NO129580B - - Google Patents
Download PDFInfo
- Publication number
- NO129580B NO129580B NO00837/69A NO83769A NO129580B NO 129580 B NO129580 B NO 129580B NO 00837/69 A NO00837/69 A NO 00837/69A NO 83769 A NO83769 A NO 83769A NO 129580 B NO129580 B NO 129580B
- Authority
- NO
- Norway
- Prior art keywords
- weight
- salt
- metals
- temperature
- anodes
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/44—Compositions for etching metallic material from a metallic material substrate of different composition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/28—Cleaning or pickling metallic material with solutions or molten salts with molten salts
- C23G1/32—Heavy metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Description
Fremgangsmåte for å rense anoder for Procedure for cleaning anodes for
elektrolytiske prosesser. electrolytic processes.
Denne oppfinnelse angår en fremgangsmåte til å rense anoder for elektrolyse, hvor anodene består av en ledende bærer belagt med edelmetaller eller forbindelser av disse, f.eks. oksyder, eventuelt sammen med andre ledere. This invention relates to a method for cleaning anodes for electrolysis, where the anodes consist of a conductive carrier coated with precious metals or compounds thereof, e.g. oxides, possibly together with other conductors.
Rensing av slike anoder har alltid vært et stort problem tidligere, fordi de vanlige metoder til å utfore dette ofte virket på den ledende bærer, spesielt filmdannende metall, Cleaning such anodes has always been a major problem in the past, because the usual methods of doing this often acted on the conductive support, especially the film-forming metal,
som f.eks. titan, heller enn på edelmetallbelegget, fordi titan og lignende ledere vanligvis er mindre edle. like for example. titanium, rather than on the noble metal coating, because titanium and similar conductors are usually less noble.
I andre tilfeller har kjemiske metoder, f.eks. beising, gitt,1 In other cases, chemical methods, e.g. pickling, given,1
meget dårlige virkninger, fordi selv den minste mengde edelmetaller på det filmdannende metall, slik som titan, gir stor kjemisk resistens til titanet på grunn av anodisk beskyttelse. very bad effects, because even the smallest amount of noble metals on the film-forming metal, such as titanium, gives great chemical resistance to the titanium due to anodic protection.
Rensing av disse anoder av bærer-metaller belagt med ledere (bærermetaller i motsetning til edelmétåller) og andre ledere, Cleaning these anodes of carrier metals coated with conductors (carrier metals as opposed to precious metals) and other conductors,
og spesielt den klasse som er kjent som filmdannende metaller, and especially the class known as film-forming metals,
slik som titan, er meget viktig fordi allé edelmetallrester må fjernes for at bæreren kan bli reaktivert ved beising, slik at den kan belegges på ny. I virkeligheten er en slik beising umulig så lenge det minste spor av edelmetall finnes. such as titanium, is very important because all precious metal residues must be removed so that the carrier can be reactivated by pickling, so that it can be coated again. In reality, such pickling is impossible as long as the slightest trace of precious metal is present.
Det er derfor helt nodvendig at alle edelmetaller eller andre ledere fjernes for reaktivering for at en aktiv bærer kan dan-nes ved beising, som kan på ny belegges med en leder. It is therefore absolutely necessary that all precious metals or other conductors are removed for reactivation so that an active carrier can be formed by pickling, which can be recoated with a conductor.
Det er tidligere kjent, f.eks. fra norsk patent nr. 76.123 å It is previously known, e.g. from Norwegian patent no. 76,123 å
fjerne oksydovertrekk fra overflatene av metaller eller å. av-skalle metaller, særlig legerte stål. I denne forbindelse gjo- remove oxide coatings from the surfaces of metals or to peel metals, especially alloy steels. In this connection,
res det blant annet bruk av et smeltet bad bestående av kau-stikkalkali som inneholder et oksyderende salt. among other things, the use of a molten bath consisting of caustic alkali containing an oxidizing salt is recommended.
Fra Gmelin's Handbuch der Organischen Chemie er det kjent at alkalimetallnitrat hemmer angrep på platina, mens f.eks. titan ikke angripes av smeltet kaliumnitråt. From Gmelin's Handbuch der Organischen Chemie it is known that alkali metal nitrate inhibits attack on platinum, while e.g. titanium is not attacked by molten potassium nitrate.
Oppfinnelsen vedrorer således en fremgangsmåte for å rense The invention thus relates to a method for cleaning
anoder for elektrolytiske prosesser, hvor anodene består av en ledende bærer belagt med edelmetaller eller kjemiske forbindelser av disse, eventuelt sammen med andre ledere, og frem-gangsmåten karakteriseres ved at anodene behandles med en smelte bestående av et basisk materiale ved en temperatur over 250°C og i nærvær av .et oksyderende salt og eventuelt også i nærvær av oksygengass anodes for electrolytic processes, where the anodes consist of a conductive carrier coated with precious metals or chemical compounds thereof, possibly together with other conductors, and the method is characterized by the anodes being treated with a melt consisting of a basic material at a temperature above 250° C and in the presence of an oxidizing salt and optionally also in the presence of oxygen gas
Som oksyderende salt brukes fortrinnsvis et alkalimetallsalt, An alkali metal salt is preferably used as oxidizing salt,
som har en oksyderende virkning ved 250-400°C. which has an oxidizing effect at 250-400°C.
Gode.resultater.oppnås ved ,hjelp av ; et saltbad inneholdende, ... mer enn 50 vekt-% oksyderende salt, slik som kalium- eller natriumnitrat, og mindre enn 50 vekt-% av en.base, slik som. natrium- eller kaliumhydroksyd. , . ,. , Good results are achieved with the help of; a salt bath containing, ... more than 50% by weight of oxidizing salt, such as potassium or sodium nitrate, and less than 50% by weight of a base, such as. sodium or potassium hydroxide. , . ,. ,
Selve saltsmelten kan fremstilles ved oppvarmning til en tem-, peratur på f.eks. mellom 250 og 1000°C. En utmerket saltsmelte til dette bruk består f.eks. av 2 vektsdeler natriumnitrat og 1 vektsdel natriumhydroksyd ved en temperatur i området fra 425 - 475°C..Når titan eller annet filmdannende metall belagt med edelmetaller eller andre ledere, slik som oksyder eller blandede oksyder av edelmetaller og bærermetaller, ned-dykkes i denne saltsmelte i flere minutter, fjernes alle,til-, stedeværende ledere, mens bærermetallet ikke blir skadet. The salt melt itself can be produced by heating to a temperature of e.g. between 250 and 1000°C. An excellent salt melt for this use consists of e.g. of 2 parts by weight sodium nitrate and 1 part by weight sodium hydroxide at a temperature in the range from 425 - 475°C.. When titanium or other film-forming metal coated with noble metals or other conductors, such as oxides or mixed oxides of noble metals and carrier metals, is immersed in this salt melt for several minutes, any conductors present are removed, while the carrier metal is not damaged.
Den onskede ru overflate på det filmdannende metall, f.eks. titan, som for forste gang f.eks. er fremstilt ved beising i varm vandig oksalsyre eller saltsyre, holdes helt intakt, slik at bare beising i en losning av en passende substans, slik som oksalsyre eller vinsyre i l/lo eller mindre av den tid som er nodvendig for den forste beising, fullstendig reaktiverer eller rekonstituerer denne overflate slik at den kan motta et nytt belegg av det onskede edelmetall eller andre ledere. For-sok har vist.at ytelsen av f.eks. en titananode belagt på ny på denne måte.og brukt i klor-alkalielektrolyse, er overlegen overfor den originale elektrode. The desired rough surface on the film-forming metal, e.g. titanium, which for the first time e.g. is prepared by pickling in hot aqueous oxalic or hydrochloric acid, is kept completely intact, so that only pickling in a solution of a suitable substance, such as oxalic or tartaric acid in l/lo or less of the time required for the first pickling, completely reactivates or reconstitutes this surface so that it can receive a new coating of the desired precious metal or other conductors. For-sok has shown that the performance of e.g. a titanium anode recoated in this way.and used in chlor-alkali electrolysis, is superior to the original electrode.
Saltsmelten kan fremstilles i konvensjonelle, bestandige kar, men vanligvis blir rustfrie stålkar foretrukket. Varmekilden kan være elektrisitet, gass e.l.. The salt melt can be produced in conventional, durable vessels, but usually stainless steel vessels are preferred. The heat source can be electricity, gas etc.
Det edelmetall som er lost i saltsmelten kan gjenvinnes f.eks. ved å forbinde det rustfrie stålkaret som anode og bruke som. katode et materiale som er motstandskraftig mot saltsmelten. Ved å lede en likestrom gjennom, saltsmelten, vil det opploste edelmetall avsette seg på katoden i metallisk form og fra hvilken det senere kan fjernes. I aktuell praksis kan en meng-, de på opp til 3 yekt-% edelmetall inkorporeres i , saltsmelten.^ Alternativt kan saltsmelten opploses i vann, og de opploste metaller kan gjenvinnes ved kjemisk utfelling eller elektrolyse. The precious metal that has been lost in the salt melt can be recovered, e.g. by connecting the stainless steel vessel as anode and using as. cathode a material that is resistant to the salt melt. By passing a direct current through the molten salt, the dissolved noble metal will deposit on the cathode in metallic form and from which it can later be removed. In actual practice, a quantity of up to 3% by weight of noble metal can be incorporated into the salt melt. Alternatively, the salt melt can be dissolved in water, and the dissolved metals can be recovered by chemical precipitation or electrolysis.
Etter å ha renset anodene i saltsmelten, anbefales det å vaske' anodene i kortere tid med en fortynnet syre, f.eks. en saltsyre- eller svovelsyreopplosning. Det kan også brukes en fortynnet blanding av saltsyre og salpetersyre, som ikke 15ser opp det filmdannende bærermetal1, f.eks. titan, zirkonium eller tantal. After cleaning the anodes in the molten salt, it is recommended to wash the anodes for a shorter time with a diluted acid, e.g. a hydrochloric or sulfuric acid solution. A diluted mixture of hydrochloric acid and nitric acid can also be used, which does not dissolve the film-forming carrier metal1, e.g. titanium, zirconium or tantalum.
Som resultat vil de siste rester av belegg bli fjernet. As a result, the last remnants of coating will be removed.
Betegnelsen filmdannende metaller som brukés her omfatter: titan, tantal, niob, zirkonium, wolfram og vismut. The term film-forming metals used here includes: titanium, tantalum, niobium, zirconium, tungsten and bismuth.
Ved betegnelsen ledere (belegg) som brukes her, vil forstås The term conductors (coating) used here will be understood
de som vil lede elektrisk energi inn i vandige elektrolytter under anodiske betingelser. those that will conduct electrical energy into aqueous electrolytes under anodic conditions.
EKSEMPEL 1 EXAMPLE 1
2 vektdeler kaliumnitrat blandes med 1 vektdel kaliumhydroksyd. Denne blanding oppvarmes til en temperatur på 250-550°C. Den oppnådde saltsmelte passet ypperlig til å fjerne slike edelmetaller som gull og solv og metaller av platinågruppen fra' filmdannende metaller, slik som titan og zirkonium. Foretrukket temperatur: 340°C for 70% Pt + 30% Ir (mol%). 2 parts by weight of potassium nitrate are mixed with 1 part by weight of potassium hydroxide. This mixture is heated to a temperature of 250-550°C. The resulting molten salt was excellent for removing such precious metals as gold and silver and metals of the platinum group from film-forming metals such as titanium and zirconium. Preferred temperature: 340°C for 70% Pt + 30% Ir (mol%).
Fjerningstid: 5"minutter. Removal time: 5 minutes.
Beleggtykkelse: 20 g/m (ca. 1 mikron). Coating thickness: 20 g/m (approx. 1 micron).
EKSEMPEL 2 EXAMPLE 2
En blanding av 2 vektdeler kaliumnitrat 6gl vektdel natrium-hydrbksyd" oppvarmes t il éh temperatur på 300-600°C slik at blandingen smelter fullsténdig. Déirné saltsmelte passer fint til å fjerne edelmetallér fra filmdannende metaller. Denne blanding' passer spesielt for å rense tantal,zirkonium og niob, fordi denne saltsmelte er noe mindre aggressiv enn blandingen i eksempel 1. Foretrukket temperatur: 500°C for Pt og/eller Ir. Fjerningstid: 5 minutter. A mixture of 2 parts by weight of potassium nitrate and 6 parts by weight of sodium hydroxide" is heated to a temperature of 300-600°C so that the mixture melts completely. Déirné salt melt is well suited for removing precious metals from film-forming metals. This mixture is particularly suitable for cleaning tantalum ,zirconium and niobium, because this salt melt is somewhat less aggressive than the mixture in example 1. Preferred temperature: 500°C for Pt and/or Ir. Removal time: 5 minutes.
Beleggtykkelse: 20 g/m 2 (ca. 1 mikron). Coating thickness: 20 g/m 2 (approx. 1 micron).
EKSEMPEL 3 EXAMPLE 3
Saltsmelténe i henhold til eksempel 1 og 2 oppvarmes til en temperatur av 400-800<0>C. De passer ypperlig for å fjerne edel-metalloksyder, eventuelt i blanding med selve edelmetallene og, om onsket, i nærvær av slike filmdannende metaller som titan, tantal, niob, zirkonium og aluminium. Verdier funnet for et belegg av rutheniumoksyd + titanoksyd: The salt melts according to examples 1 and 2 are heated to a temperature of 400-800<0>C. They are excellent for removing noble metal oxides, possibly in mixture with the noble metals themselves and, if desired, in the presence of such film-forming metals as titanium, tantalum, niobium, zirconium and aluminium. Values found for a coating of ruthenium oxide + titanium oxide:
Foretrukket temperatur: 450°C. Preferred temperature: 450°C.
Fjerningtid: 5 minutter Removal time: 5 minutes
Beleggtykkelse: 10 g/m <2>(ca. 2-2,5 mikron). Coating thickness: 10 g/m <2> (approx. 2-2.5 microns).
Saltsmelténe i henhold til eksemplene 1 og 2 passer også for The salt melts according to examples 1 and 2 are also suitable
å fjerne blandede oksyder bestående av metalloksyder eller blandinger derav, hvilke oksyder er elektrisk ledende under anodiske betingelser i en elektrolytt, såvel som oksyder av filmdannende metaller. to remove mixed oxides consisting of metal oxides or mixtures thereof, which oxides are electrically conductive under anodic conditions in an electrolyte, as well as oxides of film-forming metals.
EKSEMPEL 4 EXAMPLE 4
En blanding av 3 vektdeler natriumhydroksyd og 1 vektdel kaliumnitrat, oppvarmet til en temperatur på 350-llOO°C, passer godt til å rense filmdannende metaller belagt med metaller av platinågruppen, deres oksyder eller blandinger av dem, sammen med oksyder av uedle metaller. A mixture of 3 parts by weight of sodium hydroxide and 1 part by weight of potassium nitrate, heated to a temperature of 350-1100°C, is well suited for cleaning film-forming metals coated with metals of the platinum group, their oxides or mixtures thereof, together with oxides of base metals.
Foretrukket temperatur: 450°C Preferred temperature: 450°C
Fjerningstid: 5 minutter Removal time: 5 minutes
Med en beleggtykkelse på IO g/m 2 passer behandlingen for metaller så vel som oksyder. With a coating thickness of 10 g/m 2 , the treatment is suitable for metals as well as oxides.
EKSEMPEL 5 EXAMPLE 5
En saltsmelte bestående av 2 vektdeler kaliumnitrat, 1 vektdel natriumhydroksyd og 1 vektdel natriumklorid, oppvarmet til en temperatur på 300-ll00°C, er også ypperlig for å rense filmdannende metallanoder belagt med ledere. Mengden av natrium- A salt melt consisting of 2 parts by weight of potassium nitrate, 1 part by weight of sodium hydroxide and 1 part by weight of sodium chloride, heated to a temperature of 300-1100°C, is also excellent for cleaning film-forming metal anodes coated with conductors. The amount of sodium
klorid kan okes uten at dette har en forstyrrende virkning, chloride can be added without this having a disruptive effect,
og natriumklorid kan erstattes med'kaliumklorid eller kalium/ natriumkarbonat. V- and sodium chloride can be replaced with potassium chloride or potassium/sodium carbonate. V-
Temperatur: 480°C. Temperature: 480°C.
Fjerningstid: 5 minutter. Removal time: 5 minutes.
Beleggtykkelse: 20 g/m 2 i tilfelle av edelmetall; 10 g/m2i Coating thickness: 20 g/m 2 in the case of precious metal; 10 g/m2
tilfelle av edelmetalloksyd. case of noble metal oxide.
Natrium/kaliumhydroksydet kan også erstattes med en annen base, f.eks. litiumhydroksyd. Som resultat vil aktiviteten av saltsmelten minske betydelig, som kan være nyttig i enkelte tilfeller . The sodium/potassium hydroxide can also be replaced with another base, e.g. lithium hydroxide. As a result, the activity of the salt melt will decrease significantly, which can be useful in some cases.
Dersom NaOH erstattes med litiumhydroksyd, er temperaturen If NaOH is replaced by lithium hydroxide, the temperature is
også 480°C, men fjerningstiden er mer enn 5 minutter. also 480°C, but the removal time is more than 5 minutes.
EKSEMPEL 6' EXAMPLE 6'
Saltsmelten består, av en blanding av 2 vektdeler kaliumnitrat The salt melt consists of a mixture of 2 parts by weight of potassium nitrate
og. 1 vektdel bariumhydroksyd. Den oppvarmes til en, temperatur mellom 400 og 700°C til blandingen smelter fullstendig. Foretrukket temperatur: ca. 500°C. and. 1 part by weight of barium hydroxide. It is heated to a temperature between 400 and 700°C until the mixture melts completely. Preferred temperature: approx. 500°C.
Denne blandingen passer for å fjerne metaller så vel som oksyder som er belagt på titan, tantal, zirkonium og niob. Barium-hydroksydet kan erstattes med litiumhydroksyd som på samme måte passer både for metaller og oksyder. This mixture is suitable for removing metals as well as oxides coated on titanium, tantalum, zirconium and niobium. The barium hydroxide can be replaced with lithium hydroxide, which is equally suitable for both metals and oxides.
EKSEMPEL 7 EXAMPLE 7
Saltsmelten fra eksempel 1, bestående av.2 vektdeler kalium- ., nitrat og .1 vektdel natriumhydroksyd, kan også erstattes av 2 vektdeler natriumnitrat og 1 vektdel natriumhydroksyd. The salt melt from example 1, consisting of 2 parts by weight of potassium nitrate and 1 part by weight of sodium hydroxide, can also be replaced by 2 parts by weight of sodium nitrate and 1 part by weight of sodium hydroxide.
Dersom natiriumhydroksyd brukes alene ved en temperatur av If sodium hydroxide is used alone at a temperature of
400°C, kan<1>platina- eller ruteniumbelagt titan renses godt, men dette er forbundet med et stort tap av titan eller andre basis-rnetaller. 400°C, platinum- or ruthenium-coated titanium can be cleaned well, but this is associated with a large loss of titanium or other base metals.
Dersom 5% kaliumnitrat. eller et annet oksyderende.salt tilsettes, vil tapene bli minst 10 ganger så små. Vekttapene min-sker etter som <q>kende mengder, kalium- eller natriumnitrat. tilsettes. If 5% potassium nitrate. or another oxidizing salt is added, the losses will be at least 10 times as small. The weight loss decreases with known amounts of potassium or sodium nitrate. is added.
Badet begynner å arbeide med 95% KN03 og 5% KOH eller NaOH. Om en smelte bestående av NaOH og KOH velges, og om finfordelt luft eller oksygen blåses gjennom badet, vil tapet av Ti bli omtrent det samme som i tilfelle med 5% KNO^. Med zirkonium og;: tantal er situasjonen nesten den samme. The bath starts working with 95% KN03 and 5% KOH or NaOH. If a melt consisting of NaOH and KOH is chosen, and if finely divided air or oxygen is blown through the bath, the loss of Ti will be approximately the same as in the case with 5% KNO^. With zirconium and;: tantalum the situation is almost the same.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9706/68A GB1214579A (en) | 1968-02-28 | 1968-02-28 | Improvements in or relating to the re-constitution of electrodes |
Publications (1)
Publication Number | Publication Date |
---|---|
NO129580B true NO129580B (en) | 1974-04-29 |
Family
ID=9877208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO00837/69A NO129580B (en) | 1968-02-28 | 1969-02-27 |
Country Status (8)
Country | Link |
---|---|
US (1) | US3573100A (en) |
BE (1) | BE728860A (en) |
DE (1) | DE1909757C3 (en) |
FR (1) | FR2002828A1 (en) |
GB (1) | GB1214579A (en) |
NL (1) | NL6902987A (en) |
NO (1) | NO129580B (en) |
SE (1) | SE365430B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1312375A (en) * | 1970-06-26 | 1973-04-04 | Ici Ltd | Stripping of coated titanium electrodes for re-coating |
US4132569A (en) * | 1977-10-25 | 1979-01-02 | Diamond Shamrock Corporation | Ruthenium recovery process |
DE3032480C2 (en) * | 1980-08-28 | 1983-10-13 | C. Conradty Nürnberg GmbH & Co KG, 8505 Röthenbach | Process for removing electrocatalytically effective protective coatings from electrodes with a metal core and application of the process |
US4339281A (en) * | 1981-08-20 | 1982-07-13 | Rca Corporation | Shank diamond cleaning |
US5366598A (en) * | 1989-06-30 | 1994-11-22 | Eltech Systems Corporation | Method of using a metal substrate of improved surface morphology |
US5324407A (en) * | 1989-06-30 | 1994-06-28 | Eltech Systems Corporation | Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell |
US5314601A (en) * | 1989-06-30 | 1994-05-24 | Eltech Systems Corporation | Electrodes of improved service life |
US5141563A (en) * | 1989-12-19 | 1992-08-25 | Eltech Systems Corporation | Molten salt stripping of electrode coatings |
CA2730558C (en) † | 2002-11-29 | 2011-11-15 | Mitsubishi Materials Corporation | Separation process for platinum group elements |
US20140305468A1 (en) * | 2011-11-21 | 2014-10-16 | Industrie De Nora S.P.A. | Method for exfoliating coating layer of electrode for electrolysis |
-
1968
- 1968-02-28 GB GB9706/68A patent/GB1214579A/en not_active Expired
-
1969
- 1969-02-24 BE BE728860D patent/BE728860A/xx not_active IP Right Cessation
- 1969-02-26 US US802676*A patent/US3573100A/en not_active Expired - Lifetime
- 1969-02-26 NL NL6902987A patent/NL6902987A/xx unknown
- 1969-02-27 SE SE02682/69A patent/SE365430B/xx unknown
- 1969-02-27 DE DE1909757A patent/DE1909757C3/en not_active Expired
- 1969-02-27 NO NO00837/69A patent/NO129580B/no unknown
- 1969-02-28 FR FR6905356A patent/FR2002828A1/fr not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
BE728860A (en) | 1969-08-01 |
DE1909757A1 (en) | 1969-09-25 |
NL6902987A (en) | 1969-09-01 |
FR2002828A1 (en) | 1969-10-31 |
GB1214579A (en) | 1970-12-02 |
DE1909757B2 (en) | 1973-03-22 |
US3573100A (en) | 1971-03-30 |
DE1909757C3 (en) | 1980-02-07 |
SE365430B (en) | 1974-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO137324B (en) | PROCEDURES FOR PRODUCING ELECTRODES SUITABLE FOR USE IN ELECTROLYTICAL PROCESSES. | |
US5587058A (en) | Electrode and method of preparation thereof | |
US3632498A (en) | Electrode and coating therefor | |
RU2330124C2 (en) | Electrolysis method for water chloric-alkaline solutions, electrode for electrolysis of chloric-alkaline solution and method of making an electrolytic electrode | |
US3933616A (en) | Coating of protected electrocatalytic material on an electrode | |
NO142314B (en) | ELECTRODE FOR ELECTROCHEMICAL PROCESSES. | |
US4005004A (en) | Electrode coating consisting of a solid solution of a noble metal oxide, titanium oxide, and zirconium oxide | |
NO160933B (en) | ELECTRODE FOR ELECTROCHEMICAL PROCESSES, ELECTROCHEMICAL CELL AND PROCEDURE FOR THE MANUFACTURE OF AN ELECTRODE USE IN AN ELECTRICAL CELL. | |
US4471006A (en) | Process for production of electrolytic electrode having high durability | |
JPS636636B2 (en) | ||
US3236756A (en) | Electrolysis with precious metalcoated titanium anode | |
US4530742A (en) | Electrode and method of preparing same | |
NO322413B1 (en) | Cathode for use in electrolysis of aqueous solutions, their use and the process for the preparation of chlorine and alkali metal hydroxide. | |
US3840443A (en) | Method of making an electrode having a coating comprising a platinum metal oxide | |
US3926751A (en) | Method of electrowinning metals | |
NO129580B (en) | ||
US3497425A (en) | Electrodes and methods of making same | |
NO144638B (en) | ELECTRODE Suitable for use as an insoluble anode for electrolytic extraction of nickel, copper, cobalt or zinc from aqueous solution | |
NO157461B (en) | HYDROGEN DEVELOPING ELECTRODE. | |
NO115607B (en) | ||
NO341164B1 (en) | Chloro-anode coating with uniform surface morphology | |
US3761313A (en) | Stripping of coated titanium electrodes | |
US3684577A (en) | Removal of conductive coating from dimensionally stable electrodes | |
NO322407B1 (en) | Specific cathode which can be used for the preparation of alkali metal chlorate, process for its preparation and the use of the cathode. | |
US3706600A (en) | Stripping of coated titanium electrodes for re-coating |