1985-07-17 Rasmussen Oeystein PROCEDURE FOR THE PROTECTION OF EXISTING METALLIC SURFACES, SPECIFICALLY STEEL SURFACES, AGAINST CORROSION
JPH01260014A (en) * 1988-04-07 1989-10-17 Kuraray Co Ltd Water-absorbing fiber
US5268319A (en) 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
DE69033438T2 (en) 1989-04-13 2000-07-06 Sandisk Corp., Santa Clara Exchange of faulty memory cells of an EEprom matrix
DE4205648A1 (en) * 1992-02-25 1993-08-26 Hasso Von Bluecher Flat filter for protection against toxic skin-permeable chemicals - comprising air-permeable carrier coated with non-carbonised polymeric absorber particles applied with adhesive in point pattern
US6728851B1 (en) 1995-07-31 2004-04-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6426893B1 (en) 2000-02-17 2002-07-30 Sandisk Corporation Flash eeprom system with simultaneous multiple data sector programming and storage of physical block characteristics in other designated blocks
GB0123415D0 (en) 2001-09-28 2001-11-21 Memquest Ltd Method of writing data to non-volatile memory
GB0123410D0 (en) 2001-09-28 2001-11-21 Memquest Ltd Memory system for data storage and retrieval
JP4352707B2 (en) 2003-01-21 2009-10-28 ソニーケミカル&インフォメーションデバイス株式会社 Liquid absorbing composition, liquid absorbing sheet and non-aqueous electrolyte battery pack
JP4855300B2 (en) * 2007-02-28 2012-01-18 株式会社エー・アンド・デイ Windshield for weighing device with waste heat structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE445580A (en) * 1941-05-20
US3118848A (en) * 1960-05-03 1964-01-21 Cook Paint & Varnish Co Coating compositions comprising a water-soluble salt of a vinyl copolymer and a water-soluble epoxy or polyhydroxy compound

Also Published As

Publication number Publication date
BE816643A (en) 1974-12-20
DE2429236A1 (en) 1975-01-16
CA1030686A (en) 1978-05-02
AU7016174A (en) 1975-12-18
JPS5082143A (en) 1975-07-03
SE399715B (en) 1978-02-27
NO142262C (en) 1980-07-23
DE2429236C2 (en) 1985-04-25
JPS5945695B2 (en) 1984-11-08
GB1476958A (en) 1977-06-16
JPS6230125A (en) 1987-02-09
IT1016093B (en) 1977-05-30
FR2234345A1 (en) 1975-01-17
NO742243L (en) 1975-01-13
SE7408142L (en) 1974-12-23
FR2234345B1 (en) 1978-01-13
NL7408197A (en) 1974-12-24

Similar Documents

Publication Publication Date Title
NO142262B (en) PROCEDURE FOR THE PREPARATION OF WATER-SWELLABLE COATING OR FIBER FROM A SOLUTION OF A CARBOXYLIC POLYMER
US3980663A (en) Absorbent articles and methods for their preparation from crosslinkable solutions of synthetic carboxylic polyelectrolytes
US3966679A (en) Absorbent articles and methods for their preparation
US3926891A (en) Method for making a crosslinkable aqueous solution which is useful to form soft, water-swellable polyacrylate articles
US4076673A (en) Absorbent articles and methods for their preparation
US4008353A (en) Water swellable articles
US4154898A (en) Absorbent articles and methods for their preparation
US4057521A (en) Absorbent articles made from carboxylic synthetic polyelectrolytes having copolymerized N-substituted acrylamide crosslinker
US4061846A (en) Flexible water swellable crosslinked polyacrylate film
JP3015818B2 (en) Water-absorbing water-insoluble polymer articles
JP3139710B2 (en) Absorbent products and their manufacturing methods
US5280079A (en) Absorbent products and their manufacture
US3993616A (en) Alkali metal carboxylic polyelectrolyte solutions with N-methylol crosslinker
US4017653A (en) Absorbent articles and methods for their preparation
US6579958B2 (en) Superabsorbent polymers having a slow rate of absorption
US4813945A (en) Ultrahigh water-absorbing fiber forming composition
US4079029A (en) Absorbent articles made from latexes of carboxylic synthetic polyelectrolyte containing n-substituted acrylamide crosslinking agent
US4892533A (en) Ultrahigh water-absorbing fiber-forming composition
US4018951A (en) Absorbent articles and methods for their preparation
US4041228A (en) Absorbent articles and methods for their preparation
US4041231A (en) Water swellable articles
US4041020A (en) Process for spinning absorbent articles from copolymers having a copolymerized crosslinker
JPH0192226A (en) Water-absorbing polymer
EP0239223B1 (en) Water-absorbing fiber-forming composition article containing same &amp; method of producing said composition &amp; said article
JPH0335334B2 (en)