[go: up one dir, main page]

NO124840B - - Google Patents

Download PDF

Info

Publication number
NO124840B
NO124840B NO2340/68A NO234068A NO124840B NO 124840 B NO124840 B NO 124840B NO 2340/68 A NO2340/68 A NO 2340/68A NO 234068 A NO234068 A NO 234068A NO 124840 B NO124840 B NO 124840B
Authority
NO
Norway
Prior art keywords
vaccine
ribonucleic acid
antigen
cell
informative
Prior art date
Application number
NO2340/68A
Other languages
Norwegian (no)
Inventor
Diether Jachertz
Original Assignee
Diether Jachertz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diether Jachertz filed Critical Diether Jachertz
Publication of NO124840B publication Critical patent/NO124840B/no

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

Fremgangsmåte til fremstilling av en antigenfri vaksine. Method for producing an antigen-free vaccine.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling -av en antigenf ri vaksine. The invention relates to a method for producing an antigen-free vaccine.

Det er kjent til aktiv immunisering å anvende enten såkalte døde vaksiner, drepte virulente sykdomsfremkallere} eller levende vaksiner, ikke-drepte avirulente sykdomsfremkallere. Dess-uten anvendes det toksider (avgiftede bakterier), toksiner samt undérenheter av vira som podningsstoff. Disse vanlige vaksinér stiller høye krav til fremstillerens.omhyggelighet. Ved de døde vaksiner må inaktiveringen overvåkes omhyggelig, da en utilstrekkelig inaktivering av det naturlige antigen fører til uønskede bi-virkninger hos den vaksinerte person, og da på den annen side det naturlige.antigen'ved inaktiveringen i en viss utstrekning kan for- It is known for active immunization to use either so-called dead vaccines, killed virulent pathogens} or live vaccines, non-killed avirulent pathogens. In addition, toxins (detoxified bacteria), toxins and subunits of viruses are used as inoculants. These common vaccines place high demands on the care of the manufacturer. In the case of dead vaccines, the inactivation must be carefully monitored, as an insufficient inactivation of the natural antigen leads to unwanted side effects in the vaccinated person, and then, on the other hand, the natural antigen' during the inactivation to a certain extent can cause

andres eller beskadiges. others or be damaged.

Også en utilstrekkelig svekning av de anvendte vira Also an insufficient weakening of the viruses used

i podestoffer av formeringsdyktige vira kan ha uoverskuelige virk-ninger. Ved fremstillingen av podestoffer er en omfattende, tids-krevende og med høye omkostninger forbundet kontroll således nød-vendig. På tross av dette er det blitt omtalt uforenlighetsreak-sjoner. in inoculants of viruses capable of multiplication can have unforeseeable effects. In the production of inoculants, extensive, time-consuming and high-cost control is therefore necessary. Despite this, incompatibility reactions have been discussed.

De beskrevne ulemper kan overvinnes når det til The described disadvantages can be overcome when necessary

aktiv immunisering ikke anvendes selve antigenet, men en informatorisk ribanucleinsyre, som inneholder den samlede byggeplan for de ønskede antistoffer. Anvendelsen av en slik informatorisk ribonucleinsyre som podningsstoff har i forhold til de hittil vanlige pod-ningsstof f er betraktelige fordeler:. active immunization does not use the antigen itself, but an informative ribonucleic acid, which contains the overall blueprint for the desired antibodies. The use of such informative ribonucleic acid as inoculant has considerable advantages compared to the hitherto common inoculants:

1. Den informatoriske ribonucleinsyre er fri for for-urensninger. Sidereaksjoner hos den vaksinerte person er derfor ikke å frykte. 2. Immuniteten etter podningen oppnås hurtig, fordi makroorganismen direkte inngis byggeplanen for antistoffsyntesen således at en antigenopparbeidelse derved blir unødvendig i makroorganismen. 3. Det kan oppnås immuniseringer som hittil ikke var mulige på grunn av manglende egnede podningsstoffer, da den informatoriske ribonucleinsyre kan syntetiseres in vitro. 1. The informative ribonucleic acid is free of impurities. Side reactions in the vaccinated person are therefore not to be feared. 2. Immunity after inoculation is achieved quickly, because the building plan for antibody synthesis is directly entered into the macroorganism, so that antigen processing thereby becomes unnecessary in the macroorganism. 3. Immunizations can be achieved that were not possible until now due to a lack of suitable inoculants, as the informant ribonucleic acid can be synthesized in vitro.

Det har nå vist seg at man kan injisere informatorisk aktiv ribonucleinsyre i makroorganismer (mennesker og dyr), og at disse makroorganismer i tilslutning til injeksjonen danner antistoffer og utvikler en tilstrekkelig immunitet. It has now been shown that informatively active ribonucleic acid can be injected into macro-organisms (humans and animals), and that these macro-organisms form antibodies in response to the injection and develop sufficient immunity.

Oppfinnelsen vedrører således en fremgangsmåte til fremstilling av en antigenfri vaksine, idet fremgangsmåten erkarakterisert vedat man dyrker immunologisk kompetente celler eller fortrinnsvis cellefrie systemer av immunologisk kompetente, celler med et antigen i 2-60 minutter ved ca. 37°C5isolerer den dannede informatoriske ribonucleinsyre på kjent måte, f.eks. med fenol, og steriliserer og eventuelt tilsetter et bærestoff. The invention thus relates to a method for producing an antigen-free vaccine, the method being characterized by culturing immunologically competent cells or preferably cell-free systems of immunologically competent cells with an antigen for 2-60 minutes at approx. 37°C5 isolate the formed informative ribonucleic acid in a known manner, e.g. with phenol, and sterilizes and optionally adds a carrier.

Den som grunnlag for vaksinen tjenende informatoriske ribonucleinsyre.fåes altså når immunologisk kompetente celler eller fortrinnsvis cellefrie systemer av immunologisk kompetente celler bringes til reaksjon med det tilsvarende antigen, dvs. det antigen, mot hvilket vaksinen skal være virksom. Ved "immunologisk kompetente celler" skal det forståes slike celler som er istand til å danne informatorisk ribonucleinsyre når de på forhånd bringes til reaksjon med et antigen. De kompetfltnte celler befinner seg i lymfen, The informative ribonucleic acid serving as the basis for the vaccine is thus obtained when immunologically competent cells or preferably cell-free systems of immunologically competent cells are brought into reaction with the corresponding antigen, i.e. the antigen against which the vaccine is to be effective. By "immunologically competent cells" shall be understood such cells which are capable of forming informative ribonucleic acid when they are brought into reaction with an antigen in advance. The competent cells are located in the lymph,

i lymfeknuter, i milten, i eksudater, f.eks. i peritoneal-eksudat, in lymph nodes, in the spleen, in exudates, e.g. in peritoneal exudate,

og spesielt i de perifere leukocyter (blod.). Cellene kan være av menneskelig eller dyrisk, opprinnelse, alt etter som de ifølge oppfinnelsen fremstilte vaksiner skal finne anvendelse til mennesker eller dyr. Til fremstilling av en vaksine ti! en bestemt type, gåes det således hensiktsmessig ut fra.immunologisk kompetente celler av den angjeldende type. Menneskelig informatorisk ribonucleinsyre kan f.eks. utvinnes av perifere leukocyter fra mennesker.. De forekommer som biprodukt ved p-lasmautvinning. and especially in the peripheral leukocytes (blood). The cells can be of human or animal origin, depending on whether the vaccines produced according to the invention are to be used for humans or animals. For the production of a vaccine ten! a specific type, it is thus appropriate to proceed from immunologically competent cells of the type in question. Human informative ribonucleic acid can e.g. are extracted by peripheral leukocytes from humans. They occur as a by-product of plasma extraction.

Til reaksjon ved det immunologisk kompetente celle-material anvendes det antigener og toksiner av bakterier, vira eller deres underenheter-samt slangegift, etc. Antigens and toxins from bacteria, viruses or their subunits - as well as snake venom, etc. are used to react with the immunologically competent cell material.

Som bakterielle utgangsstoffer kan nevnes f.eks. tetanus- og difteritoksin samt stoffskifte- eller spaltningsprodukt-ene av Bordetella pertuss.is., Mycobacterium tuberculosis samt salmo-neller, shigeller, bruceller og streptkokker, vira og deres underenheter, f.eks., influensavira, influensahemagglutinin, poliovira eller deres proteinomhylningen, mésiing-, hundegalskap-, mks-, koppe-, svinepest-, hyalpesyke-, Hepåtitis-contagiosa-canis- samt encefa-litisvira. As bacterial starting substances can be mentioned e.g. tetanus and diphtheria toxin as well as the metabolic or cleavage products of Bordetella pertuss.is., Mycobacterium tuberculosis as well as salmonella, shigella, brucella and streptococci, viruses and their subunits, e.g., influenza viruses, influenza hemagglutinin, polioviruses or their protein envelope, measles, rabies, FMD, smallpox, swine fever, hyalpesyke, Hepåtitis contagiosa canis and encephalitis viruses.

Anvendes det til Utvinning av den informatoriske ribonucleinsyre og til fremstilling av vaksinen et cellulært system, kan det vanligvis gåes frem på følgende måte: En celles kultur av immuno logi sic kompetente celler, f.eks., menneskelige leukocyter, bringes til reaksjon med en på forhånd bestemt optimal dose av antigenet, vanligvis en antigenaprtikkel pr. 100 celler og inkuberes i 5~60 minutter, fortrinnsvis ca. 20 minutter ved ca.. 0°C og vaskes. Av de vaskede celler isoleres den informatoriske ribonucleinsyre etter kjente metoder, f.eks. ved hjelp av en fenol således at den er fri for. proteiner og nucleaser. Til steri-lisering sterilfiitréresden vandige suspensjon av ribonucleinsyren eller oppvarmes i -ca. 5 minutter til ca.. -100°C, idet den hvis nød-vendig på forhånd dialyseres for fjernelse av spor av fenol. Det fremkomne produkt er en'vaksine, og den kan.blandes med et bærestoff,. f.eks. aluminiumhydroksyd eller aluminiumfosfat. If a cellular system is used for the extraction of the informative ribonucleic acid and for the production of the vaccine, the following can usually be done: A cell culture of immunologically competent cells, e.g., human leukocytes, is reacted with a predetermined optimal dose of the antigen, usually one antigen particle per 100 cells and incubate for 5~60 minutes, preferably approx. 20 minutes at approx. 0°C and washed. From the washed cells, the informative ribonucleic acid is isolated according to known methods, e.g. by means of a phenol so that it is free of. proteins and nucleases. For sterilization, the aqueous suspension of the ribonucleic acid is sterile filtered or heated for -approx. 5 minutes to approx.. -100°C, being dialyzed beforehand if necessary to remove traces of phenol. The resulting product is a vaccine, and it can be mixed with a carrier. e.g. aluminum hydroxide or aluminum phosphate.

Hvis det benyttes ét cellefritt system, gåes det med fordel frem på følgende måte: Vaskede, immunologisk kompentente celler, f.eks. menneskelige eller dyriske leukocyter fra det perifere blod, opptas i en pufferoppløsning med en molaritet på 0,01-0,15, fortrinnsvis ca. 0,1 med en pH-verdi på 7>6-8,6 fortrinnsvis ca. 7,8. Best egner det seg en tris/maleinsyre- eller tris/HCL-puffer. (tris = tri-(hydrok-symetyl)-aminometan). Cellene nedbrytes ved flere gangers nedfrys-ning og opptining, og cellehomogenatet sentrifugeres i ca. 30 min. ved 30.000 omdreininger pr. min. og 0°C eller under 0°C. Den etter sentrifugeringen dannede ovenstående væske er det cellefrie system, som inneholder alle cellenes oppløselige innholdsstoffer. Deretter bringes det til reaksjon med en optimal dose av- et tilsvarende antigen og oppvarmes i-2-60 min., fortrinnsvis i ca. 10 min., til en temperatur på ca. 37°C. Den --i^ere opparbeidelsen foregår som nevnt ovenfor. If a cell-free system is used, it is advantageous to proceed in the following way: Washed, immunologically competent cells, e.g. human or animal leukocytes from the peripheral blood are taken up in a buffer solution with a molarity of 0.01-0.15, preferably approx. 0.1 with a pH value of 7>6-8.6 preferably approx. 7,8. A tris/maleic acid or tris/HCL buffer is best suited. (tris = tri-(hydroxymethyl)aminomethane). The cells are broken down by freezing and thawing several times, and the cell homogenate is centrifuged for approx. 30 min. at 30,000 revolutions per my. and 0°C or below 0°C. The supernatant formed after centrifugation is the cell-free system, which contains all the cells' soluble substances. It is then reacted with an optimal dose of a corresponding antigen and heated for 2-60 min., preferably for approx. 10 min., to a temperature of approx. 37°C. The further processing takes place as mentioned above.

Den her omhandlede fremgangsmåte byr på tallrike fordeler til fremstilling av podestoffer. Det ved den vanlige fremstilling av vaksiner nødvendige fremgangsmåtetrinn til inaktivering bort-faller. Sidereaksjoner (allergiske reaksjoner)og podningsbeskadig-elser er ikke å frykte, da vaksinen er helt antigenfri. Utgangsstof-fene til fremgangsmåten er lett tilgjengelige i større mengder. Om-kostningene ved fremgangsmåten er små. 'Tålbarheten av den informatoriske ribonucleinsyre i influensavirus prøves på mus. Musene inngis intraperitonealt 0,25 ml av en vandig suspensjon av den informatoriske ribonucleinsyre. Musene viser ingen reaksjon. Den ifølge oppfinnelsen fremstilte vaksine virker altså ikke toksisk. The method described here offers numerous advantages for the production of inoculants. In the normal production of vaccines, the process steps necessary for inactivation are omitted. Side reactions (allergic reactions) and graft damage are not to be feared, as the vaccine is completely antigen-free. The starting materials for the method are readily available in large quantities. The overhead costs of the procedure are small. 'The tolerability of the informant ribonucleic acid in influenza virus is tested on mice. The mice are given intraperitoneally 0.25 ml of an aqueous suspension of the informative ribonucleic acid. The mice show no reaction. The vaccine produced according to the invention is therefore not toxic.

For bestemmelse av virkningen gjennomføres et beskyt-telsesforsøk med nus, og produktet sammenlignes med et etter teknikkens stand fra egg dyrket influensavirus. Til fremstilling av sam-menligningspreparatene (begge uten bærestoffer) gåes det hver gang ut fra samme mengde. Som det fremgår av den følgende tabell er vaksinen ifølge oppfinnelsen bedre virksom enn en etter teknikkens stand frem-stilt vaksine: To determine the effect, a protection test is carried out with nasal spray, and the product is compared with a state-of-the-art influenza virus grown from eggs. For the preparation of the comparative preparations (both without carriers), the same amount is used each time. As can be seen from the following table, the vaccine according to the invention is more effective than a vaccine prepared according to the state of the art:

Oppfinnelsen skal forklares nærmere ved hjelp av noen utføreIseseksempler. The invention will be explained in more detail with the help of some practical examples.

Eksempel 1. Example 1.

Fra 100 ml menneskelig blod isoleres leukocytene. De vaskes med fysiologisk kokesalt-oppløsning og opptas deretter i en 0,1 molar tris/maleinsyrepuffer med en pH-verdi på 7>8 som ytterlig-ere er 0,01 molar med hensyn til KC1, 0,005 molar med hensyn til .magnesiumacetat og 0,006 molar med hensyn til 2-merkapto-etanol. Cellulosesuspensjonen nedfryses og tines 10 ganger. Cellehomogenatet sentrifugeres ved 30.000 omdreininger/min. og 0°C i 30 min. Sedi-mentet kasseres, og det cellefri system tilsettes 10 ^ enheter av reseptoren for fagen (kappa) fra Serratia marcescens og inkuberes i 10 min. i vannbad ved 37°C. Deretter isoleres ribonucleinsyren ifølge Kirtry med fenol. Leukocytes are isolated from 100 ml of human blood. They are washed with physiological saline solution and then taken up in a 0.1 molar tris/maleic acid buffer with a pH value of 7>8 which is additionally 0.01 molar with respect to KCl, 0.005 molar with respect to magnesium acetate and 0.006 molar with respect to 2-mercaptoethanol. The cellulose suspension is frozen and thawed 10 times. The cell homogenate is centrifuged at 30,000 revolutions/min. and 0°C for 30 min. The sediment is discarded, and 10 µ units of the receptor for the phage (kappa) from Serratia marcescens are added to the cell-free system and incubated for 10 min. in a water bath at 37°C. The ribonucleic acid is then isolated according to Kirtry with phenol.

Undersøkelsen av den av den fremkomne vaksine bevirk-ede antistoffsyntese i det cellulære (A) og det cellefrie' (B) system gjennomføres på følgende måte: A) Prøving av den informatoriske ribonucleinsyre i et cellulært system: •Det fremstilles en lymfecellekultur med 10<7>' pr. kultur fra menneskelige lymfeknuter. Denne■lymfecellekultur tilsettes 0,3 ml .av en vandig oppløsning av den ovennevnte vaksine med et optisk tetthet på 0,004, målt ved 260 m^u. Etter 2 dagers forløp skiller den ovenstående væske cellekulturen fra og prøves for antistoffinnhold ved receptor-nøytraliseringsforsøket. Det påvises 10"*"^ antistoff-molekyler pr. ml vevskulturvæske. B) Prøving av ribonucleinsyren i et cellefritt system.av menneskelige leukocyter: Det fremstilles som nevnt ovenfor et cellefritt system. ;Den i dette system tilstedeværende desoksyribonucleinsyre nedbrytes med desoksyribonuclease. Ved denne behandling er det cellefri system ikke lenger istand til å syntetisere informatorisk ribonucleinsyre ;eller antistoffer etter tilsetning av antigen. Det er således egnet som testsystem til informasjonsinnholdet av et ribonucleinsyrepreparat, som skal anvendes som vaksine. Til 0,1 ml av et sådant cellefritt system settes det 0,1 ml av et ribonucleinsyrepreparat med en optisk tetthet på 0,004. (ved 260 m/u). Utgangsmaterialet inkuberes ;ved 37°C i 30 min., hvoretter mengden av de etter tilsetningen av ribonucleinsyren syntetiserte antistoffer måles ved reseptornøytråli- ;... Q ;sasjonsprøven. Antistofftiteren utgjør 10 antistoffer pr. ml vevskulturvæske. Eksempel 2. ;Ifølge eksempel 1 bringes et cellefritt system av menneskelige leukocyter til reaksjon med Equine-Milford-hemaglutinin (hemagglutininet av Equin-Milford-virus, som . fremkaller en sykdom hos hester) og herfra fremstilles en vaksine som beskrevet. Med denne vaksine benyttes cellefri systemer av menneskelige leukocyter til antistoffsyntese. Det påvises. 5 x 10"^ antistoffmolekyler/ml. Eksempel 3. ;En kultur av perifere leukocyter fra rhesusaper bringes ifølge eksempel 1 til reaksjon med Equine-Milford-hemagglutinin, og det fremstilles herfra en vaksine (informatorisk ribonucleinsyre). ;Denne vaksine innsprøytes intramuskulært i to rhesusaper i en mengde på 0,5 ml (fortynning til intramuskulær bruk 1:20, optisk tetthet 0,002). De to immuniserte aper har en antistofftiter på 6,0 x 10 ;Q ;og 12,0 x 10^ pr. ml serum. Kontrolldyrene har ikke dannet noen antistoffer mot Equine-Milford-hemagglutinin. ;Eksempel 4. ;En kultur av peritoneaiceller av NMRI—mus bringes ifølge eksemp-el 1 "til reaksjons méd Equine-Milford-hemagglutinin, og det fremstilles herfra en vaksine (informatorisk ribonucleinsyre). Med denne vaksine sprøytes NMRI-mus intraperitonealt. Ved enbelast-nings inf eks jon med de ovennevnte virustyper viser slike dyr seg å være immune. Serumet inneholder 6,7 x 10 antistoffer pr. ' tal, og ;kontrollene dannet ingen antistoffer. ;Eksempel 5* The examination of the antibody synthesis induced by the resulting vaccine in the cellular (A) and the cell-free (B) system is carried out in the following way: A) Testing of the informative ribonucleic acid in a cellular system: • A lymph cell culture is prepared with 10< 7>' per culture from human lymph nodes. To this lymph cell culture is added 0.3 ml of an aqueous solution of the above-mentioned vaccine with an optical density of 0.004, measured at 260 m^u. After 2 days, the supernatant is separated from the cell culture and tested for antibody content in the receptor neutralization experiment. 10"*"^ antibody molecules are detected per ml of tissue culture fluid. B) Testing the ribonucleic acid in a cell-free system of human leukocytes: A cell-free system is prepared as mentioned above. The deoxyribonucleic acid present in this system is broken down by deoxyribonuclease. With this treatment, the cell-free system is no longer able to synthesize informative ribonucleic acid or antibodies after the addition of antigen. It is thus suitable as a test system for the information content of a ribonucleic acid preparation, which is to be used as a vaccine. To 0.1 ml of such a cell-free system is added 0.1 ml of a ribonucleic acid preparation with an optical density of 0.004. (at 260 m/r). The starting material is incubated at 37°C for 30 min., after which the quantity of the antibodies synthesized after the addition of the ribonucleic acid is measured by the receptor neutralization test. The antibody titer amounts to 10 antibodies per ml of tissue culture fluid. Example 2. According to example 1, a cell-free system of human leukocytes is reacted with Equine-Milford hemagglutinin (the hemagglutinin of Equine-Milford virus, which causes a disease in horses) and a vaccine is prepared from this as described. With this vaccine, cell-free systems of human leukocytes are used for antibody synthesis. It is proven. 5 x 10"^ antibody molecules/ml. Example 3. ;A culture of peripheral leukocytes from rhesus monkeys is reacted according to example 1 with Equine-Milford hemagglutinin, and a vaccine (informative ribonucleic acid) is prepared from this. ;This vaccine is injected intramuscularly into two rhesus monkeys in an amount of 0.5 ml (dilution for intramuscular use 1:20, optical density 0.002). The two immunized monkeys have an antibody titer of 6.0 x 10 ;Q ; and 12.0 x 10^ per ml serum. The control animals have not formed any antibodies against Equine-Milford-hemagglutinin. ;Example 4. ;A culture of peritoneal cells of NMRI mice is reacted according to Example 1 with Equine-Milford-hemagglutinin, and a vaccine is prepared from this (informative ribonucleic acid). With this vaccine, NMRI mice are injected intraperitoneally. In the case of single-load infection with the above-mentioned virus types, such animals prove to be immune. The serum contains 6.7 x 10 antibodies per ' numbers, and the controls did not form antibodies. ;Example 5*

Et cellefritt system av miltceller fra rhesusaper bringes ifølge eksempel 1 til reaksjon med hemagglutinin av influensavira av typene A, A^j-Ag, syineinfluensa,T3 Leé-influensa dg PR 8, According to example 1, a cell-free system of spleen cells from rhesus monkeys is reacted with hemagglutinin of influenza viruses of the types A, A^j-Ag, sine influenza, T3 Leé influenza dg PR 8,

og det fremstilles herfra en vaksine. Rhesusaper sprøytes med denne. vaksine. De méd vaksine (informatorisk ribonucleinsyre) behandlede dyr danner deretter antistoffer som aTlerede omtalt i eksempel 3- and a vaccine is made from this. Rhesus monkeys are injected with this. vaccine. The animals treated with vaccine (informative ribonucleic acid) then form antibodies as discussed in example 3-

Claims (1)

Premgnagmåte til fremstilling av en antigenf ri vaksine.,karakterisert vedat man dyrker immunologisk kompetente celler eller fortrinnsvis cellefrie systemer av immunologisk kompetente celler med et antigen i 2-60 min. ved ca. 37°C, .isolerer den dannede informatoriske ribonucleinsyre på kjent måte, f^eks. med fenol og steriliserer-og eventuelt tilsetter et bærestoff.Premgnag method for producing an antigen-free vaccine, characterized by culturing immunologically competent cells or preferably cell-free systems of immunologically competent cells with an antigen for 2-60 min. at approx. 37°C, isolate the formed informative ribonucleic acid in a known manner, e.g. with phenol and sterilizes - and optionally adds a carrier.
NO2340/68A 1967-06-19 1968-06-15 NO124840B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEJ0033936 1967-06-19

Publications (1)

Publication Number Publication Date
NO124840B true NO124840B (en) 1972-06-12

Family

ID=7204943

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2340/68A NO124840B (en) 1967-06-19 1968-06-15

Country Status (13)

Country Link
AT (1) AT282821B (en)
BE (1) BE716806A (en)
BR (1) BR6899970D0 (en)
CH (1) CH513241A (en)
DE (1) DE1617545C2 (en)
DK (1) DK119724B (en)
ES (1) ES355121A1 (en)
FR (2) FR1588820A (en)
GB (1) GB1229888A (en)
IE (1) IE32140B1 (en)
IL (1) IL30168A (en)
NL (1) NL6808486A (en)
NO (1) NO124840B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE754934A (en) * 1969-08-16 1971-02-17 Jachertz Diether RNA-MESSENGER ENZYMATIC PRODUCTION PROCESS
GB1594097A (en) 1976-12-16 1981-07-30 Int Inst Of Differentiation Production of specific immune nucleic acids cell dialysates and antibodies
DE3115559A1 (en) * 1981-04-16 1982-10-28 Kommanditgesellschaft Schwarzhaupt, 5000 Köln HIGH PURIFIED INFORMATIVE RIBONUCLEIC ACID (I-RNS), METHOD FOR THE PRODUCTION AND USE THEREOF
GB2216416B (en) * 1988-03-11 1992-06-24 Sandoz Ltd Nucleobase source for the stimulation of the immune system
US6673776B1 (en) 1989-03-21 2004-01-06 Vical Incorporated Expression of exogenous polynucleotide sequences in a vertebrate, mammal, fish, bird or human
US6867195B1 (en) 1989-03-21 2005-03-15 Vical Incorporated Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected
US6214804B1 (en) 1989-03-21 2001-04-10 Vical Incorporated Induction of a protective immune response in a mammal by injecting a DNA sequence
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery

Also Published As

Publication number Publication date
BR6899970D0 (en) 1973-02-13
BE716806A (en) 1968-12-19
NL6808486A (en) 1968-12-20
FR1588820A (en) 1970-03-16
DE1617545A1 (en) 1971-04-01
CH513241A (en) 1971-09-30
DK119724B (en) 1971-02-15
IE32140L (en) 1968-12-19
DE1617545C2 (en) 1983-11-03
AT282821B (en) 1970-07-10
IE32140B1 (en) 1973-04-18
ES355121A1 (en) 1969-11-16
IL30168A (en) 1973-05-31
GB1229888A (en) 1971-04-28
IL30168A0 (en) 1968-08-22
FR7781M (en) 1970-03-23

Similar Documents

Publication Publication Date Title
Yewdell et al. Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule
AU770923B2 (en) Inactivated influenza virus vaccine for nasal or oral administration
US20090142377A1 (en) Immunogenic compositions
Casals Complement-fixation test for diagnosis of human viral encephalitides
NO813087L (en) PROCEDURE FOR PREPARING HERPES SIMPLEX TYPE I-VACCINE
CA1109393A (en) Vaccine and its preparation
NO124840B (en)
Calnek et al. Some characteristics of cell-free preparations of Marek's disease virus
DK154749B (en) PROCEDURE FOR PREPARING AN INFLUENZA VIRUS VACCINE IN A LIQUID CELL CULTURE
WO2008044611A1 (en) Ipv-dpt vaccine
CN1059471A (en) Heamophilus paragallinarum vaccine
JPH05501401A (en) Vaccine or toxoid preparations and immunization methods by metastatic growth with recombinant microorganisms
Smith et al. The relationship between rubella hemagglutination inhibition antibody (HIA) and rubella induced in vitro lymphocyte tritiated thymidine incorporation
Finlay et al. The use of the complement fixation test for rapid typing of infectious pancreatic necrosis virus
US3429965A (en) Avian pox virus vaccine and process of preparing same
Schmidt et al. The complement-fixing antigen of rubella virus.
McCarthy et al. An Investigation of immunological relationships between the viruses of variola, vaccinia, cowpox and ectromelia by neutralization tests on the chorio-allantois of chick embryos
Musser et al. Measles virus growth in canine renal cell cultures
US3318775A (en) Production of viral antigens with n-acetyl-ethyleneimine
Kenyon et al. Preparation of vaccines for Rocky Mountain spotted fever from rickettsiae propagated in cell culture
Fairbrother et al. Active Immunization against Experimental Influenza: The Use of Heat-killed Elementary Body Suspensions
Neva et al. Specific and cross reactions by complement fixation with Boston exanthem disease virus (ECHO-16)
Levisohn et al. Isolation, ultrastructure and antigenicity of Mycoplasma gallisepticum membranes
Bar-Joseph et al. Booster immunization with a partially purified citrus tristeza virus (CTV) preparation after priming with recombinant CTV coat protein enhances the binding capacity of capture antibodies by ELISA
JPH0341034A (en) Peritonitis vaccine infectious for felid animal