Anordning for kombinert luft- og. vaeskek jøling av halvlederventiler.Foreliggende oppfinnelse vedrører en anordning for kombinert luft- og væskekjøling av styrbare eller ikke styrbare halvlederventiler og lignende for styring av motorer eller for likeret-ting av strøm til elektrolyseformål, hvor ventilene har holdere med kjøleflenser anordnet på en sådan måte omkring en sjakt, gjennom hvilken en ventilasjonsvifte presser en kjøleluftstrøm, at kjøle-flensene rager inn i sjakten.Halvlederventiler er meget følsomme for overtemperaturer og kan ødelegges momentant, hvis deres temperatur overstiger en viss kritisk verdi. Denne temperatur er avhengig av grunnmateria-let i halvlederen og dens oppbygging. Det er derfor hensiktsmessig at ventilene anordnes således at tapsvarmen skal ledes bort hurtig og effektivt.Luftkjølte ventiler blir som regel anordnet i eller omkring en sjakt, gjennom hvilken der drives en luftstrøm for forsert kjøling. Ved å kjøle ventilene med væske er det mulig å føre bort større varmemengder pr. tidsenhet enn ved luftkjøling, således at ventilenes belastningsevne økes. En kompletterende luftkjøling av visse deler av en ventilenhet eller på denne anordnet hjelpeutstyr er imidlertid ofte formålstjenlig eller nødvendig.Det særegne ved anordningen ifølge oppfinnelsen er at en luftkjøler for kjøling av kjølevæsken er anordnet ved sjaktens ene ende og at der i sjakten er anordnet ved sjaktens ene ende og at der inne i sjakten er anordnet en kjøleluftkanal, således at der mellom denne og sjakten dannes en spalte som i det minste ved kjøleluft-kanalens ene ende kommuniserer med denne og ventilasjonsviften også presser eller suger kjøleluft gjennom spalten. Vanligvis er sjakten vertikal og kjøleren for kjøling av væsken anordnet i sjaktens nedre del eller umiddelbart under sjakten. Kjøleluftviften anordnes med fordel i kjøleluftkanalen.Oppfinnelsen skal beskrives nærmere under henvisning til tegningen som viser skjematisk en utførelse av kjøleanordningen.På tegningen angir 1 et antall enheter som inneholder væskekjølte halvlederventiler og som er anordnet omkring en sjakt 2, i hvilken der finnes en kjøleluftkanal 3 som inneholder en vifte 4 som drives av en motor 5. Mellom sjakten 2 og kjøleluftkanalen 3 danner der en spalte 6 som gjennom åpningene 7 umiddelbart over en kjøler 8 kommuniserer med kanalen 3. Delene 9 på halvlederenhetene 1 rager inn i denne spalte 6. Den av motoren 10 drevne pumpe 11 pumper olje gjennom kjølesløyfene 12 til fordelingsringen 13, fra hvilken avkjølt olje gjennom rørene 14 og 15 presses gjennom halvlederenhetene 1 til samleringen 16 som er forbundet med pumpens sugeside. Som følge av luftmotstanden i kjøleren 8 råder der et overtrykk i kanalen 3. En trykkforskjell fåes derved mellom spal-tens 6 øvre og nedre ende, således at en del av kjøleluften i kanalen 3 strømmer inn i spalten 6, som pilene 17 viser, og opp gjennom spalten, således at også de i denne innragende deler blir avkjølt. Kjøleluftmengden bestemmes av åpningenes 7 størrelse. Ved en ut-førelse passerer ca. 10 % av kanalens 3 kjøleluftmengde opp gjennom spalten 6.Device for combined air and. The present invention relates to a device for combined air and liquid cooling of controllable or non-controllable semiconductor valves and the like for controlling motors or for rectifying current for electrolysis purposes, the valves having holders with cooling flanges arranged in such a manner around a shaft, through which a ventilation fan pushes a flow of cooling air, that the cooling flanges protrude into the shaft. Semiconductor valves are very sensitive to overtemperatures and can be destroyed instantaneously, if their temperature exceeds a certain critical value. This temperature depends on the basic material of the semiconductor and its structure. It is therefore expedient for the valves to be arranged so that the heat of loss is to be dissipated quickly and efficiently. Air-cooled valves are usually arranged in or around a shaft, through which an air flow is forced for forced cooling. By cooling the valves with liquid, it is possible to dissipate larger amounts of heat per. unit of time than in air cooling, so that the load capacity of the valves is increased. However, a complementary air cooling of certain parts of a valve unit or auxiliary equipment arranged thereon is often expedient or necessary. The special feature of the device according to the invention is that an air cooler for cooling the coolant is arranged at one end of the shaft and that in the shaft one end and that a cooling air duct is arranged inside the shaft, so that a gap is formed between it and the shaft which at least at one end of the cooling air duct communicates with it and the ventilation fan also presses or sucks cooling air through the slot. Usually the shaft is vertical and the cooler for cooling the liquid is arranged in the lower part of the shaft or immediately below the shaft. The invention will be described in more detail with reference to the drawing which schematically shows an embodiment of the cooling device. In the drawing 1 indicates a number of units which contain liquid-cooled semiconductor valves and which are arranged around a shaft 2, in which there is a cooling air duct 3. which contains a fan 4 driven by a motor 5. Between the shaft 2 and the cooling air duct 3 there forms a gap 6 which through the openings 7 immediately above a cooler 8 communicates with the duct 3. The parts 9 of the semiconductor units 1 project into this slot 6. The pump 11 driven by the motor 10 pumps oil through the cooling loops 12 to the distribution ring 13, from which cooled oil through the pipes 14 and 15 is forced through the semiconductor units 1 to the collecting ring 16 which is connected to the suction side of the pump. Due to the air resistance in the cooler 8 there is an overpressure in the duct 3. A pressure difference is thereby obtained between the upper and lower end of the gap 6, so that a part of the cooling air in the duct 3 flows into the gap 6, as the arrows 17 show, and up through the gap, so that also those in this protruding parts are cooled. The amount of cooling air is determined by the size of the 7 openings. In one embodiment, approx. 10% of the duct 3's cooling air volume up through the slot 6.