[go: up one dir, main page]

NO126748B - - Google Patents

Download PDF

Info

Publication number
NO126748B
NO126748B NO00153826A NO15382664A NO126748B NO 126748 B NO126748 B NO 126748B NO 00153826 A NO00153826 A NO 00153826A NO 15382664 A NO15382664 A NO 15382664A NO 126748 B NO126748 B NO 126748B
Authority
NO
Norway
Prior art keywords
acid
metal
metals
complex
concentration
Prior art date
Application number
NO00153826A
Other languages
Norwegian (no)
Inventor
Rolf Bertil Reinhall
Inge Johansson
Original Assignee
Defibrator Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Defibrator Ab filed Critical Defibrator Ab
Publication of NO126748B publication Critical patent/NO126748B/no

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • D21D1/303Double disc mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/02Crushing or disintegrating by disc mills with coaxial discs
    • B02C7/06Crushing or disintegrating by disc mills with coaxial discs with horizontal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/11Details
    • B02C7/14Adjusting, applying pressure to, or controlling distance between, discs
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

Fremgangsmåte for atskillelse av metallsaltblandinger. Procedure for the separation of metal salt mixtures.

Foreliggende oppfinnelse vedrører en The present invention relates to a

fremgangsmåte for atskillelse av metallsaltblandinger i homogen oppløsning i et dielektrikum under påvirkning av et elektrisk felt. method for separating metal salt mixtures in homogeneous solution in a dielectric under the influence of an electric field.

En meget benyttet elektrisk atskillel-sesmetode er elektroforesen. Den baserer seg på det faktum at vandringshastigheten for joner av forskjellig størrelse eller forskjellig ladning i en oppløsning med bestemt viskositet i et gitt elektrisk felt er forskjellig. Ved langvarig påvirkning av feltet medfører elektroforesen en utmerket atskillelse av forskjellig ladete og store joner, som f. eks. de forskjellige eggehvite-sorter. For atskillelse av enkle metalljoner er den imidlertid mindre egnet. A widely used electrical separation method is electrophoresis. It is based on the fact that the migration speed of ions of different size or different charge in a solution of a certain viscosity in a given electric field is different. With prolonged exposure to the field, the electrophoresis results in an excellent separation of differently charged and large ions, such as e.g. the different egg white varieties. However, it is less suitable for the separation of simple metal ions.

Man har nå funnet at jonene av forskjellige metaller utmerket lar seg skille i oppløsning, hvis ikke jonenes vandrings-hastighet men komplekse metallforbindel-sers stabilitet benyttes som skillemiddel. It has now been found that the ions of different metals can be separated perfectly in solution, if not the migration speed of the ions but the stability of complex metal compounds is used as a separating agent.

Denne nye fremgangsmåte utmerker This new method excels

seg ved at metallene atskilles i rommet ved å anlegge et elektrisk felt som er likerettet med konsentrasjonsstigningen i den kompleksdannende base i en oppløsning, hvor fri konveksjon hindres, og hvor det fremkalles et konsentrasjonsfall i en kompleksdannende base, som selv eller ved hjelp av ytterligere en kompleksdannende base kan danne anjoniske komplekser med minst én av de foreliggende metalljoner. in that the metals are separated in the room by applying an electric field which is rectified with the increase in concentration in the complex-forming base in a solution, where free convection is prevented, and where a drop in concentration is induced in a complex-forming base, which itself or with the help of an additional complexing base can form anionic complexes with at least one of the metal ions present.

Følgende fakta er kjent og utnyttes The following facts are known and exploited

delvis i den analytiske og tekniske kjemi: Hvis det til en oppløsning av forskjellige metalljoner suksessivt tilsettes en partly in analytical and technical chemistry: If a solution of different metal ions is successively added to

kompleksdanner, vil de forskjellige metall- complex, the different metal-

joner etter hvert overføres i komplekse forbindelser, og det i samme rekkefølge som stabiliteten avtar i de oppstående metall-komplekser. Forholdet for et metall-kom-pleksdannersystem karakteriseres enklest ved den ved en bestemt pH nødvendige analytiske totalkonsentrasjon av kompleksdanneren som er akkurat tilstrekkelig til å overføre 50 pst. av metallet i de tilsvarende anjoniske komplekser. ions are eventually transferred in complex compounds, and in the same order as the stability decreases in the resulting metal complexes. The relationship for a metal-complexer system is most simply characterized by the total analytical concentration of the complexer required at a certain pH, which is just sufficient to transfer 50 percent of the metal in the corresponding anionic complexes.

Oppfinnelsestanken som ligger til grunn for den nye fremgangsmåten bygger på utnyttelsen av den i rommet atskilte kompleksdannelse av de forskjellige metalljoner i en i rommet varierende konsentrasjon av kompleksdanneren. Utslagsgivende for utnyttelsen av denne teori for atskillelse av metallsaltblandinger er den praktiske erkjennelse at det under påvirkning av et elektrisk felt lykkes å føre metalljonene til de i rommet forskjellige kompleksdanner-konsentrasjonssteder som er karakteristisk tilordnet dem. The inventive idea underlying the new method is based on the utilization of the spatially separated complex formation of the various metal ions in a spatially varying concentration of the complex former. Decisive for the utilization of this theory for the separation of metal salt mixtures is the practical realization that, under the influence of an electric field, it succeeds in leading the metal ions to the various complex-former-concentration sites in space that are characteristically assigned to them.

For at et kompleksdannermolekyl skal komme på tale for foreliggende atskillelses-metode, må det ved kompleksdannelsen kunne avgi protoner, dvs. det må være en syre. I det vanligste tilfelle vil derfor for-melen HbB passe for et egnet kompleksdannermolekyl, hvorved HbB betyr et nøy-tralt molekyl, som under avgivning av mak-simalt b protoner kan gå over i kompleksdannerbasen B—<b> i det valgte oppløsnings-middelsystem. In order for a complexing molecule to be considered for the present separation method, it must be able to give off protons during complexation, i.e. it must be an acid. In the most common case, the formula HbB will therefore be suitable for a suitable complexing molecule, whereby HbB means a neutral molecule, which, during the release of a maximum of b protons, can pass into the complexing base B—<b> in the chosen solvent system .

Ifølge følgende likevekter kan mole-kylet HbB i oppløsning avgi hhv. oppta protoner According to the following equilibria, the molecule HbB in solution can emit resp. absorb protons

H;B<i->b + i S = B-b + i HS+ . A;. H;B<i->b + i S = B-b + i HS+ . A;.

Her betyr: Here means:

S oppløsningsmolekylet S the solute molecule

A; likevektskonstanten som tilkommer A; the equilibrium constant that is added

reaksjonen Ai = (B) (HS)1 (H;B)—<1>the reaction Ai = (B) (HS)1 (H;B)—<1>

i et helt tall som kan anta verdien 1, in an integer that can assume the value 1,

2..b..b+n 2..b..b+n

n det antall protoner som kompleksdannermolekylet kan oppta i det valgte n the number of protons that the complexing molecule can occupy in the chosen one

oppløsningsmiddelsystem. solvent system.

B—<b>den kompleksdannerbase, som svarer til kompleksdannermolekylsyr en, og som er karakterisert ved at den ved reaksjonen med metalljoner under dannel-se av komplekse joner ikke lenger av-gir protoner, og som i beskrivelsen og påstandene bare er kalt kompleksdan-dannerbasen. B—<b>the complex-forming base, which corresponds to a complex-forming molecular acid, and which is characterized by the fact that it no longer emits protons during the reaction with metal ions during the formation of complex ions, and which in the description and claims is only called complex-forming form the base.

Kompleksdannerbasen B—<b> er av stor betydning, da graden av kompleksdannelsen med et metall er direkte avhengig av dens konsentrasjon. Den er størrelsen, hvor det for foreliggende fremgangsmåte må foreligge et konsentrasjonsfall. Herved er det likegyldig om konsentrasjonsfallet av kompleksdannerbasen oppnåes ved variasjon i rommet av kompleksdannermoleky-lets H,B konsentrasjon ved konstant pH eller ved tilsvarende variasjon av pH-verdien eller av konsentrasjonen av et hjelpemetall, som egner seg for kompleksdannelse, ved konstant konsentrasjon av kompleksdannermolekylet eller ved samti-dig variasjon i rommet av de tre størrelser. The complexing base B—<b> is of great importance, as the degree of complexation with a metal is directly dependent on its concentration. It is the size at which there must be a drop in concentration for the present method. Hereby, it is indifferent whether the drop in concentration of the complexing base is achieved by variation in space of the complexing molecule's H,B concentration at constant pH or by a corresponding variation of the pH value or of the concentration of an auxiliary metal, which is suitable for complex formation, at constant concentration of the complexing molecule or by simultaneous variation in space of the three sizes.

Hvis det befinner seg metalljoner i denne oppløsning, hvor det foreligger et konsentrasjonsfall av en kompleksdanner, vil disse i områdene med lav kompleksdanner-konsentrasjon foreligge som enkle eller komplekse kat joner, og i områdene med høy kompleksdanner-konsentrasjon som metallholdige komplekse anjoner. Hvis metallj onene eventuelt tilsettes i form av komplekse oppløselige forbindelser, vil det skje kompleksomleiringer. De tilsatte komplekse forbindelser må således under be-tingelsene for atskillelsesoperasjonen ikke være mere stabile enn kompleksene som skal dannes. Under påvirkning av et elektrisk felt, som er anlagt i overensstem-melse med konsentrasjonsstigningen, vil alle områder av oppløsningen med lav kompleksdanner-konsentrasjon bli fattigere på metall, da de opprinnelig tilstedeværende eller under prosessen nydannete metallholdige kat joner vandrer i retning av stigende kompleksdanner-konsentrasjon. Den totale metallstrøm er således i slike områder likerettet med feltet. Omvendt vil områdene med høy kompleksdanner-konsentrasjon bli fattigere på metall, da de opprinnelig forhåndenværende eller under prosessen nydannete komplekse anjoner vandrer i retning av avtagende kompleksdanner-konsentrasjon. I slike områder har den totale metallstrøm således motsatt retning mot feltet. På det sted hvor metallet delvis foreligger som kat jon og delvis som komplekst anjon er den totale metallstrøm 0, slik at metallet anriker seg på dette sted. Da disse steder med kompleksdanner-konsentrasjoner som er karakteristiske for den delvise kompleksdannelse av et metall, i den ifølge oppfinnelsen benyttede opp-løsning opptrer atskilt i rommet for de forskjellige metaller, er atskillelsen av de forskjellige metaller gitt. Det er herved uten betydning hvor metalljonblandingen føres inn i kompleksdannerens konsentrasjonsfall. If there are metal ions in this solution, where there is a concentration drop of a complexing agent, these will be present in the areas with low complexing agent concentration as simple or complex cations, and in the areas with high complexing agent concentration as metal-containing complex anions. If the metal ions are optionally added in the form of complex soluble compounds, complex rearrangements will occur. Under the conditions of the separation operation, the added complex compounds must thus not be more stable than the complexes to be formed. Under the influence of an electric field, which is applied in accordance with the increase in concentration, all areas of the solution with low complex former concentration will become poorer in metal, as the metal-containing cations originally present or newly formed during the process migrate in the direction of increasing complex former concentration. The total metal flow is thus aligned with the field in such areas. Conversely, the areas with a high complex-former concentration will become poorer in metal, as the originally present or newly formed complex anions during the process migrate in the direction of decreasing complex-former concentration. In such areas, the total metal flow thus has the opposite direction to the field. At the location where the metal is partly present as a cation and partly as a complex anion, the total metal flow is 0, so that the metal is enriched at this location. Since these places with complexing concentrations which are characteristic of the partial complexation of a metal, in the solution used according to the invention appear separately in the space for the different metals, the separation of the different metals is a given. It is therefore irrelevant where the metal ion mixture is introduced into the complex former's concentration drop.

Ved enklere atskillelsesoperasjoner, som ved analytisk atskillelse av metalljoner ved hjelp av papirstrimler i anord-ningen ifølge fig. 1, vil det være hensiktsmessig å frembringe konsentrasjonsfallet i kompleksdanner-oppløsningen ved samme elektriske felt som bevirker metallenes atskillelse. In simpler separation operations, such as analytical separation of metal ions using paper strips in the device according to fig. 1, it will be appropriate to produce the drop in concentration in the complexing solution by the same electric field which causes the separation of the metals.

For å muliggjøre hhv. lette visse at-skillelser kan det eventuelt tilsettes hjelpekompleksdannere i konstant eller i rommet foranderlig konsentrasjon. Dette f. eks. for å hindre fellinger eller for å overføre ikke-ladete komplekser i anjoniske blandings-komplekser. Slike hjelpekompleksdannere må ikke nødvendigvis danne anjoniske komplekser med metalljonene som skal atskilles. To enable respectively to facilitate certain at-separations, auxiliary complex formers can possibly be added in a constant or spatially variable concentration. This e.g. to prevent precipitation or to transfer uncharged complexes in anionic mixture complexes. Such auxiliary complex formers do not necessarily have to form anionic complexes with the metal ions to be separated.

Den følgende liste inneholder eksempler på kompleksdannere hhv. hjelpekompleksdannere, som kan benyttes til atskillelse av metaller ifølge foreliggende fremgangsmåte: Vann, halogenvannstoffsyrer, rodan-vannstoffsyrer, cyanvannstoff, kullsyre, salpetersyre, svovelsyre, fosforsyrer som trimetafosforsyre, tripolyfosforsyre, met-tede og umettede alifatiske, aromatiske og hydro-aromatiske karbonsyrer, f. eks. eddiksyre, fluoreddiksyre, a-klorpropionsyre, oljesyre, ravsyre, sebacinsyre, maleinsyre, benzoesyre, toluylsyre, naftoesyre, cyklo-heksankarbonsyre, oksalsyre, hydroksy-karbonsyrer av alifatisk, aromatisk og hydroaromatisk opprinnelse, f. eks. The following list contains examples of complex formers or auxiliary complex formers, which can be used for the separation of metals according to the present method: Water, hydrohalic acids, rhodanic hydroic acids, hydrocyanic acid, carbonic acid, nitric acid, sulfuric acid, phosphoric acids such as trimetaphosphoric acid, tripolyphosphoric acid, saturated and unsaturated aliphatic, aromatic and hydroaromatic carbonic acids, f e.g. acetic acid, fluoroacetic acid, α-chloropropionic acid, oleic acid, succinic acid, sebacic acid, maleic acid, benzoic acid, toluic acid, naphthoic acid, cyclohexanecarboxylic acid, oxalic acid, hydroxycarboxylic acids of aliphatic, aromatic and hydroaromatic origin, e.g.

melkesyre, glukonsyre, vinsyre, sitron-syre, sulfosalicylsyre, salicylsyre, 1-hydroksy-cykloheksankarbonsyre-1, alifatiske, aromatiske og hydro-aromatiske aminokarbonsyrer, som f. eks. lactic acid, gluconic acid, tartaric acid, citric acid, sulfosalicylic acid, salicylic acid, 1-hydroxy-cyclohexanecarboxylic acid-1, aliphatic, aromatic and hydro-aromatic aminocarboxylic acids, such as e.g.

glykokoll, (3-alanin, iminodieddiksyre, nitrilotrieddiksyre, etylendiaminotetra-eddiksyre, anilindieddiksyre, antranilsyre, antranilsyre-N-dieddiksyre, 1,2-diamino-cykloheksantetraeddiksyre, glycocol, (3-alanine, iminodiacetic acid, nitrilotriacetic acid, ethylenediaminotetraacetic acid, anilinideacetic acid, anthranilic acid, anthranilic acid-N-diacetic acid, 1,2-diamino-cyclohexanetetraacetic acid,

alifatiske, aromatiske og hydro-aromatiske aminohydroksykarbonsyrer, som f. eks. aliphatic, aromatic and hydro-aromatic aminohydroxycarboxylic acids, such as e.g.

hydroksyetylendiamintrieddiksyre, Bis-((3-hydroksyetyl)-glykokoll, N,N-Bis-((3-hydroksyetyl) -antranilsyre, N- (2-hydroksycykloheksyl)-etylendiamin-tetraeddisksyre, Hydroxyethylenediaminetriacetic acid, Bis-((3-hydroxyethyl)-glycocol, N,N-Bis-((3-hydroxyethyl)-anthranilic acid, N-(2-hydroxycyclohexyl)-ethylenediaminetetraacetic acid,

ketokarbonsyrer, f. eks. ketocarboxylic acids, e.g.

pyrodruesyre, levulinsyre, pyruvic acid, levulinic acid,

fenol, f. eks. phenol, e.g.

fenol, pyrokatekin, pyrokatekindisul-fonsyre, kromotropsyre, dikarbonylforbindelser, f. eks. phenol, pyrocatechin, pyrocatechin disulfonic acid, chromotropic acid, dicarbonyl compounds, e.g.

acetylaceton, benzoylaceton, benzoyl-trifluoroaceton, 2-furyltrifluoroaceton, ditenoylmetan, trifluoroacetylaceton, acetylacetone, benzoylacetone, benzoyl-trifluoroacetone, 2-furyltrifluoroacetone, ditenoylmethane, trifluoroacetylacetone,

tenoyltrifluoroaceton, thenoyl trifluoroacetone,

hydroksyazoforbindelser, f. eks. hydroxyazo compounds, e.g.

nitrodiazosyre >. |3-naftol, nitrodiazosyre >■ a-naftol, 0,0'-dihydroksyazoforbindelser, heterocykliske forbindelser, f. eks. nitrodiazoic acid >. |3-naphthol, nitrodiazo acid >■ a-naphthol, 0,0'-dihydroxyazo compounds, heterocyclic compounds, e.g.

8-hydroksykinolin, 8-hydroksykinolin-5-sulfonsyre, 2-(2-hydroksyfenol)-benztiazol, 4-hydroksybenzimidazol, 2-metyl-4-hydroksybenzimidazol, prolin, tryptofan, amino-barbitursyre-N,N-dieddiksyre. 8-hydroxyquinoline, 8-hydroxyquinoline-5-sulfonic acid, 2-(2-hydroxyphenol)-benzthiazole, 4-hydroxybenzimidazole, 2-methyl-4-hydroxybenzimidazole, proline, tryptophan, amino-barbituric acid-N,N-diacetic acid.

Som bare hjelpekompleksdannere kan foruten de ovenstående kompleksdannere og hjelpekompleksdannere bl. a. følgende komme på tale: As only auxiliary complex formers, in addition to the above complex formers and auxiliary complex formers, e.g. a. The following should be discussed:

Ammoniakk Ammonia

organiske aminer, f. eks. metylamin, trietylamin, diisopropyl-amin, organic amines, e.g. methylamine, triethylamine, diisopropylamine,

etylendiamin, trietylendiamin, cyklo-heksandiamin-1,2, pyridin, kinolin, ct-dipyridyl, imidazol. ethylenediamine, triethylenediamine, cyclohexanediamine-1,2, pyridine, quinoline, ct-dipyridyl, imidazole.

Den nye metode tillater analytisk atskillelse på usedvanlig kort tid og med forbausende enkle apparatmessige hjelpe-midler av kjemisk meget like metaller, f. eks. av jordalkalimetaller, treverdige lett-metaller, de sjeldne jordarters metaller, tungmetallene, særlig også de beslektede tungmetaller fra jerngruppen, samt deres innbyrdes blandinger eller blandinger med andre metaller. The new method allows analytical separation of chemically very similar metals, e.g. of alkaline earth metals, trivalent light metals, the rare earth metals, the heavy metals, especially also the related heavy metals from the iron group, as well as their mutual mixtures or mixtures with other metals.

Under benyttelse av sjikt, som hindrer fri konveksjon og danner et skille i rommet, som f. eks. diafragmer, kan fremgangsmåten også anvendes til preparativ atskillelse av metaller. Dette kan eventuelt t. 0. During the use of layers, which prevent free convection and form a separation in the room, such as e.g. diaphragms, the method can also be used for preparative separation of metals. This can possibly t. 0.

m. utføres kontinuerlig. m. is performed continuously.

For den praktiske anvendelse av prin-sippet ifølge oppfinnelsen for atskillelse av metallsaltblandinger benyttes et apparat, som omfatter følgende hovedbestanddeler: anoderom, katoderom og elektrodemellomrom. Disse apparatdelers form er vanligvis ikke kritisk og retter seg etter om det skal arbeides stasjonært eller kontinuerlig. Kon-struksjonsmaterialet bør bestå av materi-aler som ikke angripes, f. eks. glass, emal-jert jern eller aluminium overtrukket med ikke ledende kunstharpiks. For the practical application of the principle according to the invention for the separation of metal salt mixtures, an apparatus is used, which comprises the following main components: anode compartment, cathode compartment and electrode space. The shape of these device parts is usually not critical and depends on whether stationary or continuous work is to be done. The construction material should consist of materials that are not attacked, e.g. glass, enamelled iron or aluminum coated with non-conductive synthetic resin.

I de enkleste tilfelle, f. eks. for analytiske formål, består de to elektroderom av firkantede glasskår. In the simplest cases, e.g. for analytical purposes, the two electrode compartments consist of square shards of glass.

I anoderommet A (fig. 1) innføres kom-pleksødeleggeren, som inneholder joner, som kan inngå stabilere forbindelser med den for atskillelsen benttede kompleksdanner enn metallene som skal atskilles. I praksis vil følgende komme på tale: oppløsninger av mineralsyrer, som f. eks. HC1 og tungmetallsalter, som f. eks. FeCU. Katoderommet K inneholder kompleksdanner-oppløsningen (f. eks. dinatrium-hydrogennitrilotriacetat) og eventuelt også en hjelpekompleksdanner. In the anode compartment A (fig. 1), the complex destroyer is introduced, which contains ions, which can enter into more stable compounds with the complex former bent for the separation than the metals to be separated. In practice, the following will come into play: solutions of mineral acids, such as HC1 and heavy metal salts, such as FeCU. The cathode compartment K contains the complexing solution (e.g. disodium hydrogen nitrilotriacetate) and possibly also an auxiliary complexing agent.

Den viktigste del av dette apparat er eiektrodemellomrommet, da metallsaltenes atskillelse finner sted der. Dette omfatter et væskevolum, hvor de omhandlete metaller (f. eks. Cu, Ni, Ce m. v.) er oppløst, samt et fastsittende jonegjennomtrengelig fyll-legeme, som i det minste hindrer fri konveksjon av denne oppløsning parallelt med det elektriske felt, slik at det kompleksdannerbase-konsentrasjonsfall som senere skal fremkalles (under påvirkning av det elektriske felt) skal bestå under lengere tid. Eiektrodemellomrommet ligger i et kjølebad, som leder bort varmen, som fremkalles av strømgjennomgangen. The most important part of this apparatus is the interelectrode space, as the separation of the metal salts takes place there. This includes a liquid volume, in which the metals in question (e.g. Cu, Ni, Ce etc.) are dissolved, as well as a fixed ion-permeable filler body, which at least prevents free convection of this solution parallel to the electric field, so that the drop in complexing base concentration that will later be induced (under the influence of the electric field) must last for a longer time. The interelectrode space is located in a cooling bath, which dissipates the heat generated by the flow of current.

I enkleste (og for kvalitative analyser vanligste) tilfelle er dette «fastsittende fyll-legeme» en papir- eller PVC-stoffstrimmel, som legges fra bad A til bad B (se fig. 1). På denne strimmel dryppes oppløsningen av metallsaltene som skal skilles (fuktet sone angitt påtegningen med striplede hen-visningslinjer). Papiret får deretter fra begge sider suge seg fullt med katoderom-hhv. anoderomoppløsning, inntil hele strimmelen er fuktig. Deretter kobles det elektriske felt inn, hvorved kompleksdannerbase-konsentrasjonsfallet automatisk inn-stiller seg. Det elektriske felt får virke en kort stund (ca. i/2 tu ca- 10 min., alt etter feltstyrken). Hvis de metalljoner som skal skilles er sterkt farget, kan man se, hvor-ledes det dannes atskilte tynne linjer på papiret på tvers av det elektriske felt, hvilke linjer forblir på samme sted også ved lengere innvirkning av det elektriske felt. Disse linjer utgjør ansamlingsstedene for de enkelte metaller. Papiret tas deretter ut av apparatet og tørkes raskt. (De fargete strimler kan etterpå ekstraheres enkeltvis og eventuelt opparbeides kvantitativt.) Hvis jonene, som skal atskilles, er ufarget eller meget svakt farget, kan atskillelsesproses-sen ikke sees. Papiret må derfor etter tør-kingen på i og for seg kjent måte sprøytes med en oppløsning, som danner fargete forbindelser med metallj onene som skal atskilles. Dette kan f. eks. være oppløsninger av følgende substanser: tetrakaliumheksa-cyanoferrat, rubeanhydrogensyre og disses salter m. v. (De derpå dannete, fargete strimler kan eventuelt opparbeides videre kvantitativt.) In the simplest (and for qualitative analyses, most common) case, this "fixed filler body" is a strip of paper or PVC fabric, which is laid from bath A to bath B (see fig. 1). The solution of the metal salts to be separated is dripped onto this strip (moistened zone indicated in the drawing with striped reference lines). The paper is then allowed to fully absorb from both sides the cathode space or anoderm solution, until the entire strip is moist. The electric field is then switched on, whereby the complex-former-base concentration drop automatically adjusts. The electric field is allowed to work for a short time (approx. 1/2 tu approx. 10 min., depending on the field strength). If the metal ions to be separated are strongly colored, one can see how separate thin lines are formed on the paper across the electric field, which lines remain in the same place even with longer exposure to the electric field. These lines constitute the accumulation sites for the individual metals. The paper is then removed from the device and quickly dried. (The colored strips can afterwards be extracted individually and optionally worked up quantitatively.) If the ions to be separated are uncoloured or very weakly coloured, the separation process cannot be seen. The paper must therefore, after drying, be sprayed in a manner known per se with a solution which forms colored compounds with the metal ions to be separated. This can e.g. be solutions of the following substances: tetrapotassium hexacyanoferrate, rubeanic acid and their salts, etc. (The resulting colored strips can optionally be processed further quantitatively.)

For preparativ atskillelse av metalljoner benyttes med fordel et elektrodemellomrom, omfattende et væskevolum, hvor metallene er oppløst og som er hindret i fri konveksjon parallelt med det elektriske felt, slik at kompleksdannerbase-konsentrasjonsfallet, som senere fremkalles, forblir bestående lengere tid under påvirkning av det elektriske felt. Loddrett på det elektriske felt er væsken fritt bevegelig. I praksis består dette elektrodemellomrom f. eks. av et trau som ligger i et kjølebad og som er oppdelt i smale kamre ved jonegjennnom-trengelige skillevegger, som ligger på tvers av det elektriske felt og hindrer fri konveksjon. Som materiale for disse skillevegger kan f. eks. kartongstrimler, sintrede og porøse Teflonfolier eller «akkumulator-skillevegger» komme på tale. Oppløsningen av metallsaltblandingen, som skal atskilles, føres inn i dette elektrodemellomrom^ Konsentrasjonsfallet av kompleksdannerbasen, som skal fremkalles langs det elektriske felt, tilveiebringes fortrinsvis ved samme elektriske felt som også bevirker metallenes atskillelse. Det kan dog også fremkalles på annen måte, idet oppløsningen med den ønskede kompleksdannerbase-konsentrasjon f. eks. fylles enkeltvis i hvert kammer. Under påvirkning av det elektriske felt vil metalljonene skille seg ut av den opprinnelige blanding og i løpet av kort tid samle seg atskilt i bestemte kamre, hvor de forblir i lengere tid. Oppløsningen kan da bare tas enkeltvis ut av de enkelte kamre og opparbeides kvantitativt. For the preparative separation of metal ions, an electrode gap is advantageously used, comprising a volume of liquid, in which the metals are dissolved and which is prevented from free convection parallel to the electric field, so that the complexing-base concentration drop, which is subsequently induced, remains for a longer time under the influence of the electric fields. Perpendicular to the electric field, the liquid is free to move. In practice, this electrode gap consists of e.g. of a trough located in a cooling bath and which is divided into narrow chambers by ion-permeable partitions, which lie across the electric field and prevent free convection. As material for these partitions, e.g. cardboard strips, sintered and porous Teflon foils or "accumulator partitions" come to mind. The solution of the metal salt mixture, which is to be separated, is introduced into this electrode space. The drop in concentration of the complexing base, which is to be induced along the electric field, is preferably provided by the same electric field which also causes the separation of the metals. However, it can also be induced in another way, as the solution with the desired complexing base concentration, e.g. is filled individually in each chamber. Under the influence of the electric field, the metal ions will separate from the original mixture and within a short time collect separately in certain chambers, where they remain for a longer time. The solution can then only be taken out individually from the individual chambers and worked up quantitatively.

Atskillelsen av metallsaltene kan også utføres kontinuerlig. Herved får oppløsnin-ger med tilsvarende innbyrdes gradert kompleksdannerbase-konsentrasjon samt opp-løsninger av de metaller som skal atskilles, strømme langsomt gjennom de ovenfor om-talte enkelte kamre. Under påvirkning av det elektriske felt vil metallene atskilles og ansamles i bestemte kamre, hvor de med den strømmende væske fortløpende spyles enkeltvis i oppsamlingskar, og hvor de videre kan opparbeides. Ved denne utførel-sesform må kamrene være spesielt lange for at metallene først skal spyles ut når de er helt atskilt. The separation of the metal salts can also be carried out continuously. In this way, solutions with a corresponding mutually graded complexing base concentration as well as solutions of the metals to be separated are allowed to flow slowly through the individual chambers mentioned above. Under the influence of the electric field, the metals will be separated and accumulated in specific chambers, where they are continuously flushed with the flowing liquid into collection vessels, and where they can be processed further. In this embodiment, the chambers must be particularly long so that the metals are only flushed out when they are completely separated.

(Lit. E. Schumacher, Helvetica Chimica Acta 41, 1572 (1958) Stability Constants of Metal-ion Complexes with Solubility Pro-ducts of Inorganic Substances, complied by Jannik Bjerrum, Gerold Schwarzenbach and Lars Gunnar Sillén, Special Publica-tions. The Chem. Soc, London, 1958 No. 6 and 7.) (Lit. E. Schumacher, Helvetica Chimica Acta 41, 1572 (1958) Stability Constants of Metal-ion Complexes with Solubility Products of Inorganic Substances, complied by Jannik Bjerrum, Gerold Schwarzenbach and Lars Gunnar Sillén, Special Publica-tions. The Chem. Soc, London, 1958 No. 6 and 7.)

De følgende eksempler gjengir enkelte utførelsesformer for oppfinnelsen, dog uten at denne er begrenset til disse. The following examples reproduce certain embodiments of the invention, although it is not limited to these.

Eksempel 1. Example 1.

I det i fig. 1 skisserte apparat fylles i anoderommet (A) 0,5 n saltsyre og i katoderommet (K) en oppløsning bestående av 0,5 n natronlut og 0,2 molar dinatrium-hydrogen-nitrilotriacetat. Båndet (B) på-føres en dråpe (ca. 0,05 ml) oppløsning, som inneholder 0,001—0,005 molare meng-der hver av kloridene eller nitratene av metalljonene Fe (III), NI (II), Zn (II), Al(III), U02(II), Co(II), Cr(III) og Mn(II), slik at det på midten dannes en 2—3 cm lang fuktig sone. Den ene enden av strimmelen dyppes deretter i anodeoppløsningen og den annen ende dyppes i katodeopp-løsningen. Båndets (B) midtre parti ned-senkes i kjølebadet (C) under overflaten av et inert kjølemiddel. Som hjelpemiddel benyttes en helt inert væske, f. eks. tetra-klorkullstoff. Tetrakloretylen, solventnafta, o-diklorbensol, xylol, dibutylftalat m. v. kan også benyttes. Så snart de to oppløs-ninger fra elektroderommene har forenet seg ved kapillaritet med den påførte sone på båndet (B), anlegges en spenning på In that in fig. 1 sketched apparatus is filled in the anode compartment (A) with 0.5 n hydrochloric acid and in the cathode compartment (K) with a solution consisting of 0.5 n caustic soda and 0.2 molar disodium-hydrogen-nitrilotriacetate. A drop (approx. 0.05 ml) of solution containing 0.001-0.005 molar amounts of each of the chlorides or nitrates of the metal ions Fe (III), NI (II), Zn (II), is applied to the tape (B). Al(III), U02(II), Co(II), Cr(III) and Mn(II), so that a 2-3 cm long moist zone is formed in the middle. One end of the strip is then dipped into the anode solution and the other end is dipped into the cathode solution. The middle part of the belt (B) is immersed in the cooling bath (C) below the surface of an inert coolant. A completely inert liquid is used as an aid, e.g. carbon tetrachloride. Tetrachlorethylene, solvent naphtha, o-dichlorobenzene, xylol, dibutyl phthalate etc. can also be used. As soon as the two solutions from the electrode spaces have united by capillarity with the applied zone on the tape (B), a voltage of

200 V på elektrodene (Ei og E2), hvorved 200 V on the electrodes (Ei and E2), whereby

det oppstår en strøm på ca. 10 mA (ved 2 cm båndbredde og filtrerpapir Whatman nr. 1). Under atskillelsen vil strømstyrken øke langsomt og etter 2—5 minutter oppnåes optimal atskillelse. Strimmelen (B) tas ut av apparatet og tørkes hurtigst mulig med varm luft. De enkelte atskilte joner a current of approx. 10 mA (at 2 cm bandwidth and filter paper Whatman No. 1). During the separation, the amperage will increase slowly and after 2-5 minutes optimal separation is achieved. The strip (B) is removed from the device and dried as quickly as possible with hot air. The individual separated ions

vil, hvis de er farget eller danner fargete will, if they are colored or form colored

komplekser, delvis være synlige som mindre enn 0,2 mm brede skarpe streker. For complexes, partially be visible as less than 0.2 mm wide sharp lines. For

nøyaktig identifisering av metallene skjæ-res strimmelen hensiktsmessig opp på langs og påsprøytes de fra mikrokjemien accurate identification of the metals, the strip is appropriately cut lengthwise and sprayed on from the microchemistry

kjente reaksjonsoppløsninger (ferrocyan-kalium, ditizon, morin, rubeanvannstoff m. v.). Under svak utvasking av jonebån-dene vil de for metallene karakteristiske farginger eller fluorescenser derved danne seg i den ovenfor angitte rekkefølge. known reaction solutions (potassium ferrocyanide, dithizone, morin, rubean hydrogen, etc.). During weak leaching of the ion bands, the colors or fluorescences characteristic of the metals will thereby form in the order indicated above.

Deretter kan båndets hovedparti kuttes opp på tvers og de enkelte deler kan ekstraheres med 1 n saltsyre, hvorved det oppnåes oppløsninger av de rene metaller, som forelå i den opprinnelige blanding. Når den nøyaktige lokalisering av metallene er blitt bestemt én gang, kan båndet The main part of the strip can then be cut crosswise and the individual parts can be extracted with 1 N hydrochloric acid, whereby solutions of the pure metals, which were present in the original mixture, are obtained. Once the exact location of the metals has been determined, the tape can

(B) naturligvis ved ytterligere forsøk, så-fremt disse er gjennomført under nøyaktig (B) of course by further tests, as long as these are carried out accurately

de samme forsøksbetingelser, for kvantita-tiv isolering av metallene kuttes direkte opp i de enkelte segmenter som inneholder metallene. the same experimental conditions, for quantitative isolation of the metals are cut directly into the individual segments containing the metals.

Eksempel 2. Example 2.

Under anvendelse av samme apparat som i eksempel 1 fylles 1 n saltsyre i anoderommet og en oppløsning bestående av 0,5 n natronlut og 0,1 m dinatriumdihydro-gen-etylendiamintetraacetat. Båndet (B), som også i dette tilfelle kan bestå av et polyvinylkloridstoff, påføres en dråpe av en oppløsning av Nd (III) -, Pr (III) -, Ce (III) - og La(III)-klorid. Ved anlegning av det elektriske felt skjer en atskillelse av de fire metaller og identifiseringen og isoler-ingen av de rene metaller følger som angitt i eksempel 1. Using the same apparatus as in example 1, 1 n hydrochloric acid is filled into the anode compartment and a solution consisting of 0.5 n caustic soda and 0.1 m disodium dihydrogen-ethylenediaminetetraacetate. The tape (B), which can also in this case consist of a polyvinyl chloride substance, is applied with a drop of a solution of Nd (III) -, Pr (III) -, Ce (III) - and La(III) chloride. When the electric field is applied, the four metals are separated and the identification and isolation of the pure metals follows as indicated in example 1.

Eksempel 3. Example 3.

Under anvendelse av samme apparat som i eksempel 1 fylles 1 n saltsyre i anoderommet og 11,6 n saltsyre i katoderommet. Båndet (B), som også i dette tilfelle kan utgjøres av en polyvinylkloridvevning, på-føres en dråpe av en oppløsning, som inneholder jonene Fe(III), As(III), Co(II)) og Cu(II), eventuelt under tilsetning av litt fuktningsmiddel. Ved anlegging av det elektriske felt lykkes også her en full atskillelse av de fire jonesorter. Using the same apparatus as in example 1, 1 n hydrochloric acid is filled in the anode compartment and 11.6 n hydrochloric acid in the cathode compartment. The tape (B), which can also in this case be made of a polyvinyl chloride weave, is applied with a drop of a solution containing the ions Fe(III), As(III), Co(II)) and Cu(II), optionally while adding a little wetting agent. With the construction of the electric field, a complete separation of the four types of ions succeeds here as well.

Eksempel 4. Example 4.

I samme apparat som i eksempel 1 fylles 0,5 n saltsyre i anoderommet og en oppløsning bestående av 5 n eddiksyre og 5 m natriumacetat i katoderommet. Båndet (B) påføres en oppløsning som inneholder jonene UCMII), Fe (III), Cr (III) og Co (II). Ved anlegging av et elektrisk felt atskilles de fire joner og danner skarpt formete soner i den angitte rekkefølge. Identifika-sjon og isolering gjennomføres som i de ovenstående eksempler. In the same apparatus as in example 1, 0.5 n hydrochloric acid is filled in the anode compartment and a solution consisting of 5 n acetic acid and 5 m sodium acetate in the cathode compartment. The tape (B) is applied to a solution containing the ions UCMII), Fe (III), Cr (III) and Co (II). When an electric field is applied, the four ions are separated and form sharply shaped zones in the specified order. Identification and isolation are carried out as in the above examples.

Eksempel 5. Example 5.

I samme apparat som i eksempel 1 befinner det seg 0,5 n salpetersyre i anoderommet og 0,1 m dinatriumkalciumetylen-diamintetraacetat-oppløsning i katoderommet. Ved en analog fremgangsmåte som i de foregående eksempler kan jonene Hg (II) og Cu (II) skilles meget skarpt. Cu(III), Pb(II) og Cd(II) vil ved denne anordning ligge tett ved siden av hverandre i nevnte rekkefølge. In the same apparatus as in example 1, there is 0.5 n nitric acid in the anode compartment and 0.1 m disodium calcium methylene diamine tetraacetate solution in the cathode compartment. With an analogous method as in the previous examples, the ions Hg (II) and Cu (II) can be separated very sharply. In this arrangement, Cu(III), Pb(II) and Cd(II) will lie close to each other in the order mentioned.

Eksempel 6. Example 6.

Cu(II)-, Ni(II)- og Co(II)-joner kan atskilles fullstendig, når det benyttes 0,1 m ferriklorid i anoderommet og 0,1 m dinatri-umkalciumetylen-diamintetraacetat i katoderommet for samme fremgangsmåte som ovenfor beskrevet. Cu(II)-, Ni(II)- and Co(II) ions can be separated completely, when 0.1 m ferric chloride is used in the anode compartment and 0.1 m disodium calcium methylene diamine tetraacetate in the cathode compartment for the same method as described above .

Eksempel 7. Example 7.

I samme apparat som beskrevet i eksempel 1 fylles 0,5 m HC1 i anoderommet og en oppløsning bestående av 0,2 m diam-moniumdihydrogenetylendiamintetra-acetat, 2 m natriumacetat og 2 m eddiksyre i katoderommet. Ved en analog fremgangsmåte som i de foranstående eksempler kan UC-2(II) og Cr(III), som fokuseres sammen, skilles fra alle jordalkali-, jord- og sjeldne jordmetalljoner samt fra Mn(II), Fe, Co(II), Ni(II), Cu(II), Zu(II), Cd(II) og Hg (II). In the same apparatus as described in example 1, 0.5 m HC1 is filled in the anode compartment and a solution consisting of 0.2 m diammonium dihydrogenethylenediaminetetraacetate, 2 m sodium acetate and 2 m acetic acid in the cathode compartment. By an analogous procedure as in the preceding examples, UC-2(II) and Cr(III), which are focused together, can be separated from all alkaline earth, earth and rare earth metal ions as well as from Mn(II), Fe, Co(II) , Ni(II), Cu(II), Zu(II), Cd(II) and Hg (II).

Eksempel 8. Example 8.

Ved en analog fremgangsmåte som i de foranstående eksempler er det ved bruk av 0,25 m HC1 og 11,25 m HF i anoderommet og 0,3 m diammoniumhydrogennitrilotriacetat i katoderommet mulig å skille Tb (III), Y(III), La(III) og Sr(II). By an analogous method as in the above examples, by using 0.25 m HC1 and 11.25 m HF in the anode compartment and 0.3 m diammonium hydrogennitrilotriacetate in the cathode compartment, it is possible to separate Tb (III), Y(III), La( III) and Sr(II).

Under de samme betingelser lykkes det også å skille Tm(III), Y(III) og Sr(III). Under the same conditions, it is also possible to separate Tm(III), Y(III) and Sr(III).

Eksempel 9. Example 9.

Ved en analog fremgangsmåte som i de ovenstående eksempler og ved bruk av 0,3 m diammoniumdihydrogen |3', (3"-diamino-dietyletertetraacetat i katoderommet og 0,5 m HC1 i anoderommet samt ved en felt-styrke på 150V/cm kan Y(III), La(III) og Ba(II) atskilles i løpet av 5 min. Hvis det også befinner seg Sr (II) i blandingen, opptrer dette sammen med barium. By an analogous method as in the above examples and using 0.3 m diammonium dihydrogen |3', (3"-diamino-diethyl ether tetraacetate in the cathode compartment and 0.5 m HC1 in the anode compartment and at a field strength of 150 V/cm can Y(III), La(III) and Ba(II) separate within 5 min.If Sr(II) is also present in the mixture, this occurs together with barium.

Claims (2)

1. Fremgangsmåte for å atskille minst ett metallion fra en metallionblanding i en oppløsning, som er hindret i fri konveksjon og hvori er anlagt et elektrisk felt for atskillelse av metallionene i rommet, karakterisert ved at det i ioneoppløsningen fremkalles en konsentrasjonsstigning i en kompleksdannerbase, som selv eller ved hjelp av en annen kompleksdannerbase kan danne anioniske komplekser med minst ett av de tilstedeværende metallioner, og at det elektriske felt er likerettet med kompleksdannerbasens konsentrasjonsstigning.1. Method for separating at least one metal ion from a metal ion mixture in a solution, which is prevented from free convection and in which an electric field is set up to separate the metal ions in the room, characterized in that in the ion solution a concentration rise is induced in a complexing base, which itself or with the help of another complexing base can form anionic complexes with at least one of the metal ions present, and that the electric field is rectified with the concentration rise of the complexing base. 2. Fremgangsmåte som angitt i på-stand 1, karakterisert ved at det for frem-bringelse av kompleksdannerbasens kon-sentrasjonsgradient og for metallenes atskillelse i rommet benyttes samme elektriske felt.2. Method as stated in claim 1, characterized in that the same electric field is used for producing the concentration gradient of the complexing base and for the separation of the metals in the room.
NO00153826A 1963-07-01 1964-06-26 NO126748B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE730363 1963-07-01

Publications (1)

Publication Number Publication Date
NO126748B true NO126748B (en) 1973-03-19

Family

ID=20270992

Family Applications (1)

Application Number Title Priority Date Filing Date
NO00153826A NO126748B (en) 1963-07-01 1964-06-26

Country Status (9)

Country Link
US (1) US3323731A (en)
AT (1) AT272063B (en)
BE (1) BE649929A (en)
CH (1) CH418811A (en)
DE (1) DE1257005C2 (en)
FI (1) FI41097C (en)
GB (1) GB1066226A (en)
NL (1) NL6407500A (en)
NO (1) NO126748B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448934A (en) * 1966-08-12 1969-06-10 Frank C Vaughan Refining apparatus
SE327624B (en) * 1968-12-20 1970-08-24 Reinhall Rolf
US3754714A (en) * 1971-09-24 1973-08-28 Reinhall Rolf Grinding apparatus especially for lignocellulose containing material
US3845910A (en) * 1972-10-10 1974-11-05 Bolton Emerson Inlets for a double disc refiner
SE380848B (en) * 1974-03-27 1975-11-17 Sca Development Ab DEVICE FOR REFINING FIBER MATERIAL
US4447011A (en) * 1979-11-05 1984-05-08 Koppers Company, Inc. Plate adjustment system
CA1246374A (en) * 1983-10-24 1988-12-13 Steve Rowland Two stage high consistency refiner
US4801099A (en) * 1984-09-05 1989-01-31 Reinhall Rolf Bertil Combined hydrostatic/hydrodynamic bearing system for grinding apparatus
US5076892A (en) * 1989-07-20 1991-12-31 Sprout-Bauer Inc. Apparatus for pressurized refining of lignocellulose material
US5445328A (en) * 1993-08-25 1995-08-29 Andritz Sprout-Bauer, Inc. Dual zone refiner with separated discharge flow control
EP1701794B1 (en) * 2003-12-19 2010-11-03 Herbold Meckesheim Gmbh Disc mill
CN102400406B (en) * 2011-11-09 2014-02-26 华南理工大学 Medium Consistency Hydraulic Double Disc Refiner
DE102017127772A1 (en) * 2017-11-24 2019-05-29 Voith Patent Gmbh grinder
EP4127310B1 (en) * 2020-04-01 2023-07-26 Andritz Ag Apparatus for grinding a fibrous material suspension

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR907792A (en) * 1944-05-11 1946-03-21 Molinor S A Inverted disc mills and control by conical couples for grinding or pulverization of various materials
FR1059334A (en) * 1951-07-21 1954-03-24 Shredder for fibrous materials
US2743874A (en) * 1952-07-19 1956-05-01 Asplund Arne Johan Arthur Disk type grinding apparatus for fibrous materials
US2864562A (en) * 1953-05-20 1958-12-16 Bauer Bros Co Plural stage disc mill with back pressure control means for each stage
US2982482A (en) * 1960-06-01 1961-05-02 Ed Jones Corp Double-disk refiner
FR1318808A (en) * 1962-01-12 1963-02-22 Sprout Waldron & Company Friction disc crusher
FR1328216A (en) * 1962-07-09 1963-05-24 Sprout Waldron & Company Grinding device

Also Published As

Publication number Publication date
DE1257005B (en) 1967-12-21
BE649929A (en) 1964-12-30
GB1066226A (en) 1967-04-26
DE1257005C2 (en) 1968-08-14
CH418811A (en) 1966-08-15
FI41097B (en) 1969-04-30
FI41097C (en) 1969-08-11
NL6407500A (en) 1965-01-04
US3323731A (en) 1967-06-06
AT272063B (en) 1969-06-25

Similar Documents

Publication Publication Date Title
NO126748B (en)
Hardt et al. Fluorescence thermochromism of pyridine copper iodides and copper iodide
MacRobbie et al. Osmotic behaviour of the epithelial cells of frog skin
Bakker et al. Lipophilicity of tetraphenylborate derivatives as anionic sites in neutral carrier-based solvent polymeric membranes and lifetime of corresponding ion-selective electrochemical and optical sensors
Zuman et al. Polarographic reductions of some carbonyl compounds
Lorking et al. The corrosion of aluminium
DE3013765C2 (en)
EP3044575A1 (en) Liquid electrolyte for an electrochemical gas sensor
Huang et al. Tuning the excited-state intramolecular proton transfer (ESIPT)-based luminescence of metal–organic frameworks by metal nodes toward versatile photoluminescent applications
Sollner A NEW POTENTIOMETRIC METHOD TO DETERMINE CATIONS AND ANIONS WITH COLLODION AND PROTAMINE-COLLODION “MEMBRANE ELECTRODES”
Olivier et al. Lanthanide ion extraction by trifluoromethyl‐1, 3‐diketonate‐functionalised ionic liquids adsorbed on silica
Biswas et al. Kinetics of backward extraction of Mn (II) from Mn-D2EHP complex in kerosene to hydrochloric acid medium using single drop technique
CN116284837A (en) Metal-organic framework crystal material, preparation method and application of a zinc-based double ligand
CN106317092B (en) A kind of europium complex, preparation method and the application of Pyromellitic Acid ligand
Khajeh et al. Extraction of caffeine and gallic acid from coffee by electrokinetic methods coupled with a hollow‐fiber membrane
Harris et al. Excited-State Processes of Naphthols in Aqueous Surfactant Solution
SE186819C1 (en)
Shimura Behaviour of oxalic acid in the anodic oxidation of aluminium. The role of anodically initiated reduction processes in coloration and photoluminescence
Shekhovtsov et al. New orange dyes: Nitroderivatives of sulfonefluorescein
Egorov et al. Kinetics and mechanism of the reaction of substituted benzyl chlorides with copper in dimethylformamide
Nyman Polarography of Calcium, Strontium and Barium in Liquid Ammonia
Doron et al. The Application of Zone Melting Techniques to the Resolution of Two-Component Inorganic Salt Systems and Racemic Mixtures of Optically Active Compounds and their Diastereoisomers
Jyo et al. Ion-selective Electrode Membranes Responsive to Maleic and Phthalic Acids
SU452178A1 (en) Method of extracting copper from solutions
Kawamura et al. Internal transport numbers in molten AgNO3-LiNO3