NO123365B - - Google Patents
Download PDFInfo
- Publication number
- NO123365B NO123365B NO3990/70A NO399070A NO123365B NO 123365 B NO123365 B NO 123365B NO 3990/70 A NO3990/70 A NO 3990/70A NO 399070 A NO399070 A NO 399070A NO 123365 B NO123365 B NO 123365B
- Authority
- NO
- Norway
- Prior art keywords
- boron
- metal
- uranium
- gas
- reaction
- Prior art date
Links
- 229910052796 boron Inorganic materials 0.000 claims description 24
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 229910052770 Uranium Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 12
- 239000003758 nuclear fuel Substances 0.000 claims description 11
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 claims description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 239000004411 aluminium Substances 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 description 20
- 230000004992 fission Effects 0.000 description 8
- 239000000446 fuel Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- ZOXJGFHDIHLPTG-BJUDXGSMSA-N Boron-10 Chemical compound [10B] ZOXJGFHDIHLPTG-BJUDXGSMSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229910000711 U alloy Inorganic materials 0.000 description 2
- -1 boron halide Chemical class 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-IGMARMGPSA-N lithium-7 atom Chemical compound [7Li] WHXSMMKQMYFTQS-IGMARMGPSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FGUJWQZQKHUJMW-UHFFFAOYSA-N [AlH3].[B] Chemical compound [AlH3].[B] FGUJWQZQKHUJMW-UHFFFAOYSA-N 0.000 description 1
- ZBWNBBMJAYYICX-UHFFFAOYSA-N [B].[U].[Zr] Chemical compound [B].[U].[Zr] ZBWNBBMJAYYICX-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/14—Devices for feeding or crust breaking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Fremgangsmåte ved fremstilling av neutronreaktorbrennstoff. Procedure for the production of neutron reactor fuel.
Nærværende oppfinnelse gjelder fremstilling av kjernespaltnings- og da spesielt fremstilling av neutronreaktive komponen-ter omfattende legeringer av 235-isotopen av uran. The present invention relates to the production of nuclear fission and, in particular, the production of neutron-reactive components comprising alloys of the 235 isotope of uranium.
Som bekjent kan isotopen U235 spaltes ved neutronbombardement for å danne spaltningsneutroner, beta- og gamma-strålinger samt letter elementer etterfulgt av frigjøring av betydelig varme. Når en tilstrekkelig stor masse av uranisotoper ut-settes for et slikt bombardement, skjer en kjedereaksjon i systemet, hvorved forhol-det mellom antall neutroner som frembrin-ges i en generasjon ved spaltninger og det opprinnelige antall neutroner som igang-setter spaltningene er større enn en etterat alle neutrontap er fraregnet. Dette forhold som av praktiske grunner benevnes k, holdes fortrinnsvis på en verdi som ligger mellom 1,00 og 1,10. Regulering eller kontroll av dette forhold kan iverksettes ved selektivt å øke eller minske størrelsen av de fra reaksjonen tapte neutroner. Dette er tidligere utført ved å forme uranisotop-massen til mange diskrete eller adskilte brennstoffelementer anordnet i et gitter-lignende mønster inn i konstruksjonen eller reaktorlegemet og innføre en reguler-bar mengde material f .eks. en regulerings-stav som er i stand til å fange inn eller ab-sorbere et relativt høyt antall neutroner i mellomrom mellom noen av eller alle bren-selselementene. Alt ettersom det neutron-absorberende material dvs. reguleringssta-vene litt etter litt fjernes fra reaktoren, er stadig større antall neutroner frie til å As is known, the isotope U235 can be fissioned by neutron bombardment to form fission neutrons, beta and gamma radiation as well as light elements followed by the release of considerable heat. When a sufficiently large mass of uranium isotopes is exposed to such a bombardment, a chain reaction occurs in the system, whereby the ratio between the number of neutrons produced in one generation by fissions and the original number of neutrons that initiate the fissions is greater than one after all neutron losses have been deducted. This ratio, which for practical reasons is called k, is preferably kept at a value between 1.00 and 1.10. Regulation or control of this ratio can be implemented by selectively increasing or decreasing the size of the neutrons lost from the reaction. This has previously been carried out by shaping the uranium isotope mass into many discrete or separate fuel elements arranged in a grid-like pattern into the construction or reactor body and introducing a controllable amount of material, e.g. a control rod capable of capturing or absorbing a relatively high number of neutrons in spaces between some or all of the fuel elements. As the neutron-absorbing material, i.e. the control rods, is gradually removed from the reactor, an increasing number of neutrons are free to
inngå i reaksjonen, og et punkt under fjer- enter into the reaction, and a point below far-
nelsen oppstår hvor reaksjonen blir selvvedlikeholdende. På dette punkt er forhol-det k større enn en. Hvis fjernelsen stan-ses når øyeblikksverdien av k er litt større enn en, er reaksjonen selvvedlikeholdende, men bare i en begrenset tid da alt ettersom reaksjonen skrider frem, vil mengden av uran litt etter litt utarmes og spaltnings-produktene fra reaksjonen vil bli virksom-me for å innfange neutroner. Dette fører til at det litt etter litt foregår en minsk-ning i verdien av k inntil reaksjonen stan-ser. Det vil innsees at for en gitt reaktor av denne type inneholdende en viss mengde uranbrensel fordres stadig regulering av den neutroninnfangende regulerings- eller kontrollanordning for å holde graden eller hastigheten av den selvvedlikeholdende reaksjonen innen de ønskede grenser. Det ville være ønskelig å redusere graden av ytre regulering eller kontroll som er nød-vendig for å justere reaksjonshastigheten. the nelsen occurs where the reaction becomes self-sustaining. At this point, the ratio k is greater than one. If the removal is stopped when the instantaneous value of k is slightly greater than one, the reaction is self-sustaining, but only for a limited time as, as the reaction progresses, the amount of uranium will be gradually depleted and the fission products from the reaction will become active. me to capture neutrons. This leads to a little by little reduction in the value of k until the reaction stops. It will be appreciated that for a given reactor of this type containing a certain amount of uranium fuel, constant regulation of the neutron capture regulating or control device is required to keep the rate or speed of the self-sustaining reaction within the desired limits. It would be desirable to reduce the degree of external regulation or control that is necessary to adjust the reaction rate.
Det er derfor hensikten for fremgangsmåten ifølge nærværende oppfinnelse å fremstille reaktorbrenselselementer som har bestanddeler med neutroninfangnings-karakteristikker som endrer seg med en mer eller mindre konstant hastighet under reaksjonen, slik at reaktorsystemets k-verdi virkelig forblir konstant i et relativt langt tidsrom uten at systemets regulerings- eller kontrollkarakteristikker endres. Andre hensikter med oppfinnelsen vil fremgå av nedenstående detaljbeskrivene. It is therefore the purpose of the method according to the present invention to produce reactor fuel elements that have components with neutron capture characteristics that change at a more or less constant rate during the reaction, so that the k-value of the reactor system really remains constant for a relatively long period of time without the system's control - or control characteristics change. Other purposes of the invention will be apparent from the detailed descriptions below.
I korthet fremstilles etter fremgangsmåten ifølge oppfinnelsen reaktorbrensels-elementet som i det vesentlige består av en legering av uran 235 og et metall som har et lavt neutroninnfangningstverrsnitt, hvilken legering danner basis for en fin-delt, jevn dispersjon av et materiale som har et relativt høyt neutroninnfangningstverrsnitt, men som ved innfangning av neutroner under spaltningsreaksjonen un-dergår en forvandling til et forskjellig materiale med meget lavere neutroninnfangningstverrsnitt. Briefly, according to the method according to the invention, the reactor fuel element is produced which essentially consists of an alloy of uranium 235 and a metal which has a low neutron capture cross-section, which alloy forms the basis for a finely divided, uniform dispersion of a material which has a relatively high neutron capture cross-section, but which upon capture of neutrons during the fission reaction undergoes a transformation into a different material with a much lower neutron capture cross-section.
Mere spesielt går fremgangsmåten ut på å fremstille kjernereaktorbrenselsele-menter bestående av legeringer av uran 235 og et metall som f. eks. aluminium eller sirkon, inneholdende en fin, jevn dispersjon av bor. Alt ettersom disse brenselselementer forbrukes i kjernereaktoren, forvandles på kjent måte bor i partiklene, som har et meget høyt neutroninnfangningstverrsnitt, dvs. en høy absorbsjonskarakteristikk for neutroner, etterhvert til litium, som har et meget lavere neutroninnfangningstverrsnitt etter følgende reaksjon: More specifically, the method involves producing nuclear reactor fuel elements consisting of alloys of uranium 235 and a metal such as, for example aluminum or zirconium, containing a fine, uniform dispersion of boron. As these fuel elements are consumed in the nuclear reactor, boron in the particles, which has a very high neutron capture cross-section, i.e. a high absorption characteristic for neutrons, is eventually transformed into lithium, which has a much lower neutron capture cross-section, after the following reaction:
B1" + n Li<7> + He<+> + Q B1" + n Li<7> + He<+> + Q
I den ovenfor angitte reaksjon represente-rer B<10> den borisotop som har en atomvekt 10, n en neutron, Li<7> den litiumisotop som har atomvekt 7, He<*> helium og Q ut-viklet energi, som i det foreliggende tilfelle utgjør 3,0 millioner elektronvolt. Som videre kjent er neutroninnfangningstverr-snittet for naturlig bor ca. 750 barn og for bor 10 ca. 3990 barn, mens neutroninnfang-ningstverrsnittet for litium 7 er omkring 33 millibarn. Ettersom forvandlingshastig-heten av bor 10 til litium 7 er proporsjonal med hastigheten av spaltningsreaksjonen for U-235 ser man at alt ettersom uran forbrukes ved reaksjonen, minskes antall neutroner som fjernes fra spaltningsreaksjonen av bor proporsjonalt. I praksis kan det være ønskelig dessuten å kle reaktorbren-selselementets overflate med et forholds-vis tynt sjikt av det rene legeringsmetallet for å forbedre og kontrollere korrosjonen. In the reaction indicated above, B<10> represents the boron isotope which has an atomic weight of 10, n a neutron, Li<7> the lithium isotope which has an atomic weight of 7, He<*> helium and Q evolved energy, as in the present case amounts to 3.0 million electron volts. As is also known, the neutron capture cross section for natural boron is approx. 750 children and for living 10 approx. 3990 microbars, while the neutron capture diameter for lithium 7 is about 33 millibars. As the rate of conversion of boron 10 to lithium 7 is proportional to the rate of the fission reaction for U-235, it can be seen that as uranium is consumed in the reaction, the number of neutrons removed from the fission reaction of boron decreases proportionally. In practice, it may also be desirable to coat the surface of the reactor fuel element with a relatively thin layer of the pure alloy metal to improve and control corrosion.
Det er hensikten at reaktorbrenselselementer fremstillet etter fremgangsmåten ifølge oppfinnelsen skal omfatte hen-siktsmessig formede og dimensjonerte lege-mer bestående i det vesentlige av fra ca. 15 til 23 vektsprosent uran, fra ca. 0,1 til 0,5 vektprosent naturlig bor, og resten et metall utvalgt av den gruppe som består av aluminium eller sirkon. Med hensyn til borgehalten vil det forståes at da naturlig bor inneholder ca, 18,8 vektprosent B<10>, kan vektprosenten av gehalten naturlig bor re-duseres ved å benytte bor i hvilket bor 10-behålten er anriket med B<10>. It is intended that reactor fuel elements produced according to the method according to the invention should comprise appropriately shaped and dimensioned bodies consisting essentially of from approx. 15 to 23 weight percent uranium, from approx. 0.1 to 0.5 percent by weight natural boron, and the remainder a metal selected from the group consisting of aluminum or zirconium. With regard to the boron content, it will be understood that since natural boron contains approx. 18.8 weight percent B<10>, the weight percentage of the natural boron content can be reduced by using boron in which the boron 10 content is enriched with B<10>.
Det har vist seg at en tilstrekkelig jevn dispersjon av bor ikke kan oppnås ved å tilsette bor til de smeltede legeringer i form av en hoved- eller stamlegering. I et reak-torbrenselelement i hvilket bor ikke er i det vesentlige jevnt fordelt gjennom hele bren-selselementet, har lokale varmesoner til-bøyelighet til å utvikle seg i områder som har liten eller ingen bor, hvilket forårsaker 'skade på elementet. Fremgangsmåten til fremstilling av reaktorbrenselselement som har en tilfredsstillende fordeling av bor-partiklene, utføres ifølge oppfinnelsen på følgende måte: En passende mengde aluminium eller sirkon smeltes, og en gass-formig borhalo-genid bringes til å boble gjennom badet. Bortriklorid eller bortribromid benyttes fortrinnsvis. Borhalogeniden reagerer med det smeltede metall i badet for å danne en flyktig metallhalogenid som stiger opp til overflaten av badet og spredes, og en fin dispersjon av bor fordeles gjennom badet. Etterat tilstrekkelig bor er innført i det smeltede metallbad på denne måte, tilsettes en forutbestemt mengde uran til badet, smeltes og legeres med dette, og legerin-gen støpes i en passende støpeform. Støpe-stykket kan derpå formes til den ønskede konturform ved konvensjonelle fremgangs-måter for bearbeidelse og eventuelt inn-kapsles. It has been found that a sufficiently uniform dispersion of boron cannot be achieved by adding boron to the molten alloys in the form of a main or master alloy. In a reactor fuel element in which boron is not substantially uniformly distributed throughout the fuel element, localized hot zones tend to develop in areas having little or no boron, causing damage to the element. The method for producing a reactor fuel element which has a satisfactory distribution of the boron particles is carried out according to the invention in the following way: An appropriate amount of aluminum or zirconium is melted, and a gaseous boron halide is bubbled through the bath. Boron trichloride or boron tribromide is preferably used. The boron halide reacts with the molten metal in the bath to form a volatile metal halide that rises to the surface of the bath and spreads, and a fine dispersion of boron is distributed throughout the bath. After sufficient boron has been introduced into the molten metal bath in this manner, a predetermined amount of uranium is added to the bath, melted and alloyed with it, and the alloy cast into a suitable mold. The casting can then be shaped into the desired contour shape by conventional methods of processing and optionally encapsulated.
Som et spesielt eksempel på den foran-nevnte fremgangsmåte antas det at man ønsker å fremstille et ettkilograms støpe-stykke inneholdende 20 % uran, omkring 0,3 % naturlig bor og resten stort sett helt ren aluminium. En sats på omkring 805 gram stort sett ren aluminium smeltes i en induksjonsovn. Badtemperaturen holdes på omkring 800° C, og bortrikloridgass bringes til å boble gjennom det smeltede aluminium. Støkiometrisk skulle det fordres 6,2 liter bortriklorid ved et trykk på 760 mm kvikksølv og 20° C for å reagere med ca. 7,5 As a special example of the above-mentioned method, it is assumed that one wishes to produce a one-kilogram ingot containing 20% uranium, about 0.3% natural boron and the rest largely completely pure aluminium. A batch of about 805 grams of mostly pure aluminum is melted in an induction furnace. The bath temperature is kept at about 800° C, and boron trichloride gas is bubbled through the molten aluminium. Stoichiometrically, 6.2 liters of boron trichloride would be required at a pressure of 760 mm of mercury and 20° C to react with approx. 7.5
gram aluminium for frembringelse av 3 gram bor, den ønskede mengde. Det har grams of aluminum to produce 3 grams of boron, the desired amount. It has
imidlertid vist seg at utviklingen av bor ved denne reaksjon under disse betingel-ser vanligvis er mindre enn 10 %. Derfor however, it has been shown that the development of boron in this reaction under these conditions is usually less than 10%. Therefore
kan helt opp til 125 liter bortrikloridgass can hold up to 125 liters of boron trichloride gas
være nødvendig ved de forangitte stan-dardbetingelser med hensyn til trykk og be necessary at the stated standard conditions with regard to pressure and
temperatur. Etterat bortrikloriden har bob-let gjennom badet, tilsettes omkring 200 gram uran til det smeltede aluminium, ba-dets temperatur økes til ca. 900—1100° C, og uranen smeltes med aluminium-bor-basen for å danne den ønskede legering. Smeiten kan derpå støpes i konvensjonelle temperature. After the boron trichloride has bubbled through the bath, about 200 grams of uranium are added to the molten aluminium, the temperature of the bath is increased to approx. 900—1100° C, and the uranium is fused with the aluminium-boron base to form the desired alloy. The forge can then be cast in conventional molds
former f. eks. av grafitt, og tillates å størk-ne. Støpestykket kan derpå formes ved konvensjonelle metoder, som f. eks. smiing eller valsing til brenselselement av den øns- forms e.g. of graphite, and allowed to solidify. The casting can then be shaped by conventional methods, such as e.g. forging or rolling into a fuel element of the desired
kede form, og eventuelt overtrekkes med bored shape, and possibly covered with
aluminium. aluminum.
Ved fremgangsmåten ifølge oppfinnelsen kan sirkon erstatte aluminium på et In the method according to the invention, zirconium can replace aluminum on a
direkte vektgrunnlag med passende justeringer i smeltetemperaturer, og bortriklorid kan erstattes med bortribromid med til-børlige støkiometriske justeringer om så direct weight basis with appropriate adjustments in melting temperatures, and boron trichloride may be replaced by boron tribromide with appropriate stoichiometric adjustments if so
ønskes. Videre kan om man ønsker, disse desired. You can also, if you wish, these
sirkon-uran-bor-reaktorbrenselselementer zirconium-uranium-boron reactor fuel elements
overtrekkes på en passende måte idet sirkon benyttes som bekledningsmateriale. is coated in a suitable way, as zircon is used as the cladding material.
I reaktorbrenselselement som inneholder enten aluminium eller sirkon, frem-stilt ifølge oppfinnelsen, er borgehalten In reactor fuel elements containing either aluminum or zirconium, produced according to the invention, the boron content is
stort sett jevnt fordelt gjennom hele lege-ringsmatrisen, hvorved ikke ønskelige lokale varmesoner unngås under en kjerne-reaksjon og stort sett konstant k-verdi kan largely evenly distributed throughout the alloy matrix, whereby undesirable local heating zones are avoided during a nucleation reaction and a largely constant k-value can
beholdes for en reaktor innbefattende disse brenseLselementer over relativt lange is retained for a reactor including these fuel elements over relatively long periods
tidsperioder med et minimum av ytre kontroll. periods of time with a minimum of external control.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1587869A CH520778A (en) | 1969-10-24 | 1969-10-24 | Mobile furnace manipulator |
Publications (1)
Publication Number | Publication Date |
---|---|
NO123365B true NO123365B (en) | 1971-11-01 |
Family
ID=4412723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO3990/70A NO123365B (en) | 1969-10-24 | 1970-10-22 |
Country Status (12)
Country | Link |
---|---|
US (1) | US3663411A (en) |
JP (1) | JPS4946683B1 (en) |
AT (1) | AT299564B (en) |
BE (1) | BE757943A (en) |
CH (1) | CH520778A (en) |
DE (1) | DE2052528C3 (en) |
FR (1) | FR2065513B1 (en) |
GB (1) | GB1262068A (en) |
NL (1) | NL148955B (en) |
NO (1) | NO123365B (en) |
YU (1) | YU35382B (en) |
ZA (1) | ZA707171B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138211A (en) * | 1974-09-30 | 1976-03-30 | Mitsubishi Chem Ind | Aruminiumudenkaiso no aruminakyokyusochi |
FR2350407A1 (en) * | 1976-05-04 | 1977-12-02 | Pechiney Aluminium | METHOD AND DEVICE FOR CLEANING WASTE ANODE BODIES FROM AN ELECTROLYSIS TANK IGNEE |
CH633048A5 (en) * | 1977-06-28 | 1982-11-15 | Alusuisse | METHOD AND DEVICE FOR PRODUCING ALUMINUM. |
DE2943292A1 (en) * | 1979-09-10 | 1981-03-19 | Schweizerische Aluminium AG, 3965 Chippis | CHISEL FOR AN IMPACT DEVICE |
DE3125096C2 (en) * | 1981-06-15 | 1985-10-17 | Schweizerische Aluminium Ag, Chippis | Device and method for feeding bulk material in portions |
US4510033A (en) * | 1984-06-18 | 1985-04-09 | Aluminum Company Of America | Frozen electrolyte bath removal apparatus |
IT1221994B (en) * | 1987-07-09 | 1990-08-31 | Techmo Car Spa | EQUIPMENT FOR THE MECHANIZED CHANGE OF THE ANODES IN THE ELECTROLYTIC CELLS FOR THE PRODUCTION OF ALUMINUM |
IT1263968B (en) * | 1993-02-25 | 1996-09-05 | Gianfranco Zannini | AUTOMATED EQUIPMENT FOR THE CHANGE OF THE ELECTROLYTIC CELL ANODES FOR THE PRODUCTION OF ALUMINUM |
DE60300977T2 (en) * | 2003-01-31 | 2006-04-20 | E.C.L. | Operating machine for electrolysis cells in aluminum production |
US7915550B2 (en) * | 2008-06-17 | 2011-03-29 | Mac Valves, Inc. | Pneumatic system electrical contact device |
US8367953B2 (en) * | 2008-06-17 | 2013-02-05 | Mac Valves, Inc. | Pneumatic system electrical contact device |
CN102534679A (en) * | 2010-12-17 | 2012-07-04 | 贵阳铝镁设计研究院有限公司 | Quasi-continuous blanking type crust breaking and blanking method for alumina electrolysis bath |
CN102616665B (en) * | 2011-01-27 | 2014-03-19 | 中国有色(沈阳)冶金机械有限公司 | Blanking system of aluminum electrolysis multifunctional crane |
CN102367579A (en) * | 2011-09-19 | 2012-03-07 | 大连维乐液压制造有限公司 | Electrolytic aluminium crust breaking cylinder feedback valve |
CN106956788B (en) * | 2017-04-28 | 2023-07-14 | 青岛海科佳智能科技股份有限公司 | Automatic feeding device for fine weighing manipulator of weighing machine |
US20200131652A1 (en) * | 2017-06-15 | 2020-04-30 | Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenernotekhnologiches | Method and device for electrolyte crust breaking by separation plasma cutting |
-
0
- BE BE757943D patent/BE757943A/en unknown
-
1969
- 1969-10-24 CH CH1587869A patent/CH520778A/en not_active IP Right Cessation
-
1970
- 1970-10-19 AT AT940970A patent/AT299564B/en not_active IP Right Cessation
- 1970-10-19 NL NL707015291A patent/NL148955B/en unknown
- 1970-10-21 ZA ZA707171A patent/ZA707171B/en unknown
- 1970-10-22 YU YU258470A patent/YU35382B/en unknown
- 1970-10-22 US US83045A patent/US3663411A/en not_active Expired - Lifetime
- 1970-10-22 JP JP45092477A patent/JPS4946683B1/ja active Pending
- 1970-10-22 NO NO3990/70A patent/NO123365B/no unknown
- 1970-10-23 FR FR7038417A patent/FR2065513B1/fr not_active Expired
- 1970-10-23 GB GB50524/70A patent/GB1262068A/en not_active Expired
- 1970-10-26 DE DE2052528A patent/DE2052528C3/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS4946683B1 (en) | 1974-12-11 |
GB1262068A (en) | 1972-02-02 |
AT299564B (en) | 1972-06-26 |
DE2052528C3 (en) | 1974-08-29 |
DE2052528B2 (en) | 1974-02-07 |
YU35382B (en) | 1980-12-31 |
NL7015291A (en) | 1971-04-27 |
CH520778A (en) | 1972-03-31 |
DE2052528A1 (en) | 1971-05-06 |
FR2065513B1 (en) | 1975-02-21 |
FR2065513A1 (en) | 1971-07-30 |
BE757943A (en) | 1971-04-01 |
NL148955B (en) | 1976-03-15 |
ZA707171B (en) | 1971-07-28 |
US3663411A (en) | 1972-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO123365B (en) | ||
JP2022062224A (en) | Ceramic nuclear fuel dispersed in alloy matrix | |
US2951801A (en) | Neutronic reaction fuel | |
US3346673A (en) | Formation of submicorn uranium carbide particles in metallic uranium | |
US3177069A (en) | Methods of manufacturing fissionable materials for use in nuclear reactors | |
GB1211467A (en) | Fibre-reinforced alloy | |
US3109730A (en) | Ductile uranium fuel for nuclear reactors and method of making | |
GB821639A (en) | Improvements in fissionable materials for use in nuclear reactors and in the methodsof manufacturing such materials | |
US3782924A (en) | Fine-grained zirconium-base material | |
US2867530A (en) | Plutonium-cerium alloy | |
US3189442A (en) | Magnesium-lithium-yttrium alloys | |
US2929706A (en) | Delta phase plutonium alloys | |
US3343947A (en) | Ternary uranium alloys containing molybdenum with niobium or zirconium for use with nuclear reactors | |
US2885283A (en) | Plutonium-aluminum alloys | |
US2904429A (en) | Plutonium-thorium alloys | |
US3258333A (en) | Uranium alloys containing small amounts of alloying elements | |
US2897077A (en) | Plutonium-uranium-titanium alloys | |
DE1027809B (en) | Reactor fuel element and process for its manufacture | |
Reynolds | Fission Gas Behavior in the Uranium-Aluminum System | |
US3238140A (en) | Uranium nitride-iron nuclear fuel cermets | |
US2950967A (en) | Plutonium-zirconium alloys | |
US3717454A (en) | Uranium-base alloys | |
SE176832C1 (en) | ||
US3377161A (en) | Process for the production of an aluminum-uranium alloy | |
AT218641B (en) | Fuel elements for nuclear reactors and processes for their manufacture |